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Abstract

As pretrained language model emerge and consistently develop, prompt-based training has become a well-studied
paradigm to improve the exploitation of models for many natural language processing tasks. Furthermore, prompting
demonstrates great performance compared to conventional fine-tuning in scenarios with limited annotated data,
such as zero-shot or few-shot situations. Verbalizers are crucial in this context, as they help interpret masked word
distributions generated by language models into output predictions. This study introduces a benchmarking approach
to assess three common baselines of verbalizers for topic classification in few-shot learning scenarios. Additionally,
we find that increasing the number of label words for automatic label word searching enhances model performance.
Moreover, we investigate the effectiveness of template assembling with various aggregation strategies to develop
stronger classifiers that outperform models trained with individual templates. Our approach achieves comparable
results to prior research while using significantly fewer resources. Our code is available at https://github.com/
quang-anh-nguyen/verbalizer_benchmark.git.

1. Introduction

Fine-tuning pre-trained language models (PLMs)
have led to significant improvements across var-
ious Natural Language Processing (NLP) tasks.
Traditional methods involve replacing the PLM’s
masked language modeling head with a task-
specific head and fine-tuning the entire model (De-
vlin et al., 2019; Liu et al., 2019; Raffel et al., 2020).
However, such introduction of parameters require
a substantial amount of labeled data, making them
unsuitable for few-shot or zero-shot scenarios. In-
spired by by the approach introduced in GPT-3
(Brown et al., 2020), prompting has emerged as
a new paradigm, where downstream tasks are
adapted to align with the pretraining objective.

Prompt-based finetuning allows to exploit PLMs’
knowledge and reduces the gap between pretrain-
ing and finetuning (Petroni et al., 2019; Chen et al.,
2022). In this framework, templates and verbaliz-
ers (Schick and Schütze, 2021a; Gao et al., 2021)
are crucial mapping between task-specific inputs
and labels, to textual data for the PLM. Given the
importance of verbalizers, our objective is to estab-
lish an evaluation for the manual verbalizer (Schick
and Schütze, 2021a), the soft verbalizers (Ham-
bardzumyan et al., 2021) and the automatic ver-
balizers (Schick et al., 2020) (see section 3). In
addition, focusing on (Schick et al., 2020), we also
study the performance of PETAL with varying num-
bers of label words, using only limited resources,
i.e. without supplementary unlabeled data for dis-
tillation. Also, template ensemble allows to boost
the performance of individuals and plays the role
of template selection. The proposed evaluation

involves repetition over multiple samplings of la-
beled data, giving more robustness and less de-
pendence on the sampled instances.

Our contribution is summarized as: (i) evalu-
ating the performance of manual, soft and auto-
matic verbalizers for the topic classification prob-
lem, on three public datasets and a real-world
French dataset; (ii) demonstrating the importance
of the number of label words for the automatic ver-
balizer algorithm; (iii) showing that model ensem-
bling with multiple templates can improve prompt-
ing over individual templates, and eliminate the
need of prompt selection; (iv) achieving compa-
rable performance to previous work using signifi-
cantly less data.

2. Related Work

Prompt-based finetuning In this framework,
the input is wrapped with a task-specific template
to reformulate the target task as language model-
ing. The verbalizer then reprojects the distribution
of MASK into the answer space. For textual tem-
plates and verbalizer, their selection has a signif-
icant influence on the classification performance
(Gao et al., 2021). (Schick and Schütze, 2021a,b)
use task-specific manual templates and verbal-
izers that work efficiently. However, their con-
struction requires both domain expertise of down-
stream tasks and understanding of the PLMs, oth-
erwise the searching process of these elements
may be exhaustive with a large number of classes.
Meanwhile, (Lester et al., 2021; Liu et al., 2022;
Li and Liang, 2021) propose to freeze the PLM
and instead optimize prompt tokens. Despite be-
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ing human-independent and storage-saving, con-
tinuous prompts have only been studied in data-
abundant scenarios, and produce uninterpretable
tokens. Here we study textual templates and focus
on the search of label words for the verbalizer. A
method not studied here is KPT (Hu et al., 2022)
where an external knowledge base helps to search
for words related to the topic titles. For benchmark-
ing purposes, we exclude additional data or knowl-
edge base from available resources (section 4.1).
Additionally, (Cui et al., 2022) uses contrastive
learning to learn class prototypes can be viewed
as extended soft verbalizers.

