
LREC-COLING 2024, pages 6036–6047
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

6036

Enhancing Phrase Representation by Information Bottleneck
Guided Text Diffusion Process for Keyphrase Extraction

Yuanzhen Luo1† , Qingyu Zhou2∗, Feng Zhou2

1China University of Petroleum, Beijing
2OPPO Research Institute

strugglingluo@gmail.com, qyzhgm@gmail.com, zhoufeng1@oppo.com
Abstract

Keyphrase extraction (KPE) is an important task in Natural Language Processing for many scenarios, which aims
to extract keyphrases that are present in a given document. Many existing supervised methods treat KPE as
sequential labeling, span-level classification, or generative tasks. However, these methods lack the ability to utilize
the reference keyphrase information during extraction process, which may result in inferior results. In this study,
we propose Diff-KPE, which leverages the supervised Variational Information Bottleneck (VIB) to guide the text
diffusion process for generating enhanced keyphrase representations. Diff-KPE first generates the desired keyphrase
embeddings conditioned on the entire document and then injects the generated keyphrase embeddings into each
phrase representation. A ranking network and VIB are then optimized together with rank loss and classification loss,
respectively. This design of Diff-KPE allows us to rank each candidate phrase by utilizing both the information of
keyphrases and the document. Experiments show that Diff-KPE outperforms most of existing KPE methods on a
large open domain keyphrase extraction benchmark, OpenKP, and a scientific domain dataset, KP20K.

Keywords: Keyphrase Extraction, Diffusion, Information Bottleneck

1. Introduction

Keyphrase extraction (KPE) aims to extract sev-
eral present keyphrases from a document that can
highly summarize the given document, which is
helpful for many applications such as text summa-
rization and information retrieval.

Many neural keyphrase extraction models for-
mulate KPE as a token-level sequence labeling
problem by predicting a single label for each token
(Sahrawat et al., 2020; Alzaidy et al., 2019; Luan
et al., 2017). To use the phrase-level semantic
information, some methods (Zhang et al., 2016;
Xiong et al., 2019; Mu et al., 2020; Wang et al.,
2020; Sun et al., 2021) modeling KPE as a phrase
classification task by assigning labels to each text
span.

Different from the above methods, recent KPE
models directly learn to rank each phrase (Mu et al.,
2020; Song et al., 2021; Sun et al., 2021; Song
et al., 2022). These methods mainly include two
processes: candidate phrase representation con-
struction and keyphrase importance ranking. In
particular, candidate phrase representations are
extracted from the token embeddings produced by
pre-trained language models such as BERT (Devlin
et al., 2018), and keyphrase importance ranking
usually predict a score for each candidate phrase
representation and then use margin loss to sort
the score of positive candidates ahead of negative
ones. Since the candidate phrase representation

†Work done during internship at OPPO Research
Institute.

∗Corresponding author.

is important for the model to score them, there are
several ways to extract phrase representation: (Mu
et al., 2020) and (Sun et al., 2021; Song et al., 2021)
develop Bi-LSTM and CNN to further capture the
local-aware features of phrase, respectively. Hy-
perMatch (Song et al., 2022) extract phrase repre-
sentation in hyperbolic space.

Although these methods have achieved great
success in many KPE benchmarks, we point out
that their candidate phrase representation still lacks
the utilization of reference keyphrases information.
This is inspired by the intuition that how human
extracts candidate phrase: They will first review
the whole document and summarize a few vague
keyphrases in mind, and then take the candidate
phrase and vague keyphrases both into consider-
ation to make the extraction decision. To achieve
this process in the neural model, however, the
challenge is how to generate the vague reference
keyphrase information during inference time.

To address the above issue, we propose Diff-
KPE, a novel diffusion-based KPE model. We
first use the diffusion model to generate a list of
vague keyphrase information by recovering refer-
ence keyphrase embeddings conditioned on the
whole document, then we enhance the phrase
representation by injecting the vague keyphrase
embeddings into each of them. To rank candi-
date phrases, we apply a ranking network to rank
each enhanced phrase representation. By doing
this, we can extract desired top k keyphrases from
the ranked list of phrases. In addition, we intro-
duce a supervised Variational Information Bottle-
neck (VIB) to optimize a classification loss for each

6037

phrase. Supervised VIB aims to preserve the infor-
mation about the target classes in the latent space
while filtering out irrelevant information from the
input phrase representation (Tishby et al., 2000),
which helps the learning process for the vague
keyphrase embedding. Multitask learning of su-
pervised VIB can guide the model to generate infor-
mative phrase representations, thereby improving
the performance of the ranking network. Overall,
Diff-KPE incorporates these modules by simultane-
ously training these components.

Empowered by the architecture design of Diff-
KPE, it exhibits the following three advantages.
First, the diffusion model enables the injection of
vague keyphrase information into each phrase rep-
resentation, even during inference, thereby giving
the model the ability to utilize keyphrase information.
Second, the ranking network ranks each phrase,
allowing us to flexibly extract the top k candidate
keyphrases. Finally, the introduced supervised VIB
guides the model to generate informative phrase
representations, resulting in an improvement in
ranking performance. We demonstrate the impor-
tance of each component in our experiments. In
summary, the main contributions of this paper are
as follows:

• We propose Diff-KPE, a diffusion-based KPE
model. To the best of our knowledge, this is
the first attempt to use the diffusion model for
the KPE task.

• By incorporating the diffusion model, ranking
network, and VIB into one system, we em-
power Diff-KPE to utilize the information of
keyphrases and the document to extract can-
didate keyphrases.

