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Abstract
Lightweight fine-tuning is widely used as an important technique for efficiently adapting pre-trained language
models (PLM) to downstream tasks. Despite the reduction in trainable parameters, existing lightweight fine-tuning
methods are found to be effective in low-resource settings but often fail in high-resource settings, leading to unreliable
outcomes. This limitation can be attributed to inflexible strategies: they identify the parameters of the model to be
trained before fine-tuning and remain unchanged without taking into account the inherent variance of generalization
ability in model components (i.e., feed-forward, attention layers) and potential changes during the fine-tuning process.
In this paper, we introduce a simple but effective calibration for lightweight fine-tuning PLMs based on the matrix’s
stable rank according to both model components and the training process. We proposed both theoretical analyses
and experimental verification for the proposed calibration strategy. Considering efficiency, we further propose
time-aware and structure-aware strategies to determine the most crucial time to commence the fine-tuning procedure
and selectively apply parameter matrices for lightweight fine-tuning, respectively. Extensive experiments demonstrate
the superiority of our proposed fine-tuning approach (average improvement 3.1 for GLUE score compared to
lightweight fine-tuning method).
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1. Introduction

With recent development in pre-trained language
models (PLMs), the approach of “pre-training and
fine-tuning” has become a de-facto paradigm in the
field of natural language processing (NLP) field (De-
vlin et al., 2018; Raffel et al., 2020; Zhao et al.,
2023). Despite the effectiveness, the increasingly
large model size makes it expensive to keep sep-
arate copies of all fine-tuned parameters, i.e., full
fine-tuning (FFT ), for various downstream tasks.
To reduce the heavy overload, recent studies have
found that it is feasible to conduct lightweight fine-
tuning (LFT), also known as parameter-efficient
fine-tuning, which only update a small subset and
leaving the rest intact (Aghajanyan et al., 2021; Liu
et al., 2021a,b; Li and Liang, 2021; Liu et al., 2023a)
for fine-tuning.

Compared with FFT, LFT is significantly more
efficient by only updating part of model parame-
ters. In addition, LFT has the potential to improve
the generalization abilities of models, since FFT
tends to lead to the overfitting (Jiang et al., 2020)
of PLMs on downstream tasks with limited training
data (Devlin et al., 2018; Lee et al., 2020). In the
exist literature, various LFT methods have been
proposed, which mainly focus on different strate-
gies to select the parameters for fine-tuning, in-
cluding inserting external structures (Houlsby et al.,
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2019; Li and Liang, 2021), measuring the entry im-
portance (Ding et al., 2022) and decomposing the
parameter matrices (Liu et al., 2021a).

Figure 1: Overall comparison of FFT, LFT and Cal-
iSr approach in fine-tuning PLMs. SRSD denotes
the metric to determine when and where to start
lightweight fine-tuning.

Despite the effectiveness, there are two major
shortcomings for existing fine-tuning approaches.
First, these LFT methods adopt a relatively rigid
optimization process, without considering task diffi-
culty or model capacity during fine-tuning. There-
fore, it can be often observed that LFT methods
have slow convergence rate and under-perform
FFT methods, especially in high-resource set-
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tings (Chen et al., 2022; He et al., 2021). This
constraint renders the LFT method susceptible to
yielding unreliable conclusions, primarily because
it is hard to know whether the existing data volume
is sufficient for the current task. Second, there still
lacks a deep understanding of why LFT can im-
prove the model generalization abilities, though it
has been well-known as an advantage over FFT.
Therefore, it is imperative to develop a theoretically
supported LFT approach that allows for more flexi-
ble control or careful selection over the parameters
to be optimized during the fine-tuning process.

To address the above issues, we focus on devel-
oping a more principled LFT approach, with both
flexible adaptation and theoretical guidance for pre-
trained language models (PLMs). The key idea is
to combine the benefits of both FFT and LFT: FFT
can speed up the convergence, especially at the
beginning stage of training or on complex tasks,
whereas LFT can efficiently adapt to different tasks
starting from a good model checkpoint. In this way,
our fine-tuning approach always starts with FFT,
and further develops a theoretical criterion to de-
cide when to switch to the LFT, based on different
components in PLMs. Such a way can achieve
a good trade-off between both effectiveness and
efficiency in fine-tuning PLMs.

