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Abstract
In this paper, we introduce a novel approach for enhancing the reasoning capabilities of large language models
(LLMs) for constraint satisfaction problems (CSPs) by converting reasoning problems into classification tasks. Our
method leverages the LLM’s ability to decide when to call a function from a set of logical-linguistic primitives, each of
which can interact with a local “scratchpad" memory and logical inference engine. Invocation of these primitives
in the correct order writes the constraints to the scratchpad memory and enables the logical engine to verifiably
solve the problem. We additionally propose a formal framework for exploring the “linguistic" hardness of CSP
reasoning-problems for LLMs. Our experimental results demonstrate that under our proposed method, tasks with
significant computational hardness can be converted to a form that is easier for LLMs to solve and yields a 40%
improvement over baselines. This opens up new avenues for future research into hybrid cognitive models that
integrate symbolic and neural approaches.
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1. Introduction

The remarkable abilities of large language mod-
els (LLMs) have opened up new opportunities and
challenges in the realm of artificial intelligence (AI)
(Brown et al., 2020; Radford et al., 2018; Bubeck
et al., 2023; OpenAI, 2023b; Wei et al., 2020).
Their performance in tasks such as natural lan-
guage understanding, translation, and content gen-
eration often surpasses expectations (Zhao et al.,
2023; Rajasekharan et al., 2023; Zhu et al., 2023;
Franceschelli and Musolesi, 2023).

However, LLMs continue to struggle with tasks
that require explicit reasoning (Huang and Chang,
2023; Arkoudas, 2023; Schaeffer et al., 2023). We
also empirically observe that in the context of Con-
straint Satisfaction Problems (CSPs), LLMs fail at
both reasoning and ranking (Section 3.2 and Sec-
tion 3.3). These intrinsic limitations in LLMs’ rea-
soning capabilities pose a significant barrier to their
application in more complex tasks.

Active research into improving reasoning in LLMs
can be categorized into three main approaches:
prompting based methods (Section 2.1), tool based
methods (Section 2.2), and world model aided
methods (Section 2.3). While each of these classes
of methods has proven effective in various contexts,
they face challenges in handling specific reason-
ing tasks, as evidenced by BIG-bench (Srivastava
et al., 2022), a diverse benchmark for LLMs.

Our method aims to overcome these reasoning
⋄Work done during summer internship at Cisco Re-

search.

limitations by harnessing the classification abilities
of LLMs. Specifically, we first break down the pro-
cess of logical reasoning in a particular context
(e.g. spatial reasoning) into a set of mutually inde-
pendent primitives (Section 3.4.1). Each of these
primitives is stored in local memory and in a logical
inference engine. We then use an LLM which has
been fine-tuned to select amongst APIs (OpenAI,
2023a). This enables the LLM to select amongst
these primitives and write these primitives to mem-
ory in a structured manner (Section 3.4). The prim-
itives create a representation of the problem’s con-
straints in memory. The logical inference engine
then solves the problem given these constraints.

Figure 1 shows a working example of this method-
ology on a CSP. The input problem is first parsed
into component sentences. Next, the LLM deter-
mines the appropriate primitive for each sentence.
Each primitive changes the state of the memory.
The LLM also converts each answer choice into a
primitive, but does not act on these primitives. The
logical inference engine validates these choices
based on the final memory state. The generalized
algorithm can be found in Section 3.6.

Our findings are summarized in Section 4.3,
where we observe that on the logical deduction
datasets in BIG-Bench Hard (Suzgun et al. (2022)),
our method achieves an absolute improvement of
nearly 40 % on the baselines, while also being more
explainable. In Section 4.2, we find that simpler
primitives are much easier for reasoning with LLMs
than complex primitives.