• Experimental results show that Diff-KPE out-
performs most of existing KPE approaches on
two large keyphrase extraction benchmarks,
OpenKP, and KP20K. Additionally, Diff-KPE
demonstrates a more robust performance on
the other five small scientific datasets.

2. Related Work

2.1. Keyphrase Extraction
Automatic KeyPhrase Extraction (KPE) aims to ex-
tract a set of important and topical phrases from a
given document, which can then be used in different
tasks such as summarization (Li et al., 2020), prob-
lem solving (Huang et al., 2017, 2018b,a), genera-
tion tasks (Zhou and Huang, 2019; Li et al., 2021),
and so on.

Existing KPE technologies can be categorized
as unsupervised and supervised methods. Unsu-
pervised methods are mainly based on statistical
information (El-Beltagy and Rafea, 2009; Florescu

and Caragea, 2017a; Campos et al., 2018), em-
bedding features (Mahata et al., 2018; Sun et al.,
2020; Liang et al., 2021; Zhang et al., 2021; Ding
and Luo, 2021), and graph-based ranking algo-
rithms (Mihalcea and Tarau, 2004; Florescu and
Caragea, 2017b; Boudin, 2018). Supervised meth-
ods commonly formulate KPE as sequence tag-
ging approaches (Sahrawat et al., 2020; Alzaidy
et al., 2019; Kulkarni et al., 2022), span-level clas-
sification (Zhang et al., 2016; Xiong et al., 2019;
Mu et al., 2020; Sun et al., 2021) or ranking (Mu
et al., 2020; Song et al., 2021; Sun et al., 2021;
Song et al., 2022), or generative tasks (Meng et al.,
2017; Chen et al., 2018; Yuan et al., 2018; Kulkarni
et al., 2022). Although supervised KPE methods
require a lot of annotated data, their performance
is significantly superior to unsupervised methods
in many KPE benchmarks (Sun et al., 2021; Meng
et al., 2017).

Recently, some works have focused on construct-
ing a zero-shot keyphrase extractor by prompting
pre-trained large language models (LLMs). For
example, (Song et al., 2023) verified the perfor-
mance of ChatGPT (OpenAI, 2022) and ChatGLM-
6b (Zeng et al., 2022) for the KPE task and found
that they still have a lot of room for improvement
in the KPE task compared to existing SOTA super-
vised models. Similar results can also be observed
in (Martínez-Cruz et al., 2023).

2.2. Diffusion Models for Text

Diffusion models have been applied in many con-
tinuous domain generations like image, video, and
audio (Kong et al., 2020; Rombach et al., 2022;
Ho et al., 2022; Yang et al., 2022). Recently, there
are some works focused on applying the diffusion
model to discrete text data. They usually generate
continuous representations for the desired texts/-
words. For example, Diffusion-LM (Li et al., 2022)
first attempts to develop a continuous diffusion
model to generate text by embedding rounding step.
Following the work of Diffusion-LM, DiffuSeq (Gong
et al., 2022) and SeqDiffuSeq (Yuan et al., 2022)
designed a diffusion-based sequence-to-sequence
model for the text generation task. To adapt the
diffusion model to longer sequence generation,
(Zhang et al., 2023) proposed a sentence-level dif-
fusion generation model for summary tasks, which
directly generates sentence-level embeddings and
matches from embeddings back to the original text.

Contrary to previous works, we apply the diffu-
sion model to KPE, a phrase-level extraction task.
In order to take the keyphrase information into con-
sideration during extraction, we directly inject the
keyphrase information generated by the diffusion
model into each phrase representation.

6038

2.3. Variational Information Bottleneck in
NLP

Variational Information Bottleneck (VIB) is one of
a group of Information Bottleneck (IB) methods. It
aims to find compact representations of data that
preserve the most relevant information while filter-
ing out irrelevant or redundant information (Tishby
et al., 2000).

There are lots of studies that apply VIB to many
NLP tasks. For example, (Li and Eisner, 2019)
used VIB for parsing, and (West et al., 2019) used
it for text summarization. Recently, VIB was also
used in Named Entity Recognition (NER) (Wang
et al., 2022; Nguyen et al., 2023), text classification
(Zhang et al., 2022), machine translation (Ormaza-
bal et al., 2022) and so on.

3. Methodology

In this section, we present the detailed design of
our Keyphrase Extraction (KPE) model, named Diff-
KPE. An overview of Diff-KPE is depicted in Figure
1. Given document D = {w1, w2, ..., wn}, we start
by enumerating all possible phrase representations
and reference keyphrase embeddings. The Diffu-
sion module is then employed to reconstruct the
keyphrase embeddings and inject them into each
phrase representation. Additionally, we incorpo-
rate a supervised Variational Information Bottle-
neck (VIB) for phrase classification and a ranking
network for ranking purposes. These components
work together to enhance the performance of our
KPE model.

3.1. Phrase Representation
To enumerate and encode all the possible phrase
representations, we first use pre-trained language
model BERT (Devlin et al., 2018) to encode doc-
ument D = {w1, w2, ..., wn}, producing contextual
word embeddings E = {e1, e2, ..., en}. The word
embeddings are then integrated into phrase rep-
resentations using a set of Convolutional Neural
Networks (CNNs):

ski = CNNk(ei, ei+1, ..., ei+n−1) (1)

where 1 ≤ k ≤ N and N represents the pre-defined
maximum length of phrase. The ith k-gram phrase
representation ski is calculated by its corresponding
CNNk.