Few shot learning setting The few-shot accu-
racy of PLMs is sensitive to many factors, mainly
the prompt formulation (Perez et al., 2021). Effec-
tive model selection, crucial to guarantee perfor-
mance was usually done on a large validation set.
However, from a practical aspect, we follow the
procedure proposed by (Zheng et al., 2022), using
a small validation set, and evaluate the test set re-
sults obtained on different training data samplings.
This setup allows us to achieve a robust and global
evaluation of learning algorithms.

Ensemble modeling Given the sensitivity of
prompt-based methods in few-shot context, each
prompt can be more or less effective towards
eliciting knowledge from the PLM. Ensemble ap-
proach provides an efficient way to reduce instabil-
ity across prompts and stronger classifiers (Schick
and Schütze, 2021a; Jiang et al., 2020). We study
in this work the impact of aggregating strategy on
the performance of assembled models.

3. Methodology

Let M be a language model with vocabulary V .
Following (Schick and Schütze, 2021a,b), we de-
fine the template - verbalizer pair. Let (x, y) be
an example of the classification problem, where x
represents one or many sentences and y is its la-
bel in the label set Y. A template T maps x into a
masked sequence T (x) of tokens in V ∪ {MASK}.
A verbalizer v : Y → P(V ) maps each label to a
set of words characterizing the class (called label
words). The probability of the label conditioned on
the input is then modeled by the logits of its label
words conditioned on the masked sequence:

p(y|x) ∝ exp

 1

|v(y)|
∑

w∈v(y)

M (w|T (x))

 (1)

This work aims to evaluate the three follow-
ing baselines for few-shot topic classification (sec-
tion 5.2), as well as to study the effect of several
factors to their performance (sections 5.3 and 5.4).

Manual The label words can be predefined man-
ually. It has been shown that different choices
of label words can have major importance for the
model performance (Gao et al., 2021).

Soft WARP (Hambardzumyan et al., 2021) pro-
poses to represent each label y by a vector vy in-
stead of concrete words, initialized with static em-
beddings of the manual label words and optimized
alongside the PLM, such that:

p(y|x) ∝ exp (vy · h) (2)

With h the embedding of the MASK token in T (x).

Auto Among automatic methods, PETAL
(Schick et al., 2020) allows identifying words
suitable to represent classes from training data
itself without additional data or knowledge.
Consider the classification problem as many
one-vs-rest binary problems to find label words
for each class separately. For a label ȳ of support,
Dȳ = {(x, y) ∈ Dtrain | y = ȳ}, PETAL takes the
top k words w that maximize the likelihood ratio
(LR) of positive examples and minimize that of
negative examples:

v(ȳ) = top-k
w

 1

|Dȳ|
∑

(x,y)∈Dȳ

ℓLR (w,x)

− 1

|Dtrain\Dȳ|
∑

(x,y)∈Dtrain\Dȳ

ℓLR (w,x)

 (3)

Where:

ℓLR(w,x) = log
pM (w|T (x))

1− pM (w|T (x)) (4)

pM (w|T (x)) = softmax(M(w|T (x)) (5)

We demonstrate experimentally in this paper
that increasing the number k of label words per
class improves the quality of the automatic verbal-
izer. In our experiments, without specifying differ-
ently, we take k = 15.

