@inproceedings{liu-etal-2024-enhancing,
title = "Enhancing Parameter-efficient Fine-tuning with Simple Calibration Based on Stable Rank",
author = "Liu, Peiyu and
Gao, Ze-Feng and
Zhang, Xiao and
Zhao, Wayne Xin and
Wen, Ji-Rong",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.534",
pages = "6024--6035",
abstract = "Lightweight fine-tuning is widely used as an important technique for efficiently adapting pre-trained language models (PLM) to downstream tasks. Despite the reduction in trainable parameters, existing lightweight fine-tuning methods are found to be effective in low-resource settings but often fail in high-resource settings, leading to unreliable outcomes. This limitation can be attributed to inflexible strategies: they identify the parameters of the model to be trained before fine-tuning and remain unchanged without taking into account the inherent variance of generalization ability in model components (\textit{i.e.}, feed-forward, attention layers) and potential changes during the fine-tuning process. In this paper, we introduce a simple but effective calibration for lightweight fine-tuning PLMs based on the matrix{'}s stable rank according to both model components and the training process. We proposed both theoretical analyses and experimental verification for the proposed calibration strategy. Considering efficiency, we further propose time-aware and structure-aware strategies to determine the most crucial time to commence the fine-tuning procedure and selectively apply parameter matrices for lightweight fine-tuning, respectively. Extensive experiments demonstrate the superiority of our proposed fine-tuning approach (average improvement 3.1 for GLUE score compared to lightweight fine-tuning method).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2024-enhancing">
<titleInfo>
<title>Enhancing Parameter-efficient Fine-tuning with Simple Calibration Based on Stable Rank</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peiyu</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ze-Feng</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiao</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wayne</namePart>
<namePart type="given">Xin</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ji-Rong</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Lightweight fine-tuning is widely used as an important technique for efficiently adapting pre-trained language models (PLM) to downstream tasks. Despite the reduction in trainable parameters, existing lightweight fine-tuning methods are found to be effective in low-resource settings but often fail in high-resource settings, leading to unreliable outcomes. This limitation can be attributed to inflexible strategies: they identify the parameters of the model to be trained before fine-tuning and remain unchanged without taking into account the inherent variance of generalization ability in model components (i.e., feed-forward, attention layers) and potential changes during the fine-tuning process. In this paper, we introduce a simple but effective calibration for lightweight fine-tuning PLMs based on the matrix’s stable rank according to both model components and the training process. We proposed both theoretical analyses and experimental verification for the proposed calibration strategy. Considering efficiency, we further propose time-aware and structure-aware strategies to determine the most crucial time to commence the fine-tuning procedure and selectively apply parameter matrices for lightweight fine-tuning, respectively. Extensive experiments demonstrate the superiority of our proposed fine-tuning approach (average improvement 3.1 for GLUE score compared to lightweight fine-tuning method).</abstract>
<identifier type="citekey">liu-etal-2024-enhancing</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.534</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>6024</start>
<end>6035</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Parameter-efficient Fine-tuning with Simple Calibration Based on Stable Rank
%A Liu, Peiyu
%A Gao, Ze-Feng
%A Zhang, Xiao
%A Zhao, Wayne Xin
%A Wen, Ji-Rong
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F liu-etal-2024-enhancing
%X Lightweight fine-tuning is widely used as an important technique for efficiently adapting pre-trained language models (PLM) to downstream tasks. Despite the reduction in trainable parameters, existing lightweight fine-tuning methods are found to be effective in low-resource settings but often fail in high-resource settings, leading to unreliable outcomes. This limitation can be attributed to inflexible strategies: they identify the parameters of the model to be trained before fine-tuning and remain unchanged without taking into account the inherent variance of generalization ability in model components (i.e., feed-forward, attention layers) and potential changes during the fine-tuning process. In this paper, we introduce a simple but effective calibration for lightweight fine-tuning PLMs based on the matrix’s stable rank according to both model components and the training process. We proposed both theoretical analyses and experimental verification for the proposed calibration strategy. Considering efficiency, we further propose time-aware and structure-aware strategies to determine the most crucial time to commence the fine-tuning procedure and selectively apply parameter matrices for lightweight fine-tuning, respectively. Extensive experiments demonstrate the superiority of our proposed fine-tuning approach (average improvement 3.1 for GLUE score compared to lightweight fine-tuning method).
%U https://aclanthology.org/2024.lrec-main.534
%P 6024-6035
Markdown (Informal)
[Enhancing Parameter-efficient Fine-tuning with Simple Calibration Based on Stable Rank](https://aclanthology.org/2024.lrec-main.534) (Liu et al., LREC-COLING 2024)
ACL