3.2. Keyphrase Embeddings Generation
In order to inject reference keyphrases information
into each phrase representation, we use a continu-
ous diffusion module to generate desired keyphrase
embeddings.

3.2.1. Input Encoding

To allow the diffusion module to generate desired
keyphrase embeddings conditioned on the whole
document, we first use another BERT model to ob-
tain initial document and keyphrases embeddings.
Refer to m keyphrases and document embedding
as Ekp = {ekpi }mi and eD, the input encoding of
the diffusion module is formatted as:

Hin = hD||Hkp

= TransfomerEncoder(eD||Ekp)
(2)

where Hkp = {hkp
i }mi and hD are the latent

embedding of the document and m keyphrases,
TransformerEncoder is a stacked Transformer
encoder which embeds the input vector into latent
space, and eD is the document embedding, i.e.,
the [CLS] token embedding in BERT model, and
|| indicates concatenation operation. Such input
encoding enables our continuous diffusion module
to generate desired keyphrase embeddings condi-
tional to the current document embeddings eD.

3.2.2. Diffusion Generation Process

Once the input encoding Hin is obtained, the diffu-
sion model aims to perturb Hin gradually and then
recover the original Hin by learning a reverse pro-
cess. To achieve this, a one-step Markov transition
q(x0|Hin) is performed to obtain the initial state x0:

x0 = xD
0 ||xkp

0

∼ N (Hin, β0I)
(3)

where βt ∈ (0, 1) adjusts the scale of the variance,
xD
0 ∼ N (hD, β0I) and xkp

0 ∼ N (Hkp, β0I) are the
latent document embedding and keyphrase em-
beddings, respectively. We then start the forward
process by gradually adding Gaussian noise to the
latent keyphrase embeddings xkp

t . Following the
previous work (Zhang et al., 2023), we keep the la-
tent document embedding xD

0 unchanged, so that
the diffusion module can generate keyphrase em-
beddings condition to the source document. For-
mally, at step t of the forward process q(xt|xt−1),
the noised latent embedding is xt:

xt = xD
0 ||N (xkp

t ;
√
1− βtx

kp
t−1, βtI) (4)

where t ∈ {1, 2, ..., T} for a total of T diffusion steps.
For more details about the diffusion generation pro-
cess, please refer to (Sohl-Dickstein et al., 2015).

After adding the noise gradually at a specific
time step t (usually randomly choose between
[1, T]), the backward process is performed to re-
cover the keyphrase embeddings xkp

t by removing
the noised. We use another stacked Transformer

6039

…

B
E
R
T

T
ransform

er E
ncoder

… … …
…

C
N
N

concat

MLP classification loss

MLP score margin rank loss

Ranking Network

VIB Module

Diffusion Module

diffusion loss

𝑥𝑡−1 𝑥𝑡

Figure 1: Diff-KPE is jointly trained with a continuous diffusion module, a variational information bottleneck,
and a rank network. The black dashed box is the diffusion module, the blue dashed box is the VIB module
and the purple dashed box is the rank network.

encoder model fθ to conduct this backward process
to recover the original input encoding Hkp:

H̃kp = fθ(x
kp
t , t) (5)

where fθ(x
kp
t , t) is the stacked Transformer network

to reconstruct Hkp at time step t.
Since the main objective of the diffusion gen-

eration module is to reconstruct the original input
encoding, the objective loss of continuous diffusion
module can be defined by:

Ldif =

T∑
t=1

∥Hkp − fθ(x
kp
t , t)∥2 +R(x0) (6)

where R(x0) is a regularization term for x0.

3.3. Keyphrase Ranking
After the diffusion generation process, the gener-
ated keyphrase embeddings H̃kp are concatenated
into each phrase representation ski . This aims to
inject the information from keyphrases into each
phrase, resulting in performance improvement of
keyphrase ranking. Specifically, formulate the final
phrase representation as:

s̃ski = ski ||flat(H̃kp) (7)

where flat(x) means that x is flattened to a vector.
Equation 7 means that the final phrase represen-
tation not only contains the original phrase repre-
sentation but also all the reconstructed keyphrase
information.

For training the model to rank each phrase, we
introduce a contrastive rank loss. Following the
previous work (Sun et al., 2021), we first take a
feedforward layer to project the input representation
s̃ski to a scalar score:

r(s̃ski) = FeedForward(s̃ski) (8)

Then the margin rank loss is introduced to learn to
rank keyphrase s̃s+ ahead of non-keyphrase s̃s−
for the given document D:

Lrank =
∑

s̃s+,s̃s−∈D

max(0, 1−r(s̃s+)+r(s̃s−)) (9)

3.4. Keyphrase Classification

Combining the keyphrase classification task during
training can enhance the phraseness measurement
of the phrase (Sun et al., 2021; Song et al., 2021).
Similar to previous work (Xiong et al., 2019; Sun
et al., 2021; Song et al., 2021), we introduce a clas-
sification loss for each final phrase representation
for multi-task learning. We found that the use of
supervised VIB substantially improves the ranking
performance (See Ablation Study). Supervised VIB
aims to preserve the information about the target
classes in the latent space while filtering out irrel-
evant information from the input (Voloshynovskiy
et al., 2019). Given the final phrase representation
s̃ski , the supervised VIB first compresses the input
to a latent variable z ∼ qϕ1(z|s̃s

k
i). We apply two

linear layers to construct the parameters q using

6040

the following equations:

µ = Wµs̃s
k
i + bµ

σ2 = Wσ s̃s
k
i + bσ

(10)

where µ and σ are the parameters of a multivariate
Gaussian, representing the latent feature space of
the phrase; W and b are weights and biases of the
linear layer, respectively. The posterior distribution
z ∼ qϕ1

