@inproceedings{tran-litman-2024-enhancing,
title = "Enhancing Knowledge Retrieval with Topic Modeling for Knowledge-Grounded Dialogue",
author = "Tran, Nhat and
Litman, Diane",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.530/",
pages = "5986--5995",
abstract = "Knowledge retrieval is one of the major challenges in building a knowledge-grounded dialogue system. A common method is to use a neural retriever with a distributed approximate nearest-neighbor database to quickly find the relevant knowledge sentences. In this work, we propose an approach that utilizes topic modeling on the knowledge base to further improve retrieval accuracy and as a result, improve response generation. Additionally, we experiment with a large language model (LLM), ChatGPT, to take advantage of the improved retrieval performance to further improve the generation results. Experimental results on two datasets show that our approach can increase retrieval and generation performance. The results also indicate that ChatGPT is a better response generator for knowledge-grounded dialogue when relevant knowledge is provided."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tran-litman-2024-enhancing">
<titleInfo>
<title>Enhancing Knowledge Retrieval with Topic Modeling for Knowledge-Grounded Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nhat</namePart>
<namePart type="family">Tran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diane</namePart>
<namePart type="family">Litman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Knowledge retrieval is one of the major challenges in building a knowledge-grounded dialogue system. A common method is to use a neural retriever with a distributed approximate nearest-neighbor database to quickly find the relevant knowledge sentences. In this work, we propose an approach that utilizes topic modeling on the knowledge base to further improve retrieval accuracy and as a result, improve response generation. Additionally, we experiment with a large language model (LLM), ChatGPT, to take advantage of the improved retrieval performance to further improve the generation results. Experimental results on two datasets show that our approach can increase retrieval and generation performance. The results also indicate that ChatGPT is a better response generator for knowledge-grounded dialogue when relevant knowledge is provided.</abstract>
<identifier type="citekey">tran-litman-2024-enhancing</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.530/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>5986</start>
<end>5995</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Knowledge Retrieval with Topic Modeling for Knowledge-Grounded Dialogue
%A Tran, Nhat
%A Litman, Diane
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F tran-litman-2024-enhancing
%X Knowledge retrieval is one of the major challenges in building a knowledge-grounded dialogue system. A common method is to use a neural retriever with a distributed approximate nearest-neighbor database to quickly find the relevant knowledge sentences. In this work, we propose an approach that utilizes topic modeling on the knowledge base to further improve retrieval accuracy and as a result, improve response generation. Additionally, we experiment with a large language model (LLM), ChatGPT, to take advantage of the improved retrieval performance to further improve the generation results. Experimental results on two datasets show that our approach can increase retrieval and generation performance. The results also indicate that ChatGPT is a better response generator for knowledge-grounded dialogue when relevant knowledge is provided.
%U https://aclanthology.org/2024.lrec-main.530/
%P 5986-5995
Markdown (Informal)
[Enhancing Knowledge Retrieval with Topic Modeling for Knowledge-Grounded Dialogue](https://aclanthology.org/2024.lrec-main.530/) (Tran & Litman, LREC-COLING 2024)
ACL