After identifying label words, the PLMs are fine-
tuned based on the chosen template and verbal-
izer, by minimizing the cross entropy loss between
the predicted probabilities in equation (1) and the
correct labels. Following the ensemble methods,
the logits of individual models trained on different
templates are aggregated into the final prediction,
following three aggregation strategies: (vote) ma-
jority vote from individual predictions, (proba) aver-
aging individual class probabilities, and (logit) av-
eraging individual class logits (see Appendix B for
explicit formulations). For the two latter, (Schick
et al., 2020) shows that weighted averaging does
not gain clear difference, thus we perform simply
the uniform averaging.
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4. Experiments

4.1. Setups
From the original training set, we sample a labeled
set D, of cardinality N . For each run, split D into
two equal halves: Dtrain is used for fine-tuning with
the template - verbalizer pair and Dvalid for valida-
tion, on which the best checkpoint is retained.

The underlying PLM is RoBERTa-large (Liu
et al., 2019) as in (Schick et al., 2020), except
for FrN we use CamemBERT-large (Martin et al.,
2020). Hyperparameters are inspired by (Schick
and Schütze, 2021a). Each experiment is re-
peated 3 times with different samplings of D, to
evaluate the result variation with different training
data. Details can be found in Appendix A.

4.2. Datasets
Our experiments are done on three public En-
glish datasets and a real-world dataset in French.
For each dataset, four textual templates are de-
scribed in detail in Appendix C. Manual verbalizers
of these datasets are listed in Appendix D.

AG AG’s News (Zhang et al., 2015) is a news
classification dataset. Given a headline, a news
need to be classified into one of 4 categories.

Yahoo Yahoo! Answers (Zhang et al., 2015) con-
sists of questions and answers from Yahoo!, from
10 categories. The fields included are question ti-
tle, question content and best answer.

DBpedia The DBpedia ontology dataset (Zhang
et al., 2015) (Lehmann et al., 2015) consists of 14
classes from DBpedia 2014, each has 40 000 train-
ing and 5 000 testing samples. Each sample in-
cludes the title, its description, and its category.

FrN Our colleagues provide us with a collection
of more than 5 millions real-world press articles. A
small number of articles in French are assigned to
28 sectors by expert analysts. In this work, we ex-
tract 1048 articles from the 10 most frequent sec-
tors, then keep 536 examples for testing, and use
the rest to sample D.

5. Results

5.1. Pilot Experiment
We examine the FrN dataset in zero-shot and in
few-shot context with N = 64, with the manual ver-
balizer provided by our colleagues of 15 words per
class. By retaining the k most important words,
we observe the influence of the number of label

Figure 1: Study of different sizes for the manual
verbalizer on the FrN dataset. Title means using
class names as label words (see Appendix D).

words. Figure 1 shows a clear improvement from
5 label words for zero-shot and 10 for few-shot.
Moreover, results are more stable with more label
words. This correlation is highly dependent on the
ordering of importance of v(y), therefore on human
decision. However, the observation motivates us
to raise the number of label words for an automatic
search algorithm. The study of this phenonmenon
is presented in section 5.3.

5.2. Main Results
Table 1 shows the result over four datasets, for dif-
ferent quantity of available data.

Although initialized manually and operating in
the embedding space, soft verbalizers do not per-
form better than manual verbalizers. The gap
is visible for low N , and becomes negligible for
N ≥ 128. Intuitively, each topic covers many la-
bel words, thus can not be characterized by only
one vector. The embedding space is continuous
and larger than the vocabulary V , but less expres-
sive than P(V ), which suggests the importance of
employing multiple label words per class.

The automatic verbalizer can perform similarly,
if not exceed, the manual verbalizer for all datasets
(with N ≥ 32 for AG and N ≥ 128 for others).
Compared to PETAL where N = 50 and M =
RoBERTa-large, our results with N = 64 sur-
pass on AG but not on Yahoo. Our best automatic
verbalizer with N = 256 is comparable PETAL with
N = 1000. Note that PETAL procedure also in-
cludes one final step of knowledge distillation to
annotate abundant unlabeled data for supervised
sequence classification finetuning, while our im-
plementation includes validation for early stopping
with half of D. The results show that we are able to
achieve the same level of performance while using
significantly less data.