(z|s̃ski) is approximated via reparameterisa-
tion trick (Kingma and Welling, 2013):

z = µ+ σϵ,where ϵ ∼ N (0, 1) (11)

Since the main objective of VIB is to preserve target
class information while filtering out irrelevant infor-
mation from the input, the objective loss function
for the supervised VIB is based on classification
loss and compression loss. Denoted by y as the
true label of the input phrase, the objective loss of
the supervised VIB is defined as:

Lvib(ϕ) = Ez[− log pϕ2
(y|z)]

+ αEs̃ski
[DKL(qϕ1

(z|s̃ski), pr(z))]
(12)

where pr(z) is an estimate of the prior probability
qϕ1

(z), α range in [0, 1], ϕ is the neural network
parameters, and DKL is the Kullback-Leibler di-
vergence. We use a multi-layer perceptron with
one linear layer and softmax function to calculate
pϕ2

(y|z). Note that Equation 12 can be approxi-
mated by the Monte Carlo sampling method with
sample size M .

3.5. Optimization and Inference

We jointly optimize the diffusion module, ranking
network, and supervised VIB end-to-end. Specifi-
cally, the overall training objective loss can be rep-
resented as:

L = Ldif + Lvib + Lrank (13)

For inference, the Transformer encoder first ob-
tains the initial document embeddings hD, and then
the one-step Markov q(xD

0 |hD) is performed. To
construct the noise keyphrase embedding xkp

T , we
random sample m Gaussian noise embeddings
such that xkp

T ∼ N (0, I). Then the reverse pro-
cess is applied to remove the Gaussian noise
of xT = xD

0 ||xkp
T iteratively and get the output

keyphrase embeddings H̃kp = [h̃kp
1 , h̃kp

2 , ..., h̃kp
m].

After that, each original phrase representation ski
is concatenated to the flattened keyphrase embed-
dings H̃kp and input to the ranking network to obtain
the final score for each phrase.

4. Experiments

4.1. Datasets
In this paper, we use seven KPE benchmark
datasets in our experiments.

• OpenKP (Xiong et al., 2019) consists of
around 150K web documents from the Bing
search engine. We follow its official split of
training (134K), development (6.6K), and test-
ing (6.6K) sets. Each document in OpenKP
was labeled with 1-3 keyphrases by expert an-
notators.

• KP20K (Meng et al., 2017) consists of a large
amount of high-quality scientific metadata in
the computer science domain from various on-
line digital libraries (Meng et al., 2017). We
follow the original partition of training (528K),
development (20K), and testing (20K) set.

• SemEval-2010 (Kim et al., 2013) contains 244
scientific documents. The official split of 100
testing documents is used for testing in our
experiments.

• SemEval-2017 (Augenstein et al., 2017) con-
tains 400 scientific documents. The official
split of 100 testing documents isis used for
testing in our experiments.

• Nus (Nguyen and Kan, 2007) contains 211
scholarly documents. We treat all 211 docu-
ments as testing data.

• Inspec (Hulth, 2003) contains 2000 paper ab-
stracts. We use the original 500 testing papers
and their corresponding controlled (extractive)
keyphrases for testing.

• Krapivin (Krapivin et al., 2009) contains 2305
papers from scientific papers in ACM. We treat
all 2305 papers as testing data.

Dataset Avg.
Doc Len.

Avg.
KP Len.

Avg.
KP

% up to
5-gram

OpenKP 1212.3 2.0 2.2 99.2%
KP20k 169.3 1.9 3.5 99.8%

SemEval-2010 9664.2 2.0 9.5 99.8%
SemEval-2017 190.6 2.3 11.3 97.9%

Nus 8707.4 1.9 8.0 99.8%
Inspec 138.9 2.2 6.4 99.8%

Krapivin 9354.1 1.9 3.8 99.9%

Table 1: Statistics of benchmark datasets, includ-
ing the average length of the document, the aver-
age length of the keyphrase, the average number
of extractive keyphrases, and the percentage of
keyphrases with a maximum length of 5.

Note that in order to verify the robustness of our
model, we test the model trained with KP20K on

6041

the testing data of SemEval-2010, SemEval-2017,
Nus, Inspec, and Krapivin. For all datasets, only
the present keyphrases are used for training and
testing. The statistics of the training set of OpenKP
and KP20k are shown in Table 1.

4.2. Baselines
To keep consistent with previous work (Meng et al.,
2017; Xiong et al., 2019; Mu et al., 2020; Sun et al.,
2021), we compare our model with two categories
of KPE methods: Traditional KPE baselines and
Neural KPE baselines.

Traditional KPE baselines consist of two popu-
lar unsupervised KPE methods, statistical feature-
based method TF-IDF (Sparck Jones, 1972) and
graph-based method TextRank (Mihalcea and Ta-
rau, 2004), and two feature-based KPE systems
PROD (Xiong et al., 2019) and Maui (Medelyan
et al., 2009).