This paper is structured as follows. In Section 2,
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we review the current understanding of reasoning
capabilities and limitations in LLMs. Next, in Sec-
tion 3, we explain our proposed method in detail,
followed by an introduction to the concepts of com-
putational hardness and linguistic hardness in the
context of reasoning in LLMs. We then present a
series of experiments validating our approach and
subsequently discuss the results in Section 4.1

2. Background and Related Work

We present a survey of approaches for improving
reasoning in LLMs and the broader context of the
family of methods they fall under in Section 2.1,
Section 2.2, and Section 2.3.

2.1. Prompting Based Methods
Wei et al. (2022) introduce chain-of-thought prompt-
ing, improving LLMs’ reasoning abilities and achiev-
ing state-of-the-art accuracy on the GSM8K bench-
mark (Cobbe et al., 2021). Wang et al. (2022) pro-
pose iterative-consistency decoding, which sam-
ples diverse reasoning paths and selects the most
consistent answer, enhancing performance on com-
plex reasoning tasks. “Tree of Thoughts" by Yao
et al. (2023) allows for deliberate decision-making
by exploring multiple reasoning paths, with the ca-
pability to look ahead or backtrack. Clark et al.
(2020) demonstrate transformers as “soft theorem
provers" over explicit language theories, opening
possibilities for explainability and counterfactual
reasoning in Question Answering (QA).

2.2. Tool Based Methods
“Program of Thoughts" by Chen et al. (2022)
uses language models and a program interpreter
for numerical reasoning, outperforming chain-of-
thoughts prompting by around 12% on average.
He-Yueya et al. (2023) combined an LLM with a
symbolic solver for math word problems, show-
ing comparable or superior performance to prior
methods and emphasizing incremental represen-
tations. Pan et al. (2023)’s LOGIC-LM frame-
work combines LLMs with symbolic reasoning and
an iterative-refinement stage, improving logical
problem-solving accuracy. Gao et al. (2023)’s
Program-Aided Language models (PAL) blend
LLMs with a symbolic interpreter, outperforming
larger models in natural language reasoning tasks.

2.3. World Model Aided Methods
Hao et al. (2023)’s Reasoning via Planning (RAP)
framework repurposes the LLM for strategic explo-

1We provide a link to our anonymized github repository
https://anonymous.4open.science/r/LLM_logical_reasoning/

ration in reasoning, enhancing LLMs’ reasoning
capabilities. Voyager by Wang et al. (2023), an
LLM-powered agent in Minecraft, combines explo-
ration, skill library expansion, and iterative prompt-
ing, demonstrating proficiency and generalization
in the game environment.

In contrast to these approaches, our method in-
troduces a novel paradigm, in which we convert
reasoning tasks into classification tasks, a strategy
that diverges significantly from the existing meth-
ods. Our approach aims to leverage the strengths
of LLMs in a new and unique way, substantially
improving their problem-solving capabilities.

3. Methodology

In this section, we identify LLM reasoning failures,
formalize reasoning as a classification task, and
discuss computational versus linguistic hardness.
We introduce effective primitives for spatial reason-
ing and offer guidelines for other tasks. The overall
algorithms are also discussed in this section.

3.1. Dataset
The logical deduction datasets in Beyond the Imita-
tion Game Benchmark Hard (BBH) (Suzgun et al.
(2022)) are designed to test logical reasoning skills.
It requires the deduction of the order of a sequence
of objects based on minimal conditions. Each in-
stance in this dataset involves 3 to 7 similar objects
(e.g., colored books on a shelf) and non-redundant
clues about their placement (e.g., “the red book is
to the right of the green book").

The goal is to correctly identify the position of
each object. This task measures the model’s ability
to parse multiple objects’ relationships, understand
ordering rules, and perform multi-step logical rea-
soning. It targets the model’s capacity for complex
deduction rather than superficial pattern recogni-
tion, providing a meaningful challenge for current
language models.

We focus on three datasets in the benchmark:
logical_deduction_with_seven_objects,
logical_deduction_with_five_objects,
logical_deduction_with_three_objects.
For our dataset, we randomly sample 100 problems
from each of these datasets, which yields a total of
300 problems.