5.3. Effect of Label Word Number on
Automatic Searching

Figure 2 illustrates the performance of the auto-
matic verbalizer while varying the number k for la-
bel word searching.
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N Verbalizer AG DBpedia Yahoo FrN
0 Majority class 25.00 7.14 10.00 16.79

Manual 72.14 73.17 58.91 69.40
Soft 71.89 54.57 52.34 64.74

32 Manual 83.96 ± 2.11 91.68 ± 1.58 61.84 ± 1.17 81.16 ± 3.08
Soft 81.82 ± 3.30 85.95 ± 1.12 50.76 ± 2.84 74.63 ± 5.54
Auto 86.44 ± 1.89 79.24 ± 7.98 50.08 ± 4.39 73.63 ± 1.35

50 PET (manual) 86.3 66.2
PETAL (auto) 84.2 62.9

64 Manual 88.14 ± 0.07 96.75 ± 0.33 65.29 ± 0.98 90.17 ± 2.18
Soft 87.37 ± 0.45 94.62 ± 2.06 64.64 ± 1.10 84.20 ± 0.88
Auto 88.00 ± 0.46 92.01 ± 2.92 56.73 ± 5.05 86.38 ± 3.64

128 Manual 88.43 ± 0.33 96.66 ± 1.14 66.71 ± 0.61 94.28 ± 1.32
Soft 87.32 ± 0.56 96.56 ± 2.00 65.93 ± 0.86 93.47 ± 2.44
Auto 88.86 ± 0.10 95.75 ± 1.87 67.42 ± 0.36 93.47 ± 0.56

256 Manual 88.95 ± 0.46 98.24 ± 0.14 70.63 ± 0.50 93.84 ± 0.81
Soft 88.51 ± 0.32 98.27 ± 0.17 69.81 ± 0.76 93.66 ± 1.04
Auto 89.64 ± 0.58 98.23 ± 0.28 70.36 ± 1.03 93.16 ± 0.60

1000 PET (manual) 86.9 72.7

Table 1: Accuracy on of three baselines, compared to PET and PETAL results extracted from (Schick
and Schütze, 2021a; Schick et al., 2020). The automatic verbalizer uses k = 15 label words per class,
except for PETAL with k = 3. The ensembling strategy is logit averaging. Bold are the best baselines.

A global trend confirms that increasing k pro-
duces more efficient verbalizers and raises the ac-
curacy for limited data. Moreover, the effect is
more visible for small N . This finding is different
from the conclusion in (Schick et al., 2020) that
the k has no impact on the global accuracy. We
also remark that k = 15 can push the automatic
performance close to the manual verbalizer, which
was not achieved with k = 3 in the original PETAL.
It can be concluded that increasing k for the au-
tomatic search can improve the ensemble models
but has little effect on the distilled model trained on
unlabeled data.

The conclusion about the effect of the label word
number is less intuitive than it may seem. It is
not trivial that using larger k in a few-shot learning
model can actually help, since more parameters
can not be trained well with very little data, and po-
tential of adding noise also arises. In some cases,
we notice that using more label words may com-
pensate for annotating more data as an alternative
strategy. On AG and DBpedia, using k = 100 for
N = 64 almost reaches the same level as N = 96.
On Yahoo, using k = 50 for N = 32 achieves a
similar result as k = 3 for N = 64.

5.4. Effectiveness of Model Ensemble
Results using individual templates and by assem-
bling the following three methods, for three base-
lines of verbalizers are illustrated in figures 2 and 3.
In most cases, assembled models produce more
reliable predictions, surpassing the most efficient
template. Ensembles also enhance stability and

replace the need of prompt selection, particularly
when the performance of different templates are
substantially divergent.

Comparing the three aggregating methods, we
notice that voting performs worse than probability
and logit averaging in general, but the difference
is negligible compared to the gain between assem-
bling and individual templates.