Neural KPE baselines consist of a sequence-to-
sequence generation-based model named Copy-
RNN (Meng et al., 2017). Previous state-of-the-art
method on OpenKP and KP20K, KIEMP (Song
et al., 2021) incorporating multiple perspectives es-
timation for phrase ranking. Another strong base-
line, JointKPE (Sun et al., 2021), including its two
variants ChunkKPE and RankKPE are reproduced
according to their open-source code1. HyperMatch
(Song et al., 2022), a new matching method for
extracting keyphrase in the hyperbolic space. Two
phrase-level classification-based models named
SKE-Base-Cls (Mu et al., 2020) and BLING-KPE
(Xiong et al., 2019). We also compare our model
with BERT-based span extraction and sequence
tagging methods, both of which come from the im-
plementation of (Sun et al., 2021). Note that since
both of KeyBart and KBIR (Kulkarni et al., 2022) are
pre-trained with a well-defined pretraining strategy
specifically on RoBERTa-large (Liu et al., 2019),
we do not compare our Diff-KPE with them for a
fair comparison.

In addition, we also add the results of two large
language models (LLMs) with zero-shot settings:
ChatGLM2-6b (Zeng et al., 2022) and ChatGPT2

(OpenAI, 2022). To restrict the output format of
ChatGPT, we design the following prompt template:

[Instruction]
Please extract 1 to 15 keyphrases

from the given document. Your ex-
tracted keyphrases should reason-
ably represent the topic of the docu-
ment and must appear in the original
text. You must give the keyphrases
by strictly following this format:

1https://github.com/thunlp/BERT-KPE
2GPT-3.5-turbo, version: gpt-3.5-turbo-0125

“[extracted keyphrases]", for ex-
ample: “[machine learning, neural
networks, NLP]"

[Document]
{document}
It should be noted that designing more complex

prompts may improve the performance of LLMs,
which is beyond the scope of this paper.

4.3. Evaluation Metrics

We use Recall (R), and F-measure (F1) of the top
K predicted keyphrases for evaluating the perfor-
mance of the KPE models. Following the prior
research (Meng et al., 2017; Xiong et al., 2019), we
utilize K = {1, 3, 5} on OpenKP and K = {5, 10}
on others. When determining the exact match
of keyphrases, we first lowercase the candidate
keyphrases and reference keyphrases, and then
we apply Porter Stemmer (Porter, 1980) to both of
them.

4.4. Implementation details

We truncate or zero-pad each document due to
the input length limitations (512 tokens). We use
the base version of BERT to generate initial word
embeddings. We also use the base version of
Sentence-BERT (Reimers and Gurevych, 2019)
to generate initial fixed phrase embeddings for the
diffusion module. The maximum length of k-gram
is set to N = 5 for all datasets. The maximum
diffusion time steps T is set to 100, α = 2.8e − 6.
The hidden size and number of layer in Transformer
encoder in the diffusion module are set to 8 and
6 respectively. The latent dimension of the VIB
model is set to 128. Sample size M = 5. We op-
timize Diff-KPE using AdamW with 5e-5 learning
rate, 0.1 warm-up proportion, and 32 batch size.
The training used 8 NVIDIA Tesla V100 GPUs and
took about 20 hours on 5 epochs. During training
Diff-KPE, we also set a simple early stop strategy
such that the model would stop training if the vali-
dation performance (F1@3 for OpenKP, F1@5 for
KP20K) does not improve after 5 times consecu-
tive evaluations (We evaluate the model every 200
optimization steps), and we select the model with
the best validation performance. We run our model
with 5 different random seeds and report their aver-
age score.

5. Results and Analysis

In this section, we present the evaluation results
of the proposed Diff-KPE on seven widely-used
benchmark datasets (OpenKP, KP20k, SemEval-
2010, SemEval-2017, Nus, Inspec, Krapivin).

6042

Model OpenKP KP20k AvergeF1@1 R@1 F1@3 R@3 F1@5 R@5 F1@5 F1@10
Traditional KPE

TF-IDF†(Sun et al., 2021) 19.6 15 22.3 28.4 19.6 34.7 10.8 13.4 20.4
TextRank† (Sun et al., 2021) 5.4 4.1 7.6 9.8 7.9 14.2 18.0 15.0 10.2

Maui† (Mu et al., 2020) - - - - - - 27.3 24.0 -
PROD† (Xiong et al., 2019) 24.5 18.8 23.6 29.9 18.8 33.1 - - -

Neural KPE
CopyRNN† (Meng et al., 2017) 21.7 17.4 23.7 33.1 21 41.3 32.7 27.8 27.3

BLING-KPE† (Xiong et al., 2019) 28.5 22.0 30.3 39.0 27.0 48.1 - - -
SKE-Base-Cls† (Mu et al., 2020) - - - - - - 39.2 33.0 -
BERT-Span∗ (Sun et al., 2021) 34.1 28.9 34.0 49.2 29.3 59.3 39.3 32.5 38.3

BERT-SeqTag∗ (Sun et al., 2021) 37.0 31.5 37.4 54.1 31.8 64.2 40.7 33.5 41.2
ChunkKPE∗ (Sun et al., 2021) 37.0 31.4 37.0 53.3 31.1 62.7 41.2 33.7 40.9
RankKPE∗ (Sun et al., 2021) 36.9 31.5 38.1 55.1 32.5 65.5 41.3 34.0 41.8
JointKPE∗ (Sun et al., 2021) 37.2 31.8 38.2 55.2 32.6 65.7 41.1 33.8 41.9
JointKPE† (Sun et al., 2021) 37.1 31.5 38.4 55.5 32.6 65.7 41.1 33.8 41.9
KIEMP† (Song et al., 2021) 36.9 29.8 39.2 51.7 34.0 61.5 42.1 34.5 41.2

HyperMatch† (Song et al., 2022) 36.4 29.5 39.0 51.5 33.7 61.2 41.6 34.3 40.9
LLM (zero shot)
ChatGLM2-6b† (Song et al., 2023) 16.0 - 11.0 - 8.6 - - - -

GPT-3.5-turbo∗ (OpenAI, 2022) 20.8 17.0 20.4 26.9 16.6 30.0 13.5 10.8 19.5
Diff-KPE 37.8 32.2 38.5 55.6 32.7 65.7 41.7 34.3 42.3

Table 2: Overall performance of extractive KPE models on OpenKP development set and KP20k testing
set. Bold indicates the best results, and underlined are the SOTA baselines. † indicates results are copied
from corresponding papers, and ∗ are from our reproduction. Note that HyperMatch and KIEMP use the
RoBERTa (Liu et al., 2019) as backbone, while others use BERT-base (Devlin et al., 2018).