To this end, in this paper, we propose a
theoretically-informed Calibration approach for LFT
based on matrix Stable Rank, called CaliSr. Spe-
cially, we incorporate the matrix stable rank (Sanyal
et al., 2020) as the measure to determine the start
time of LFT. This metric plays a vital role in iden-
tifying the precise conditions under which a more
stringent upper bound can be established in rela-
tion to generalization error (Bartlett et al., 2017;
Neyshabur et al., 2018), which are easy to com-
pute during fine-tuning. Further, we devise two
stable rank instructed approaches to adaptively
starting the LFT process for updating the corre-
sponding parameters from different model compo-
nents. In contrast to prior methods that rely on pre-
determined fine-tuning parameters (Li and Liang,
2021; Houlsby et al., 2019; Xu et al., 2021), our ap-
proach can dynamically select the most appropriate
parameter matrices to update during the fine-tuning
process. In addition, we also provide the theoretical
analysis why LFT can achieve a better performance
than FFT, based on stable rank.

To the best of our knowledge, this is the first
time that matrix stable rank has been applied to
improve PLM fine-tuning, which is well suited to
explain why current lightweight fine-tuning is ef-
fective. We construct extensive experiments to
evaluate the effectiveness of the proposed CaliSr
approach for BERT on GLUE benchmark, com-
pared with Adapters (Houlsby et al., 2019), Prefix-
tuning (Li and Liang, 2021), ChildTuning (Xu et al.,

2021), MPOP (Liu et al., 2021a), BitFit (Zaken et al.,
2021), Diff-Prune (Guo et al., 2021), LoRA (Hu
et al., 2022), and Adapters (Houlsby et al., 2019).
It is demonstrated that the proposed CaliSr ap-
proach can achieve better accuracy for down-
stream tasks (average improvement of 3.1 for
GLUE score compared with LoRA, Adapters, Prefix-
tuning, MPOP and BitFit). All the experimental
codes are available on https://github.com/
RUCAIBox/CaliSr.

2. Related Work

The existing LFT approaches can be generally di-
vided into modular methods, sparse fine-tuning,
and matrix decomposition-based methods.

Modular methods. Modular methods added new
parameters in the form of extra modules and fine-
tuned while keeping all the pre-trained parameters
fixed. Adapters formulated alternative trainable
parameters as extra intermediate layers (Houlsby
et al., 2019; Rebuffi et al., 2017) while prefix-
tuning (Li and Liang, 2021) used prefix. LoRA (Hu
et al., 2022) leverages both the low-rank approxi-
mation method and the Adapter technique to sig-
nificantly decrease the number of fine-tunable pa-
rameters (Liu et al., 2023b). Liu et al. (2021b) used
prompts also make the tuning process more effi-
cient. In contrast, our approach intended to improve
model performance by the stable rank metric to find
the more efficient and robust tuning approach for
PLMs.

Sparse fine-tuning. Unlike modular methods
which modify the model architecture, sparse fine-
tuning selects important values of parameter matri-
ces by applying the sparse binary mask. As a con-
ventional technique, the binary mask is employed to
modify pre-trained weights (Zhao et al., 2020), and
its learning can be achieved through fine-tuning or
by evaluating the Fisher information for each individ-
ual value (Xu et al., 2021). Besides, the diff-pruning
method applies a binary mask to the difference vec-
tor learned by downstream tasks (Guo et al., 2021),
while the BitFit approach only modifies bias items
instead of weight matrices (Zaken et al., 2021). Fur-
thermore, the MoEfication method was proposed
due to the sparse activation in PLMs (Zhang et al.,
2021). Fortunately, our approach could combine
these methods to improve model performance even
further.

Matrix decomposition-based methods. Matrix
decomposition is a common technique in machine
learning. Low-rank approximation by decomposi-
tion, such as SVD (Henry and Hofrichter, 1992)

https://github.com/RUCAIBox/CaliSr
https://github.com/RUCAIBox/CaliSr
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can reduce redundancy for those deep neural net-
works with low-rank properties (Gao et al., 2020,
2022, 2023). Recently, Aghajanyan et al. (2021)
demonstrated that the trained over-parametrized
models have a low inherent dimension. Inspired by
this, LoRA optimized decomposed low-rank matri-
ces while keeping the pre-trained weights frozen to
make computation efficient (Hu et al., 2022). More-
over, MPOP (Liu et al., 2021a) achieved efficient
fine-tuning by only modifying part of decomposed
tensors. In all these approaches it is possible to
achieve approximate full fine-tuning with a very
small training cost. Our approach was based on
these works in that we combined the low-rank ap-
proximation and the stable rank to construct a more
efficient fine-tuning approach.