6. Conclusion and Discussion

In this paper, we provided a complete and detailed
procedure for robust evaluation of three types of
verbalizers, serving as baselines for future works
of verbalizers using textual templates. With small
validation sets, our results achieve a similar perfor-
mance level as previous works on automatic ver-
balizer, while using less training data and exclud-
ing semi-supervised training via distillation. Ex-
perimental results also leverage the advantage of
using more label words for automatic label word
searching, in comparison to more annotated data.
Our work also confirms the effectiveness of ensem-
ble models with multiple templates, which allows
surpassing the best template and eases the need
for template selection.

For many NLP tasks, in a full-data scenarios,
state-of-the-art large-scale LMs give impressive
overall results. However, small LMs can potentially
yield better downstream and domain-specific abili-
ties. In few-shot learning, simpler models can ac-
tually generalize given the limited amount of data.
Large LM’s sheer size and black box nature is less
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Figure 2: Accuracy of automatic verbalizers by number of label words, on three datasets for N ∈
{32, 64, 96}, in function of number of the label words k. Dashed color lines for templates: 0, 1, 2, 3.
Solid color lines for ensembles: vote, proba, logit.

Figure 3: Ensembling templates with manual (first row) and soft (second row) verbalizers across four
datasets with varying quantity of data. Dashed color lines for templates: 0, 1, 2, 3. Solid color lines for
ensembles: vote, proba, logit.

flexible for custom operations and domain-specific
finetuning. In this work, to leverage the importance
of verbalizers, using a classic LM may be benefi-
cial for comparing verbalization methods.

In reality, qualified manually annotated text data
is indeed hard to achieve, especially in large quan-
tity. Also, manual keywords demand understand-
ing of both the domain and categories, along with
the understanding of LMs’ charateristics. The in-
sights from this work may benefit non-specialist
users, and suggest that increasing the number of
label words for the automatic searching algorithm
is a simple yet efficient way to compensate for la-
beling additional data, which is extremely costly.

For future works, it would be interesting to
search for other constructions of verbalizer with
maximum level of automation, as well as meth-
ods to optimize templates for few-shot problems.
Studying soft templates and non-tuning methods
can be beneficial and effective for applications of
verbalizers with large-scale and modern LMs.
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Appendix A. Training details

The LMs are finetuned minimizing the cross en-
tropy loss between predicted probabilities (equa-
tions (1) and (2)) with ground true labels, using the
AdamW optimizer (Loshchilov and Hutter, 2019).
The learning rate is reduced linearly from its maxi-
mum value 1 × 10−5 to 0. Each model is finetuned
for 10 epochs, with training batch size 4.

The best checkpoints retained base on scores
on the validation set. To avoid equality of metrics
on Dvalid, we involve the validation loss into the
compared score:

score = mean_of_metrics − loss
100

(6)

Where mean_of_metrics is the average of all
metrics of the dataset (accuracy and macro F1 for
FrN, accuracy for others).
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Appendix B. Ensembling strategies

For a data instance x, let q ∈ RM×Y the logits pro-
duced by M models for classes in Y. We consider
the following strategies for prediction assembling.

• vote taking the majority vote among predic-
tions of M models:

ŷ = argmax
y∈Y

∣∣∣∣{j : qjy = max
y′

qjy′

}∣∣∣∣ (7)

• proba averaging the normalized probabilities
of classes across M models and take the
class with maximum probability:

ŷ = argmax
y∈Y

1

M

M∑
j=1

exp qjy∑
y′ exp qjy′

(8)

• logit averaging the logits of classes across
M models and take the class with maximum
score:

ŷ = argmax
y∈Y

1

M

M∑
j=1

qjy (9)

Appendix C. Templates

Here we specify 4 masked templates for each
dataset, which would be processed by the LMs.

• AG For the headline x:

T0(x) = MASK news: x
T1(x) = x This topic is about MASK .
T2(x) = [Category: MASK ] x
T3(x) = [Topic: MASK ] x

• Yahoo Let x be the concatenated text
of question_title, question_content
and best_answer:

T0(x) = MASK question: x.
T1(x) = x This topic is about MASK .
T2(x) = [Topic: MASK ] x.
T3(x) = [Category: MASK ] x.