Model SemEval-2010 SemEval-2017 Nus Inspec Krapivin AverageF1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10
TF-IDF 12.0 18.4 - - 13.9 18.1 22.3 30.4 11.3 14.3 -

TextRank 17.2 18.1 - - 19.5 19.0 22.9 27.5 17.2 14.7 -
JointKPE∗ 28.2 31.0 29.6 37.7 33.9 35.0 31.8 35.0 33.3 29.2 32.4

ChatGLM2-6b† 13.2 13.8 - - - - 25.1 30.1 - - -
GPT-3.5-turbo∗ 11.2 11.1 17.0 25.8 14.8 15.2 30.6 33.9 12.8 11.7 18.4

Diff-KPE 29.3 31.0 29.7 37.2 35.2 36.0 32.3 35.0 35.0 31.4 33.2

Table 3: Evaluation results on five small scientific testing sets. The results are evaluated using the models
trained on KP20k. Bold indicates the best results. ∗ results are obtained from our reproduction.

5.1. Overall Performance

Table 2 shows the evaluation results of Diff-KPE
and baselines. Based on the results, it is evi-
dent that the neural KPE methods outperform all
the traditional KPE algorithms. Among the tradi-
tional methods, the unsupervised methods TF-IDF
and TextRank show stable performance on both
OpenKP and KP20k datasets, while the feature-
based methods PROD and Maui outperform them
on OpenKP and KP20k respectively. This is not sur-
prising, as supervised methods benefit from large
annotated data during training.

For neural KPE methods, CopyRNN performs
the worst as it also focuses on generating abstrac-
tive keyphrases. HyperMatch, JointKPE and its
variant RankKPE show powerful performance, out-
performing other baselines such as the phrase
classification-based models BLING-KPE, SKE-

Base-Cls, BERT-Span, and the sequence tagging
method BERT-SeqTag. It is worth noting that BERT-
SeqTag and ChunkKPE exhibit competitive perfor-
mance compared to RankKPE, indicating their ro-
bustness and strong performance.

Overall, Diff-KPE outperforms all baselines ex-
cluding KIEMP on both OpenKP and KP20K
datasets. Compared to JointKPE, Diff-KPE shows
slight improvements in F1@3 and F1@5 but a dra-
matic improvement in F1@1. Compared to the
previous SOTA neural baseline method KIEMP,
KIEMP outperforms our Diff-KPE in most F1@k
scores on OpenKP and KP20k. However, Diff-KPE
still exhibits performance improvements in F1@1,
R@1, R@3, and R@5 on OpenKP. We hypothe-
size that the improvements in Recall benefit from
our diffusion module, which is able to inject gener-
ated keyphrase embeddings into phrase represen-
tations, thereby enhancing the recall performance.

6043

Setting F1@1 P@1 R@1 F1@3 P@3 R@3 F1@5 P@5 R@5
Diff-KPE 37.8 51.4 32.2 38.5 31.4 55.6 32.7 22.8 65.7
- w/o VIB 36.5 49.4 31.09 37.7 30.8 54.5 32.1 22.4 64.8

- w/o diffusion 36.6 49.7 31.2 37.9 31.0 54.8 32.3 22.5 65.0

Table 4: Evaluation metrics on the OpenKP development set by different settings. “w/o VIB” means
Diff-KPE without VIB module, “w/o diffusion” means Diff-KPE without diffusion module.

Moreover, to verify the robustness of Diff-KPE,
we also evaluate our model trained with the KP20k
dataset on five additional small scientific datasets,
as shown in Table 3 3. Diff-KPE demonstrates bet-
ter or competitive results on all datasets compared
to the best baseline JointKPE. We believe this phe-
nomenon arises from the benefit of the diffusion
module: during inference, the diffusion model can
generate candidate keyphrase embeddings, provid-
ing keyphrase information for the ranking network
to better rank each phrase.

5.2. Ablation Study
To understand the effect of each component on our
Diff-KPE model. We perform the ablation study on
the OpenKP development set as following settings:

• - w/o VIB: replace the VIB model with a single
feedforward layer for keyphrase classification.

• - w/o diffusion: the diffusion model is removed,
and only use the phrase representations ob-
tained from CNNs for ranking and classifying.

• Diff-KPE: the original full joint model.

As shown in Table 4, the absence of the diffusion
model or VIB model results in a dramatic drop
in performance across all metrics, particularly in
F1@1 (1.2 and 1.3 respectively). This performance
decline indicates the crucial role of both the diffu-
sion and VIB models in keyphrase ranking. The
strong performance of Diff-KPE can be attributed to
two main advantages. Firstly, the diffusion module
directly incorporates the semantic information of
keyphrases into the final phrase representations.
Secondly, the supervised VIB module introduces
an external classification loss during training, which
indirectly enhances the diffusion module or CNNs
to generate more informative n-gram embeddings.
Therefore, it is evident that the addition of the diffu-
sion module and supervised VIB greatly contributes
to the overall performance improvement.