3. Approach

In this section, we describe our proposed CaliSr
based on matrix stable rank for improving the fine-
tuning performance of PLMs. We first give an
overview of our approach, then introduce the details
of CaliSr strategy and theoretical analysis.

3.1. Background

We focus on the topic of model fine-tuning under
the setting of pre-trained language models (PLMs),
which can be approached through two main meth-
ods, namely full fine-tuning (FFT) and lightweight
fine-tuning (LFT). Typically, the LFT process starts
from the pre-trained model checkpoint and contin-
ues to update the selected parameters until reach-
ing the stop condition. Compared with FFT, LFT
saves the computational cost by reducing the num-
ber of trainable parameters, meanwhile achieving
a decent performance. Despite the effectiveness,
recent studies (Chen et al., 2022; He et al., 2021)
demonstrate that LFT sometimes suffers from per-
formance degradation or slow convergence. In ad-
dition, it also requires to pre-determine the model
components (e.g., only query and value in attention
for LoRA (Hu et al., 2022)) to update.

3.2. Stable Rank for Model
Generalization

In this part, we first introduce a matrix based mea-
sure, stable rank, which will be used to guide the
fine-tuning process in our approach.

Formally, stable rank (Sanyal et al., 2020) is de-
fined as the squared ratio between the Frobenius
norm and the spectral norm, formulated as follows:

srank(W) =
∥W∥2F
∥W∥22

=

∑k
j=1 σ

2
j (W)

σ2
1(W)

, (1)

where k is the rank of an arbitrary matrix W, ∥W∥2
denotes the spectral norm ofW and σi(W) denotes
the i-th singular value of the matrix W.

Our approach is inspired by the connection be-
tween stable rank and the model generalization
bound for a d-layer neural network (Sanyal et al.,
2020): O

(√∏d
i ∥Wi∥22

∑d
i=1 srank(Wi)

)
. In this

bound, we can see that stable rank is a key indicator
for the generalization capacity of a neural network
since it can directly affect the generalization be-
haviour. Sanyal et al. (2020) further demonstrates
that decreasing stable rank leads to improved gen-
eralization in practice.

Note that we are not concerned with the actual
generalization bound, but instead we employ stable
rank as an indicator to monitor the fine-tuning pro-
cess of a parameter matrix. Intuitively, the smaller
the stable rank is, the training of a parameter matrix
is more sufficient (approaching the convergence).

3.3. Stable Rank Instructed Fine-tuning

In this part, we explore the use of stable rank as
an instruction measure to guide the selection of
fine-tuning parameters.

Underlying Principle. In our approach, we con-
sider the fine-tuning process is a mixture of FFT
and LFT. For each parameter matrix, the training al-
ways starts by FFT, and it switches to LFT when the
training becomes relatively sufficient. To determine
when to make the switch, we introduce the Stable
Rank Score (SRS) as a means of determining the
starting point for LFT in PLMs. The underlying prin-
ciple is that a parameter matrix that is ready for LFT
should have a lower stable rank score than that ob-
tained after FFT, because FFT becomes more likely
to be overfitted as the training process continues
(thus leading to a more poor generalization than
LFT). We refer to the monitor process that switches
between FFT and LFT as calibration, and propose
two calibration approaches, namely dynamic cali-
bration and structure-aware calibration, which will
be detailed next.

Dynamic Calibration (CaliSr-D). The proposed
dynamic calibration, CaliSr-D, uses the stable rank
metric as an indicator for determining the optimal
starting point for LFT in PLMs. A straightforward
approach is compute stable rank metric at each
training step until the target condition is met. How-
ever, this method may not be stable due to the
randomness of optimization process, which is also
computationally costly. To address these issues,
we introduce a new strategy by calculating the in-
dicator multiple times over the calibration process
and counting the count that times the condition is
satisfied. If the count exceeds a specific threshold,
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LFT would be initiated. The count is calculated as:

SRSD =

∑n
i=11

(
SR(i)(WLFT ) < SR(i)(WFFT )

)
n

,

(2)
where n denotes the times of SRS calculation in the
calibration process (n ∈ {3, 5} for our experiments).
In this way, we can reduce the random risk during
the optimization process and derive a more reliable
stable rank score.