Table 1 provides an insight into the distribution
of problem types across different numbers of ob-
jects. It is evident that the “leftright" problem type
dominates when dealing with 3 and 7 objects, com-
prising 48% and 46% of the cases, respectively.
On the other hand, with 5 objects, there is a notice-
able increase in “competition" problems (24%) and
a corresponding decrease in “leftright" problems
(36%). The distribution of “age" and “price" prob-

 https://anonymous.4open.science/r/LLM_logical_reasoning/
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Figure 1: Working example of proposed method on reasoning problem. Stage 0: A problem from
BIG-bench Hard is inputted. Stage 1: Classification of problem type as “price". Constraint methods for
“price" are fetched from memory. Stage 2: Problem paragraph is decomposed into sentences. Each
sentence is mapped to a constraint method and the relevant arguments are extracted by the LLM. Each
sentence’s equivalent constraint is added to a growing list in memory. Stage 3: The answer choice
section is decomposed into individual choices. Each choice is mapped to a constraint method and the
relevant arguments are extracted by the LLM. This method is passed to a constraint solver along with
the preceding list, and the plausibilty of such a scenario is determined. Whichever scenario is deemed
possible is marked as True. In this case, option B) is the only possible choice.

lem types appears relatively consistent across the
three scenarios, with only minor variations.

Problem
Type

3
Objects

5
Objects

7
Objects

leftright 48% 36% 46%
competition 18% 24% 11%
price 16% 19% 22%
age 18% 21% 21%

Table 1: Distribution of problem types based on
number of objects.

3.2. Motivation: Observed Failure Modes
with Weaker LLMs

We investigate reasoning problems as shown in
Figure 1. Using Chain-of-Thought (CoT) or self
consistency often results in confident yet incorrect
answers from LLMs, as shown in Figure 2. Further
quantitative results are provided in Section 4.3.

3.3. Motivation: Correlation Analysis of
Ranking by CoT

We select 60 uniformly-distributed samples across
problem sizes and types with gold standard rank-
ings. Using CoT prompting, we compute rankings
and assess them using spearman rank correlation.

Table 2 shows that correlation is generally strongest
for 3-object problems and declines with problem
size. Notably, CoT fails to rank the "price" problem
type correctly for 5 objects.

Type 3 Objects 5 Objects 7 Objects
leftright 0.8000 0.5500 0.5553
competition 0.9000 0.7800 0.5949
price 0.8000 -0.2500 0.4296
age 0.6250 0.7200 0.3333

Table 2: Spearman rank correlations of CoT pre-
dicted ranks with gold standard ranks.

3.4. Reasoning as Classification

We introduce linguistic-logical primitives with local
memory and inference engines, enabling an LLM
to reason step-by-step. The LLM parses a problem
Q into sentences S = s1, s2, . . . , sn and predicts
the appropriate primitive p̂i for each si, formalized
as:

p̂i = argmax
r∈R

P (r|si, context) (1)

Here, R is the set of primitives. Some primitives
write to or read from memory, while others invoke
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Figure 2: Working Example of failure modes of
Chain-of-Thought. A problem from BIG-bench
Hard is inputted to GPT-3.5, and the LLM is in-
structed to utilize CoT reasoning. Each section of
GPT-3.5 output is analyzed. The first five sections
of GPT-3.5’s CoT reasoning are consistent with
the input paragraph. However, the model contra-
dicts itself by stating that the motorcycle must be
the newest after previously stating it cannot be the
newest. Hence, it solves the problem incorrectly.

logic engines for reasoning. This yields explainable
solutions. See Figure 3 for a block diagram.

3.4.1. Linguistic-Logical Primitives

Linguistic-logical primitives (LLPs) are essential
elements in the reasoning approach presented.

A primitive can be mathematically formulated as
a function that takes a sentence si and context C
as inputs and returns an action A and potentially a
change in memory state M :

pi(si, C) → (A,M) (2)
where:
• si: The sentence being processed.