• DBpedia For the title x1 and the description
x2:

T0(x) = x1. x2 In this sentence, x1 is MASK .
T1(x) = x1. x2 x1 is MASK .
T2(x) = x1. x2 The category of x1 is MASK .
T3(x) = x1. x2 The type of x1 is MASK .

• FrN Let x be the concatenated text of title,
snippet and body:

T0(x) = Nouvelle MASK : x
T1(x) = Actualité MASK : x
T2(x) = MASK : x
T3(x) = [Catégorie: MASK ] x

Appendix D. Manual verbalizers

Table 2 shows label words for datasets in English,
including AG, DBpedia and Yahoo.

Table 3 shows label words for FrN. Words in bold
correspond to Title in figure 1 where label words
are taken directly from the class title. For verbal-
izer size k ∈ {3, 5, 10, 15} in figure 1, we utilize the
k first words in table 3.
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Dataset & Classes Label words
AG
World world, politics
Sports sports
Business business
Sci/Tech science, technology
DBpedia
Company company
EducationalInstitution educational, institu-

tion
Artist artist
Athlete athlete, sport
OfficeHolder office
MeanOfTransportation transportaion
Building building
NaturalPlace natural, place
Village village
Animal animal
Plant plant
Album album
Film film
WrittenWork written, work
Yahoo
Society & Culture society, culture,
Science & Mathemat-
ics

science, mathematics

Health health
Education & Refer-
ence

education, reference

Computers & Internet computers, internet
Sports sports
Business & Finance business, finance
Entertainment & Mu-
sic

entertainment, music

Family & Relation-
ships

family, relationships

Politics & Government politics, government

Table 2: Label words used for manual verbalizers on datasets in English
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Class Label words
AERONAUTIQUE-
ARMEMENT

aéronautique, armement, flotte, rafale, marine, spatiale, pilote, défense, fusil,
satellites, combat, missiles, militaire, réacteurs, hypersonique

AGRO-
ALIMENTAIRE

agroalimentaire, agriculture, agricole, FAO, viticulture, sécheresse, planta-
tion, biodiversité, alimentation, rurale, récolte, bio, terroir, paysanne, céréaliers

AUTOMOBILE automobile, auto, carrosserie, voiture, motorisation, conduite, diesel, pney,
mécanique, mobilité, Volkswagen, Renault, berline, concessions, SUV

DISTRIBUTION-
COMMERCE

distribution, commerce, boutique, retail, vitrine, caisse, e-commerce, hyper-
marchés, ventes, distributeur, soldes, magasin, supermarchés, commercial,
dropshipping

ELECTRICITE électricité, energie, energy, éolienne, energetique, photovoltaique, nucléaire,
gaz, carbone, combustion, solaire, électronique, generation, centrailes, hy-
drogène

FINANCE finance, banque, bancaire, monétaire, bce, solvabilité, liquidité, bale, finan-
cière, dette, holding, investisseur, investissement, capital, prêts

PETROLE-GAZ pétrole, gaz, energie, pétrolière, combustion, géo, forage, réserves, pipeline,
oléoduc, gazoduc, rafinerie, liquefié, gisement, bitumeux

PIM PIM, immobilier, foncière, gestion, biens, proprieté, location, promotion, pro-
jets, permis, programmes, promoteurs, immeubles, chantiers, aménageurs

TOURISME-
HOTELLERIE-
RESTAURATION

tourisme, hôtellerie, restauration, hotel, restaurant, vacances, vacanciers,
séjour, auberges, camping, attraction, touristique, parc, croisiéristes, réserva-
tions

TRANSPORT transport, avion, bateaux, ferroviaire, douane, circulation, passagers, aérien,
terrestre, maritime, conteneurs, navires, cargos, aéroport, fret

Table 3: Label words used for manual verbalizers on FrN. Bold words are used for results reported in
table 1 and Title in figure 1. Other words are used for other verbalizer size in figure 1.
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