Structure-aware Calibration (CaliSr-S). Our pro-
posed structure-aware calibration, CaliSr-S, aimed
to calculate the stable rank separately for differ-
ent structures within the PLMs. In general, the
Transformer model contains two basic components,
namely attention modules (i.e., WQ,WK ,WV and
WAO) and feed-forward modules (i.e., WI and
WO). In our approach, we aggregate the stable
rank of the weights across all layers to obtain an
overall score for the parameter matrices in each
component. This approach provides a more fine-
grained control over the switch between FFT and
LFT for different components, thus likely to achieve
a better fine-tuning performance. Unlike prior stud-
ies (Hu et al., 2022; Liu et al., 2021a) that pre-
determine the fine-tuning parameters and use a
fixed LFT fine-tuning way, our approach makes it
feasible to adaptively set the start time of LFT pro-
cess for different components in PLMs.

Training. In this part, we provide a complete de-
scription of our calibration process. Without loss
of generality, we reparameterize the model param-
eters as W(t) = W

(t)
core + W

(t)
extra. In this decom-

position, W(t) denotes the total parameters at the
t-th iteration, and during LFT, only W

(t)
core is trained,

whereas during FFT, both W
(t)
core and W

(t)
extra are

trained. As discussed before, our approach first
performs parameter update via FFT. Subsequently,
the update process can be divided into two stages.
In the first stage, we only update the weights W

(t)
core,

which can be approximated as an LFT update strat-
egy; in the second stage, we update the weights
W

(t)
extra, which can be approximated as an FFT up-

date strategy. By employing this approach, we can
effectively control how to make the switch between
LFT and FFT. Following the completion of the cal-
ibration process, the model will continue employ-
ing the LFT techniques. Overall, our proposed ap-
proach combines the benefits of both FFT and LFT
to achieve improved results on downstream tasks.
The complete fine-tuning procedure is shown in
Algorithm 1.

Theoretical Analysis. We now apply the
generalization bound based on stable rank,
as discussed earlier in Section 3.2, to clarify
the reasoning behind using the SRSD metric.

Algorithm 1 The proposed CaliSr approach.
Input: n: interval steps for calculating the stable rank;δ:

threshold for start lightweight fine-tuning; steps: total
steps in each epoch.

1: Initialize timestamp t← 0.
2: Training with FFT
3: while not start LFT do
4: Fine-tune model with all parameters
5: t← t+ 1
6: if t%n = 0 then
7: Update W

(t)
core

8: Calculate stable rank SR(WLFT )

9: Update W
(t)
extra

10: Calculate stable rank SR(WFFT )
11: end if
12: if t%steps = 0 then
13: Evaluate SRS
14: if SRS > δ then
15: Start lightweight fine-tuning
16: end if
17: end if
18: end while
19: Training model with lightweight fine-tuning
20: return model

As previously mentioned, Sanyal et al. (2020)
has defined a generalization bound as follows:
O
(√∏d

i ∥Wi∥22
∑d

i=1 srank(Wi)

)
. This bound

depends on both the upper bound of the Lipschitz
constant, denoted as

∏d
i |Wi|22, and the stable rank.

Furthermore, Sanyal et al. (2020) has empirically
demonstrated that as the stable rank decreases,
the Lipschitz constant also decreases. Hence,
these findings suggest that it is reasonable to as-
sess model generalization primarily by monitoring
the stable rank of the weight matrices. This analy-
sis emphasizes that by evaluating SRSD, we can
make a selective transition between FFT and LFT
techniques, ensuring a consistent improvement in
model generalization.

3.4. Investigating the Mechanism of
Lightweight Fine-tuning

Prior study (Chen et al., 2022) has shown that
lightweight fine-tuning (LFT) can achieve competi-
tive results in low-resource settings, but its underly-
ing mechanisms remain less explored. Specifically,
the working mechanism of LFT, which enables train-
ing large models with minimal computational cost,
has not been fully understood. In this section, we
aim to analyze the effectiveness of LFT from the
perspective of generalizability in relation to the sta-
ble rank of model weights.

Formally, we first introduce the notation ∆W,
which represents the difference between matrices
obtained from fine-tuning and pre-trained weights,
i.e., ∆W = WFT −W. We then propose a theo-
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rem that identifies the conditions under which fine-
tuning achieves a lower stable rank. We denote
{σi} and {ai} as eigenvalues of WFT and ∆W
by SVD, respectively. Then, the srank(WFT ) <
srank(W) holds if

a1 + σ1√∑r
i=2(σi + ai)

2
>

σ1√∑r
i=2 σ

2
i

, (3)

where r denotes the rank of pre-trained weights.
Equation (3) suggests that the key to further im-
proving model generalization by fine-tuning is to
adjust the distribution of eigenvalues rather than
the magnitude of the eigenvalues. If the weight
difference in the LFT process exhibits a bigger ra-
tio compared to that of the FFT, LFT would have
a lower stable rank, indicating a reduced general-
ization error. A comprehensive proof and further
details will be found in the Appendix. Specially, we
assess the ratio described in Equation (3) for BERT
across various downstream tasks, as detailed in
Section 4.3. The results consistently validate that
LFT exhibits a lower stable rank in practice.