• C: The context, including previous sentences
and chosen primitives.

• A: The action to be taken, such as writing to
memory or invoking a logical solving process.

• M : The change in memory state, if applicable.

Figure 3: High-level diagram of the reasoning-
classification conversion. Given an input prob-
lem, the Problem Parse stage splits it into: problem
paragraph, sentences, and answer choices. The
LLM classifies the problem type, enabling Memory
to fetch relevant constraint methods. Constraints
are then extracted and stored in Memory. Finally,
Constraint Solver validates answer choices based
on these constraints.
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The reasoning process iterates over the se-
quence of sentences, and for each sentence, the
LLM predicts the appropriate primitive to be invoked.
This primitive then performs its corresponding ac-
tion, affecting the memory state and potentially mov-
ing the solution process forward.

3.4.2. Computational versus Linguistic
Hardness

We distinguish two facets of "hardness" in problem-
solving, namely computational complexity and lin-
guistic complexity.

• Computational Complexity: We denote the
computational complexity of a problem of size
n as Cc(n), and it is usually classified within
known complexity classes such as P, NP, and
EXPTIME.

• Linguistic Complexity: We model linguistic
hardness as the entropy of the distribution of
interpretations I over a problem sentence S
of length n. The linguistic complexity Cl(n) is
given by:

Cl(n) = −
∑
I

P (I|S) logP (I|S) (3)

This quantifies the uncertainty or ambiguity in
predicting the correct interpretation of a sen-
tence.

Note that Cc(n) and Cl(n) are mutually indepen-
dent and can lead to contrasting levels of hardness
in computational and linguistic terms. In practice,
P (I|S) may be empirically determined using hu-
man annotations, aligned with approaches in areas
like word sense disambiguation.

However, we clarify that for our dataset, one can
glean computational complexity from the number
of objects in the task, and the linguistic complexity
from the length (in characters) of the problem.

3.4.3. Example of Computational Complexity
versus Linguistic Complexity

• Computational complexity: The inherent
computational or asymptotic difficulty of solv-
ing a problem, e.g., 5 + 5.

• Linguistic complexity: Complexity in lan-
guage interpretation, even for a computation-
ally simple problem. For example:

“Add the number of fingers on a hand
to the number of toes on a foot.”

This describes 5 + 5, but the phrasing intro-
duces ambiguity, making the problem linguisti-
cally complex, though computationally simple.

3.5. Spatial Reasoning Primitives
In the context of spatial reasoning, we define a
set of primitives that allow for reasoning about the
relative positions of objects within a constraint satis-
faction problem (CSP). Let O = {o1, o2, . . . , ok} be
the set of k objects. The primitives are as follows:

• create_problem(k): Defines a CSP with k
objects. Formally, this primitive initializes the
problem space:

create_problem(k) ⇒ O = {o1, o2, . . . , ok}
(4)

• add_left(oi, oj): Adds a constraint that ob-
ject oi is to the left of object oj :

add_left(oi, oj) ⇒ position(oi) < position(oj)
(5)

• add_right(oi, oj): Adds a constraint that ob-
ject oi is to the right of object oj :

add_right(oi, oj) ⇒ position(oi) > position(oj)
(6)

• add_position(oi, p): Adds a constraint that
object oi is at exact position p:

add_position(oi, p) ⇒ position(oi) = p (7)

These primitives allow for building and solving
spatial reasoning problems involving the relative
positions of objects.

3.5.1. Properties of Primitives

• Distinctness: For a set of functions F , dis-
tinctness is defined as:

fi ̸= fj ∀ i ̸= j, i, j ∈ {1, . . . , |F|} (8)

• Expressive Power: A function f ∈ F is ex-
pressive if there exists a mapping M such that:

M(f, C) = S (9)

where C represents the constraints and S rep-
resents the solvable form.