6. Case Study

To further demonstrate the effectiveness of the dif-
fusion module in Diff-KPE, we provide examples of

3We cannot evaluate KIEMP due to lack of open
source code and models (Song et al., 2021).

the extracted keyphrases from our different mod-
els (Diff-KPE and Diff-KPE without diffusion mod-
ule). Two typical cases from the development set
of OpenKP are shown in Table 5.

In case (1), both Diff-KPE and Diff-KPE without
diffusion successfully extract the desired reference
keyphrases “adventure time" and “ryan north" within
their top 5 ranked prediction phrases. However, Diff-
KPE ranks the phrase “ryan north" higher, resulting
in a higher F1@3 score in this case. This illus-
trates that adding the diffusion module helps the
desired keyphrase representation obtain a higher
rank score.

Similarly, in case (2), Diff-KPE ranks the desired
keyphrases “codesnip" and “oracle script" higher
compared to the model without diffusion. As a re-
sult, Diff-KPE successfully extracts all the reference
keyphrases in case (2). The main reason for these
results may be that the keyphrase embeddings gen-
erated by the diffusion module are directly injected
into each phrase representation, enabling the rank-
ing network to better rank each phrase by utilizing
the keyphrase information.

−100 −75 −50 −25 0 25 50 75 100
−100

−50

0

50

100
phrase
oracle-KP
generation

Figure 2: T-SNE visualization of phrase embed-
dings from OpenKP dataset.

We also analyze the generated keyphrase em-
beddings quality. We apply T-SNE (Van der Maaten
and Hinton, 2008) to reduce all the phrase repre-
sentation’s dimensions to 2 in Figure 2. We can
find that the oracle keyphrases (green dots) and
generated keyphrases (blue dots) are clustered
together and far away from most non-keyphrase

6044

(1) Partial Document:
... in Comics RealWorld Objects Non canon Adventure Time comic English Share Adventure Time is a comic
book series published by BOOM Studios written by Dinosaur Comics creator Ryan North, and illustrated by
Shelli Paroline and Braden Lamb. The comic book is released monthly beginning with issue 1 in February 2012
... (URL: http:adventuretime.wikia.comwikiAdventure_Time_(comic))
Reference Keyphrases:
adventure time; ryan north
Without diffusion module:
adventure time; boom studios; comic book series; dinosaur comics; ryan north
Diff-KPE:
adventure time; comic book series; ryan north; comic book; dinosaur comics
(2) Partial Document:
CodeSnip: How to Run Any Oracle Script File Through Shell Script in UNIX ... by Deepankar Sarangi ... Listing
1 ... The first line is a comment line which is UNIX kernel specific. In the following approach the available shell is
KORN shell ...
(URL: http://aspalliance.com/1589_CodeSnip_How_to_Run_Any_Oracle_Script_File_Through_Shell_Script_in_
UNIX.4) Reference Keyphrases:
codesnip; oracle script
Without diffusion module:
shell script; oracle script file through; oracle script file; shell scripts; codesnip
Diff-KPE:
unix; shell script; codesnip; oracle script file through; oracle script

Table 5: Example of keyphrase extraction results on two selected OpenKP development examples. The
phrase in red is the desired reference keyphrase.

embeddings (red dots). This finding demonstrates
that our diffusion model is powerful in recovering
keyphrase embeddings.

7. Conclusion

In this paper, we propose Diff-KPE, a novel joint
keyphrase extraction (KPE) model composed of
three essential modules: the diffusion module, the
ranking network, and a supervised VIB module.
Each component plays a crucial role in learning
expressive phrase representations. The diffusion
module is responsible for generating keyphrase
embeddings, effectively infusing keyphrase seman-
tic information into the final phrase representation.
Simultaneously, the supervised VIB introduces a
classification loss for each phrase, encouraging
the model to generate more informative represen-
tations and ultimately improving the ranking perfor-
mance.Experimental results on seven keyphrase
extraction benchmark datasets demonstrate the
effectiveness and superiority of Diff-KPE.

However, since our model requires many steps
of forward noise injection and backward denoising,
our Diff-KPE is about 2x slower than the previous
SOTA model JointKPE during inference. Moreover,
our model also lacks the ability to generate abstrac-
tive keyphrases. In future work, we plan to improve
the computation efficiency and explore the appli-
cation of Diff-KPE in abstractive keyphrase gen-
eration, leveraging its powerful architecture and
flexibility for generating concise and informative
keyphrases.

8. Ethics Statement

We take ethical considerations seriously and strictly
adhere to the Ethics Policy. This paper focuses on
the attempt to the application of diffusion model for
keyphrase extraction. Both the datasets and base
models used in this paper are publicly available
and have been widely adopted by researchers. We
ensure that the findings and conclusions of this
paper are reported accurately and objectively.

Rabah Alzaidy, Cornelia Caragea, and C Lee
Giles. 2019. Bi-lstm-crf sequence labeling for
keyphrase extraction from scholarly documents.
In The world wide web conference, pages 2551–
2557.

Isabelle Augenstein, Mrinal Das, Sebastian Riedel,
Lakshmi Vikraman, and Andrew McCallum. 2017.
Semeval 2017 task 10: Scienceie-extracting
keyphrases and relations from scientific publi-
cations. arXiv preprint arXiv:1704.02853.

Florian Boudin. 2018. Unsupervised keyphrase
extraction with multipartite graphs. arXiv preprint
arXiv:1803.08721.