Additionally, our analysis also reveals a key in-
sight into the efficacy of LFT in updating large mod-
els: it selectively modifies non-dominant eigenval-
ues to lower the stable rank. As a comparison, FFT
randomly alters the amplitudes of all eigenvalues,
resulting in a similar stable rank but incurring higher
computational costs. This targeted updating strat-
egy contributes to the efficient nature of LFT, as it
achieves comparable results with reduced compu-
tational costs.

4. Experiments

In this section, we present the evaluation of the Cal-
iSr approach on various datasets, providing results
and detailed analysis.

4.1. Experimental Setup
Datasets. We conduct our evaluation on the Gen-
eral Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2019). To assess the per-
formance of our approach, we report the Matthews
correlation coefficient for CoLA, Separnman cor-
relation for STS-B, F1 score for MRPC/QQP, and
accuracy for the remaining tasks. The test sets for
these tasks are provided by the GLUE evaluation
server. We report the mean values of five runs
using different random seeds for validation results.

Baseline Methods. We apply CaliSr on LFT ap-
proaches that modify the original weights (MPOP,
LoRA, and ChildTuning) rather than those that
change model architecture (Adapters). This choice
avoids the need for frequent modifications to the

model architecture during the calibration process.
We consider the following baseline methods:

• MPOP (Liu et al., 2021a): It applies MPO to
model weights and selects a small part of produced
local tensors (called “auxiliary tensors”) and fine-
tuned on downstream tasks.
• LoRA (Hu et al., 2022): It injects trainable rank

decomposition matrices into each layer of the trans-
former architecture while freezing the pre-trained
weights, greatly reducing the number of trainable
parameters for downstream tasks.
• ChildTuning (Xu et al., 2021): It adopts the

Fisher information estimation to select the impor-
tant parameters at the beginning of the fine-tuning.

In addition, we also implement other LFT ap-
proaches such as Adapters (Houlsby et al., 2019),
Prefix-tuning (Li and Liang, 2021) and BitFit (Zaken
et al., 2021) for comparison. For a fair compari-
son, we compare the performance of these meth-
ods based on the same checkpoint (i.e., BERTbase,
BERTlarge and RoBERTalarge.

4.2. Main Experimental Results

In this part, we report and analyze the experimental
results on BERTlarge.

Overall Performance. In our experiments on the
GLUE benchmark, we compared the performance
of our CaliSr approach with both current LFT meth-
ods and FFT. The results, presented in Table 1,
demonstrate that our approach consistently outper-
forms these methods in terms of validation scores.
On average, our approach achieves a 2.1 improve-
ment over MPOP and a 1.1 improvement over full
fine-tuning. Notably, the combination of MPOP and
CaliSr-S performs the best among all LFT methods
in terms of the average GLUE score. Furthermore,
for the test sets, the “MPOP+CaliSr-S” approach
even achieves a 0.1 higher score compared to the
FFT method.