• Completeness: The set of classes C is com-
plete if: ⋃

c∈C
c = A (10)

where A is the set of all required actions.

• Minimal: A set of functions F is minimal if:

Π(F) > Π(F \ {fi}) ∀ fi ∈ F (11)

where Π(·) denotes the performance of the set
of functions.
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3.5.2. Generating Primitives

Generating primitives for arbitrary logical problems
involves analyzing the fundamental logical struc-
tures and operations within the domain. A sys-
tematic approach might include identifying basic
logical components (such as conjunctions, disjunc-
tions, negations), defining corresponding functions
or relations, and encapsulating these elements as
primitives. The resulting set of primitives must be
expressive enough to represent any logical prob-
lem within the domain, ensuring completeness and
non-redundancy.

3.6. Algorithms
We now discuss our main method in Algorithm 1,
as well as its variants.

Algorithm 1 Solving Reasoning Problems via Clas-
sification
Require: Problem statement S = {s1, s2, . . . , sn}
Require: Set of linguistic-logical primitives P
1: Initialize memory storage M
2: for i = 1 to n do
3: Parse sentence si
4: Predict primitive p̂i = argmax

p∈P
P (p|si, ctxt)

5: if primitive writes to memory then
6: Write to memory M
7: else if primitive invokes logic engine then
8: Execute solution process using M
9: end if

10: end for
11: return Solution obtained from memory M

3.6.1. Complex Primitives Classification

Establishing conventions is important in reason-
ing problems. As an example, the statement “A
is to the right of B” can be classified as either
of the primitives right(A,B) or left(B,A). To fix
conventions, we introduce complex primitives. Let
F(A,B) represent a complex primitive, defined as
add_to_left_or_cheapest_or_newest(A,B).

3.6.2. Simple Primitives Classification

Complex primitives may confuse models. To miti-
gate this, we introduce an additional classifier layer
to determine the type of reasoning problem, such
as age, competition, price, or left-right, and use this
information to select a specific subset of simpler
primitives.

Given a reasoning problem R, the first layer of
classification determines the problem type T , where
T ∈ {age, competition,price, left-right}. The sec-
ond layer selects a subset of simpler primitives PT

corresponding to T .

Algorithm 2 Algorithm for selecting primitives
based on problem type
1: Determine problem type T for reasoning prob-

lem R
2: if T = age then
3: PT = {add_older,add_newer, . . .}
4: else if T = competition then
5: PT = {add_winner,add_loser, . . .}
6: else if T = price then
7: PT = {add_cheaper,add_expensive, . . .}
8: else if T = left-right then
9: PT = {add_left,add_right, . . .}

10: end if
11: Use PT to reason about R

Refer to Algorithm 2 for details on selecting sim-
pler primitives specific to the problem type.

3.6.3. Iterative Refinement

In the case of simple primitives, the model may
fail to invoke the correct primitive or encounter
other issues. To tackle this, we employ an iterative-
refinement process exploiting the stochastic na-
ture of LLMs. We iteratively fine-tune the model’s
choices using edited prompts to improve the suc-
cess rate. Let R be a reasoning problem, and PT

be the set of primitives associated with the deter-
mined problem type T . The iterative-refinement
process can be defined as follows:

Algorithm 3 Iterative-Refinement for Primitive Se-
lection
1: Initialize attempts counter k = 0
2: repeat
3: Edit prompt for problem R, producing R′

4: Call the correct primitive from PT using R′

5: Evaluate success of call; if successful, exit
loop

6: Increment k by 1
7: until success or k ≥ K, where K is the maxi-

mum number of attempts
8: if success then
9: Continue to next step in reasoning

10: else
11: Handle failure, e.g., log error or alert user
12: end if

The process involves iterative editing of prompts,
attempting to call the correct primitive, and evaluat-
ing the success of each call. The loop continues
until either success is achieved or the maximum
number of attempts K is reached. This approach
introduces an element of stochasticity, allowing for
exploration of different prompt variations and in-
creasing the likelihood of success. Refer to Algo-
rithm 3 for a detailed procedure. We choose k = 5.
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4. Evaluation

In this section we discuss the dataset and ex-
perimental protocol. Then we go over the var-
ious methods we benchmark (GPT, GPT+CoT,
GPT+CoT+SC, Simple Primitives, Iterative Refine-
ment) and perform analyses across problem types.

4.1. Experimental Protocol

We evaluate our proposed methods against three
established baselines 2 : GPT-3.5 base, Chain-
of-Thought (CoT) (Wei et al., 2022), and Chain-of-
Thought with Self Consistency (SC) (Wang et al.,
2022). Additionally, we introduce two novel models,
namely, classification with simple primitives and
iterative refinement. We operate on the randomized
dataset we sample above.

In our experiments, we employ the function-
calling capabilities provided by OpenAI’s large lan-
guage models (LLMs) (OpenAI, 2023a) in order to
convert reasoning problems to classification tasks.
Specifically, we use gpt-3.5-turbo-0613.

4.2. Complex versus Simple Primitives

As introduced in Section 3.6.1 and Section 3.6.2,
we define simple and complex primitives. We inves-
tigate the impact of primitive complexity on model
performance. Table 3 reveals that simple primitives
consistently outperform complex ones, particularly
as task complexity rises (from 3 to 7 objects).

Table 4 further underscores the advantage of
simple primitives in all but the “age" problem type.
In “competition," the use of simple primitives nearly
doubles performance.

Finally, Table 5 indicates variable performance
for complex primitives. While effective in “age" and
“competition" with 3 objects, their performance de-
teriorates with an increased number of objects.

From this comparison we see that simple prim-
itives are better at defining actions that build the
basic logic block for reasoning. So we use sim-
ple primitives in our final approach as shown in
Section 4.3.

2We would like to note that we initially sought to bench-
mark our results with LogicLM (Pan et al., 2023), but
unfortunately, their method returned errors for all data
points in our specific test cases and resorted to their
default failsafe, CoT. As a result, we resorted to using the
CoT method, the results of which are included in the table.
We express our gratitude to the LogicLM team for their
work, and the discrepancy may be due to specificities in
our dataset or experimental setup.

Model BBH3 BBH5 BBH7
Complex Primitives 51% 45% 37%
Simple Primitives 85% 69% 57%

Table 3: Accuracy of complex primitives versus
simple primitives across datasets.

Problem
Type

Complex
Primitives

Simple
Primitives

leftright 39.23% 76.92%
competition 45.28% 88.68%
price 26.32% 57.89%
age 71.67% 51.67%

Table 4: Accuracy of complex versus simple primi-
tives across different problem types.

Problem
Type

3
Objects

5
Objects

7
Objects

leftright 33.33% 52.78% 34.78%
competition 83.33% 16.67% 45.45%
price 31.25% 31.58% 18.18%
age 83.33% 76.19% 57.14%

Table 5: Accuracy of complex primitives based on
problem type and number of objects.

4.3. Results

We present our model’s performance in Table 6.
We then present aggregate accuracy scores of
each method with different problem types in Ta-
ble 7. We break this down further by problem type
and size and present more granular performance
in Table 8. We also depict correlations between
each method in Table 9.

Table 6 shows that “Iterative Refinement" out-
performs other methods across datasets (BBH3,
BBH5, BBH7), leading by 74.66%. Other methods
degrade with more objects, whereas “Simple Prim-
itives" and “Iterative Refinement" remain robust.

In Table 7, “Iterative Refinement" excels in all
problem types, notably reaching 94.34% in “compe-
tition" problems. “Simple Primitives" also surpass
base models in all but one case.

Table 8 reveals that “Simple Primitives" excel in
specific problems with fewer objects, while “Iterative
Refinement" is consistently strong. Adding CoT
and SC to GPT is shown to not always improve
performance.