Effectiveness on Different LFT methods. We
demonstrate the compatibility of the CaliSr ap-
proach with other fine-tuning methods. Specifically,
we integrate the CaliSr approach as a plugin to
enhance existing methods, namely MPOP, Child-
Tuning and LoRA, and present the results in Table 2.
Our results indicate that the CaliSr-S variant outper-
forms the vanilla LFT method on all three datasets,
with the greatest improvement observed on the
RTE dataset (i.e., 5.2 higher score compared to
LoRA). However, a decline in performance is some-
times observed for the CaliSr-D, suggesting that
structural differences may have a significant impact
in this scenario.
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Exp SST-2 MRPC CoLA QNLI RTE MNLI QQP STS-B Avg.
Development Set Result
Adapters (Houlsby et al., 2019) 89.9 86.9 51.2 91.1 68.2 85.1 85.3 88.7 80.8
LoRA (Hu et al., 2022) 93.6 89.8 49.9 89.0 69.9 83.0 83.0 86.5 80.6
Prefix-tuning (Li and Liang, 2021) 92.9 85.6 50.8 90.2 68.6 82.8 84.0 89.0 80.5
BitFit (Zaken et al., 2021) 93.2 91.7 63.6 91.4 73.2 84.4 85.4 90.3 84.2
MPOP (Liu et al., 2021a) 93.5 90.0 57.9 90.7 73.3 84.7 85.5 89.4 83.1
Full Fine-Tuning 93.4 90.7 62.2 91.7 71.9 85.5 87.5 90.0 84.1
MPOP+CaliSr-D 93.6 92.3 62.7 92.2 74.3 85.6 87.6 90.1 84.8
MPOP+CaliSr-S 94.3 92.3 62.7 92.2 76.2 85.8 87.6 90.1 85.2
Test Set Result
Full Fine-Tuning 94.1 88.9 59.6 91.1 71.2 86.7 71.7 86.6 81.2
MPOP+CaliSr-D 94.1 88.4 59.9 92.3 70.6 84.8 71.9 86.3 81.0
MPOP+CaliSr-S 94.9 88.4 59.9 92.3 70.7 85.9 71.9 86.3 81.3

Table 1: Performance comparison using BERTlarge on GLUE benchmark (in percent). “MPOP+CaliSr-D”
represents the use of the CaliSr approach with the time-aware variant, whilst “MPOP+CaliSr-S ” signifies
the use of the structure-aware variant. Bold fonts indicate the best results in each block. We report the
mean values of five runs using different random seeds for all the results.

Exp SST-2 MRPC RTE
MPOP (Liu et al., 2021a) 93.5 90.0 73.3
+CaliSr-D 93.8 91.5 70.0
+CaliSr-S 94.3 92.3 76.2
ChildTuning (Xu et al., 2021) 93.0 90.3 73.3
+CaliSr-D 93.0 90.5 71.9
+CaliSr-S 93.3 91.3 74.0
LoRA (Hu et al., 2022) 93.6 89.8 69.9
+CaliSr-D 93.6 90.1 71.1
+CaliSr-S 93.8 91.9 75.1

Table 2: Evaluation with different lightweight fine-
tuning methods.

Effectiveness on Different PLM. To illustrate
the effectiveness of the different base models we
based on, we also evaluate on BERTbase and
RoBERTabase. The results on the GLUE bench-
mark are presented in Table 3, where we compare
the performance of CaliSr with existing lightweight
fine-tuning schemes. The results clearly demon-
strate that the CaliSr approach consistently out-
performs other methods in terms of the average
score, particularly for CaliSr-S. This indicates the ef-
fectiveness and generality of our approach across
different base models. The superior performance
of CaliSr-S further supports the idea that the cali-
bration is tailored to the specific characteristics of
the model in terms of both time and structure.

Effectiveness of Structure Awareness. Here
we analyze the performance of different tasks and
evaluate the effectiveness of our CaliSr-S strategy
in terms of structure awareness. Specifically, Fig-
ure 2(a) shows that the optimal time to begin LFT
varies across different structures (i.e., the attention

(a) Structure Awareness
0.0 0.2 0.4 0.6 0.8 1.00

90

180

270

360

#
Tr

 (M
) SST-2

QNLI
MNLI

QQP
FFT
LFT

(b) Variation of #Tr

Figure 2: (a). Structure awareness w.r.t. the train-
ing process. (b). Variations of trainable parameters
w.r.t. the training process.

module differs from others in SST-2 and MNLI),
which highlights the existence of inherent structural
differences. Additionally, our method also demon-
strates adaptability by adjusting the starting time for
different tasks. Based on the dynamic selection of
CaliSr, Figure 2(b) shows the variation of trainable
parameters with the FFT step ratio, which indicates
that CaliSr lies between FFT and LFT and will soon
reach a level similar to that of LFT (e.g., MPOP
only trains 10% of total parameters).

4.3. Further Analysis
Furthermore, we will conduct a more detailed anal-
ysis to further investigate the effectiveness of our
proposed approach.

Analysis of Connection Between Stable Rank
and Model Generalizability. To further justify our
use of stable rank as an indicator of model general-
ization, we conducted experiments to analyze the
dynamic evolution of stable rank, loss, and accu-
racy under LFT and FFT. Figure 3 provides visual-



6030

Experiments SST-2 MRPC CoLA QNLI RTE MNLI QQP STS-B Avg.
BERTbase

Adapters (Houlsby et al., 2019) 89.9 87.8 54.4 90.8 60.2 83.5 85.8 88.2 80.1
LoRA (Hu et al., 2022) 86.7 82.1 40.9 76.0 60.3 56.7 68.9 81.5 69.1
Prefix-tuning (Li and Liang, 2021) 92.4 87.7 47.0 90.5 58.8 82.9 84.0 88.4 79.0
BitFit (Zaken et al., 2021) 87.2 81.2 55.1 88.9 47.3 81.2 85.7 88.9 76.9
MPOP (Liu et al., 2021a) 91.2 86.1 58.4 90.1 59.9 81.4 83.7 88.1 79.9
MPOP+CaliSr-D 92.4 89.3 59.0 91.3 60.8 81.6 87.0 88.1 81.1
MPOP+CaliSr-S 92.4 89.3 59.0 91.3 60.8 84.6 87.0 88.1 81.6
RoBERTabase

Adapters (Houlsby et al., 2019) 93.3 91.1 54.6 92.3 73.4 86.9 90.3 90.2 84.0
LoRA (Hu et al., 2022) 94.2 91.0 53.7 91.0 69.7 87.0 90.5 90.5 83.5
Prefix-tuning (Li and Liang, 2021) 94.2 89.4 53.4 92.3 57.4 86.3 88.9 89.6 81.4
BitFit (Zaken et al., 2021) 93.9 91.1 55.6 91.6 70.7 85.5 89.3 90.4 83.5
MPOP (Liu et al., 2021a) 92.2 90.2 53.6 91.3 52.7 86.4 89.4 90.3 80.8
MPOP+CaliSr-D 93.9 92.1 55.0 91.6 68.2 87.1 86.9 90.1 83.1
MPOP+CaliSr-S 93.9 92.1 59.4 92.2 75.1 87.1 87.2 90.6 84.7

Table 3: Performance comparison using BERTbase and RoBERTabase on GLUE benchmark (in percent).
The best performance in each group is highlighted in bold. For all the results, we report the mean values
of five runs using different random seeds.
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Figure 3: Relation between the model stable rank
and performance of SST-2 task. The red dashed
line is the best option suggested by the total stable
rank of the model.

izations of these metrics. First, we assessed the
generalization behavior of the model by analyzing
the loss and accuracy trends. Our findings indicate
that there is a notable difference in the loss curve
between FFT and LFT. After 2000 steps, FFT ex-
hibits a significant increase in loss and consistently
performs worse than LFT in terms of loss. This
suggests that LFT exhibits better generalization ca-
pabilities after 2000 steps. Similarly, we observed
consistent variations in the stable rank curve. The
stable rank of FFT is significantly higher than that
of LFT after 2000 steps. This observation aligns
with the inferior performance of FFT in terms of loss
and implies a potential correlation between stable
rank and model generalization. These experimen-
tal findings provide compelling empirical evidence
supporting the utility of stable rank as a meaningful
indicator of model generalization.

(a) SST-2 of FFT (b) SST-2 of LFT

(c) SST-2 of FFT (d) SST-2 of LFT

Figure 4: (a,b): Comparison of the difference of
eigenvalues between fine-tuned weights and pre-
trained weights. (c,d): Comparison of cosine simi-
larity of eigenvectors between fine-tuned weights
and pre-trained weights.

Empirical Results on Mechanism of Lightweight
Fine-tuning. To illustrate the advantages of the
LFT over the FFT, we calculate the ratio of eigen-
values, a1+σ1√∑r

i=2(σi + ai)
2

as discussed in Eq. 3 of

Section 3.4, and visualize the results in Figure 4(a)
and Figure 4(b). It can be observed that the LFT
method increases the top eigenvalue of the pre-
training weights, while the FFT method decreases
these eigenvalues, indicating LFT has a bigger ratio
than FFT. We also notice that the overall magni-
tude modification of the eigenvalues by the LFT is
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(a) The best threshold δ (b) Sensitivity of threshold

Figure 5: Comparison of different threshold δ in
different tasks.

smaller compared to the FFT, which may be due
to fewer trainable parameters and also illustrates
the efficiency of the LFT. To gain a deeper under-
standing of the efficiency of LFT in comparison to
FFT, we visually analyze the similarity between fine-
tuned eigenvectors and pre-trained eigenvectors
in Figure 4(c) and Figure 4(d). The results indi-
cate that FFT updates exhibit a higher degree of
randomness, whereas LFT updates align closely
with the pre-training direction. Typically, pre-trained
models offer a strong starting point for downstream
tasks, and LFT’s alignment with this pre-existing
knowledge enables it to leverage learned informa-
tion effectively. Consequently, this alignment eases
the optimization process, elucidating why LFT de-
mands less computational effort while still achieving
effective fine-tuning of large models.