Lastly, Table 9 indicates moderate correlation
between CoT methods, with stronger correlation
between “Simple Primitives" and “Iterative Refine-
ment." Base GPT shows low correlation with other
methods, suggesting distinct prediction patterns.
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Dataset Base GPT GPT+CoT GPT+CoT+SC Simple Primitives Iterative Refinement
BBH3 57% 57% 52% 85% 86%
BBH5 42% 34% 34% 69% 74%
BBH7 32% 32% 36% 57% 64%
Overall 43.66% 41% 40.66% 70.33% 74.66%

Table 6: Accuracy of different methods on various datasets.

Problem Type Base GPT GPT+CoT GPT+CoT+SC Simple Primitives Iterative Refinement
leftright 36.15% 33.85% 37.69% 76.92% 80.77%
competition 43.40% 43.40% 35.85% 88.68% 94.34%
price 59.65% 56.14% 50.88% 57.89% 64.91%
age 45.00% 40.00% 41.67% 51.67% 53.33%

Table 7: Accuracy across different problem types.

Method Problem Type 3 Objects 5 Objects 7 Objects
Baseline 1 (GPT) leftright 54.17% 25.00% 26.09%
Baseline 1 (GPT) competition 50.00% 41.67% 36.36%
Baseline 1 (GPT) price 75.00% 68.42% 40.91%
Baseline 1 (GPT) age 55.56% 47.62% 33.33%
Baseline 2 (GPT + CoT) leftright 54.17% 16.67% 26.09%
Baseline 2 (GPT + CoT) competition 50.00% 45.83% 27.27%
Baseline 2 (GPT + CoT) price 68.75% 47.37% 54.55%
Baseline 2 (GPT + CoT) age 61.11% 38.10% 23.81%
Baseline 3 (GPT + CoT + SC) leftright 50.00% 30.56% 30.43%
Baseline 3 (GPT + CoT + SC) competition 50.00% 25.00% 36.36%
Baseline 3 (GPT + CoT + SC) price 62.50% 52.63% 40.91%
Baseline 3 (GPT + CoT + SC) age 50.00% 33.33% 42.86%
Simple Primitives leftright 93.75% 83.33% 54.35%
Simple Primitives competition 100.00% 79.17% 90.91%
Simple Primitives price 62.50% 52.63% 59.09%
Simple Primitives age 66.67% 47.62% 42.86%
Iterative Refinement leftright 91.67% 83.33% 67.39%
Iterative Refinement competition 100.00% 91.67% 90.91%
Iterative Refinement price 75.00% 57.89% 63.64%
Iterative Refinement age 66.67% 52.38% 42.86%

Table 8: Accuracy based on problem type and number of objects.

Method Base GPT GPT+CoT GPT+CoT+SC Simple Primitives Iterative Refinement
Base GPT 1.00 0.46 0.46 0.32 0.24
GPT+CoT 0.46 1.00 0.48 0.21 0.22
GPT+CoT+SC 0.46 0.48 1.00 0.21 0.22
Simple Primitives 0.32 0.21 0.21 1.00 0.68
Iterative Refinement 0.24 0.22 0.22 0.68 1.00

Table 9: Correlation matrix between predictions of different methods.

5. Conclusions

In this paper, we examined various methods to
solve constraint satisfaction reasoning problems
with LLMs across varying problem types and sizes.
We proposed a novel method for reasoning via clas-
sification into simple and complex primitives. Our
findings indicate that simple primitives often outper-
form complex ones, with the iterative refinement

method consistently showing superior performance
across the board by almost 40%.

Our study reveals a decoupling between com-
putational and linguistic complexities in problem-
solving tasks with large language models (LLMs).
We find that as LLMs are optimized, linguistic oper-
ation complexity decreases, indicating an inversely
proportional relationship and supporting the devel-
opment of more efficient LLM architectures.
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