Empirical Study on Factors Influencing
Lightweight Fine-tuning. To gain insights into the
factors influencing the performance of PLMs. We
conduct two empirical observations using BERT,
ChildTuning, MPOP, and MaskedBERT. First,
Table 4 shows that LFT on the proper component
can even outperform FFT results (e.g.,, using
FFN1 for SST-2 and attention for MRPC in MPOP).
Second, in Table 5 the results on MRPC and SST-2
show that the best score typically appears after
some FFT steps at the beginning of the fine-tuning
process (i.e., 40% FFT steps ratio). This illustrates
the importance of the need to calibrate the start
time of LFT.

Hyper-parameter Analysis. We conducted a sen-
sitivity analysis of our approach with respect to two
hyperparameters: the SRS threshold (δ) and the
learning rate. Regarding the SRS threshold, we
observed in Figure 5(a) that the optimal threshold
for all downstream tasks consistently falls within
the narrow optimal range (i.e., from 0.45 to 0.6). To
further investigate the impact of δ, we explored a
range of options (0.4, 0.45, 0.5, 0.55, 0.6) and an-
alyzed the results, as shown in Figure 5(b). The
stability observed across most tasks demonstrates

Models Model Components SST-2 MRPCFFN1 FFN2 Att
FFT □ □ □ 93.4 90.7

ChildTuning

✓ □ □ 93.9 90.2
□ ✓ □ 94.2 89.4
□ □ ✓ 93.4 89.8
✓ ✓ ✓ 93.4 90.3

MPOP

✓ □ □ 94.5 90.6
□ ✓ □ 93.9 90.1
□ □ ✓ 94.3 90.9
✓ ✓ ✓ 93.5 89.9

MaskBERT

✓ □ □ 92.2 84.8
□ ✓ □ 92.4 84.1
□ □ ✓ 92.5 85.3
✓ ✓ ✓ 92.4 84.6

Table 4: Performance variations among different
model components. We denote “✓” as the compo-
nent using LFT strategy (i.e., ChildTuning, MPOP
and MaskBERT) while “□” uses FFT.

Models FFT steps ratio SST-2 MRPC
FFT 100% 93.4 90.7

ChildTuning
0% 93.4 90.3
40% 93.5 91.8
80% 92.9 91.3

MPOP
0% 93.5 89.9
40% 93.7 91.8
80% 93.3 91.4

MaskBERT
0% 92.4 84.6
40% 92.7 86.3
80% 92.5 86.0

Table 5: Performance variations with respect to op-
timization state. We denote the “FFT steps ratio” as
the ratio of FFT steps at the beginning (in percent).

the robustness of our method to different threshold
values. In terms of the learning rate, we performed
experiments using different learning rates and eval-
uated the results on the SST-2, MRPC, and RTE
tasks. The performance of our approach, as seen
in Table 6, exhibited stable results with negligible
variations in relation to the learning rate.

Learning Rate 5e-6 1e-5 3e-5 5e-5 1e-4

SST-2 (Acc.) 91.1 91.6 91.6 90.6 91.5
MRPC (F1) 88.3 87.6 87.4 87.8 86.3
RTE (Acc.) 57.4 57.4 59.9 59.6 60.7

Table 6: Comparison of different learning rates on
BERTbase (in percent).
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5. Conclusion

This work proposes a method to choose the appro-
priate time to start lightweight fine-tuning for PLM
components during full-parameter fine-tuning. To
achieve this, we propose a metric, SRS, based
on stable rank to assess the generalizability of the
PLM and start lightweight fine-tuning when SRS
suggests it yields better generalization behavior.
Specifically, we propose a dynamic calibration (i.e.,
CaliSr-D) for the overall model as well as a structure-
aware calibration (i.e., CaliSr-S) for individual com-
ponents. Additionally, we provide insights into the
low computational cost of lightweight fine-tuning
by demonstrating that it primarily adjusts the distri-
bution of eigenvalues rather than their magnitude.
Finally, our approach is demonstrated to be effec-
tive through extensive experiments. We hope the
CaliSr approach might benefit the understanding
of the inner mechanism of lightweight fine-tuning.
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