Ricardo Campos, Vítor Mangaravite, Arian
Pasquali, Alípio Mário Jorge, Célia Nunes,
and Adam Jatowt. 2018. A text feature based
automatic keyword extraction method for sin-
gle documents. In European conference on
information retrieval, pages 684–691. Springer.

6045

Jun Chen, Xiaoming Zhang, Yu Wu, Zhao Yan, and
Zhoujun Li. 2018. Keyphrase generation with
correlation constraints. In Proceedings of the
2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 4057–4066.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

Haoran Ding and Xiao Luo. 2021. Attentionrank:
Unsupervised keyphrase extraction using self
and cross attentions. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1919–1928.

Samhaa R El-Beltagy and Ahmed Rafea. 2009.
Kp-miner: A keyphrase extraction system for en-
glish and arabic documents. Information systems,
34(1):132–144.

Corina Florescu and Cornelia Caragea. 2017a. A
new scheme for scoring phrases in unsupervised
keyphrase extraction. In Advances in Informa-
tion Retrieval: 39th European Conference on IR
Research, ECIR 2017, Aberdeen, UK, April 8-13,
2017, Proceedings 39, pages 477–483. Springer.

Corina Florescu and Cornelia Caragea. 2017b.
Positionrank: An unsupervised approach to
keyphrase extraction from scholarly documents.
In Proceedings of the 55th annual meeting of the
association for computational linguistics (volume
1: long papers), pages 1105–1115.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong
Wu, and LingPeng Kong. 2022. Diffuseq: Se-
quence to sequence text generation with diffu-
sion models. arXiv preprint arXiv:2210.08933.

Jonathan Ho, William Chan, Chitwan Saharia,
Jay Whang, Ruiqi Gao, Alexey Gritsenko,
Diederik P Kingma, Ben Poole, Mohammad
Norouzi, David J Fleet, et al. 2022. Imagen video:
High definition video generation with diffusion
models. arXiv preprint arXiv:2210.02303.

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian
Yin. 2018a. Neural math word problem solver
with reinforcement learning. In Proceedings of
the 27th International Conference on Compu-
tational Linguistics, pages 213–223, Santa Fe,
New Mexico, USA. Association for Computa-
tional Linguistics.

Danqing Huang, Shuming Shi, Chin-Yew Lin, and
Jian Yin. 2017. Learning fine-grained expres-
sions to solve math word problems. In Pro-
ceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages

805–814, Copenhagen, Denmark. Association
for Computational Linguistics.

Danqing Huang, Jin-Ge Yao, Chin-Yew Lin, Qingyu
Zhou, and Jian Yin. 2018b. Using intermedi-
ate representations to solve math word prob-
lems. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 419–428, Mel-
bourne, Australia. Association for Computational
Linguistics.

Anette Hulth. 2003. Improved automatic keyword
extraction given more linguistic knowledge. In
Proceedings of the 2003 conference on Empirical
methods in natural language processing, pages
216–223.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2013. Automatic keyphrase
extraction from scientific articles. Language re-
sources and evaluation, 47:723–742.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao,
and Bryan Catanzaro. 2020. Diffwave: A ver-
satile diffusion model for audio synthesis. arXiv
preprint arXiv:2009.09761.

Mikalai Krapivin, Aliaksandr Autaeu, and Maurizio
Marchese. 2009. Large dataset for keyphrases
extraction.

Mayank Kulkarni, Debanjan Mahata, Ravneet
Arora, and Rajarshi Bhowmik. 2022. Learning
rich representation of keyphrases from text. In
Findings of the Association for Computational
Linguistics: NAACL 2022, pages 891–906.

Da-Wei Li, Danqing Huang, Tingting Ma, and Chin-
Yew Lin. 2021. Towards topic-aware slide gen-
eration for academic papers with unsupervised
mutual learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35,
pages 13243–13251.

Haoran Li, Junnan Zhu, Jiajun Zhang, Chengqing
Zong, and Xiaodong He. 2020. Keywords-guided
abstractive sentence summarization. In Proceed-
ings of the AAAI conference on artificial intelli-
gence, volume 34, pages 8196–8203.

Xiang Li, John Thickstun, Ishaan Gulrajani,
Percy S Liang, and Tatsunori B Hashimoto. 2022.
Diffusion-lm improves controllable text genera-
tion. Advances in Neural Information Processing
Systems, 35:4328–4343.

https://aclanthology.org/C18-1018
https://aclanthology.org/C18-1018
https://doi.org/10.18653/v1/D17-1084
https://doi.org/10.18653/v1/D17-1084
https://doi.org/10.18653/v1/P18-1039
https://doi.org/10.18653/v1/P18-1039
https://doi.org/10.18653/v1/P18-1039

6046

Xiang Lisa Li and Jason Eisner. 2019. Specializing
word embeddings (for parsing) by information
bottleneck. arXiv preprint arXiv:1910.00163.

Xinnian Liang, Shuangzhi Wu, Mu Li, and Zhoujun
Li. 2021. Unsupervised keyphrase extraction by
jointly modeling local and global context. arXiv
preprint arXiv:2109.07293.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692.

Yi Luan, Mari Ostendorf, and Hannaneh Hajishirzi.
2017. Scientific information extraction with semi-
supervised neural tagging. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2641–2651.

Debanjan Mahata, John Kuriakose, Rajiv Shah,
and Roger Zimmermann. 2018. Key2vec: Auto-
matic ranked keyphrase extraction from scientific
articles using phrase embeddings. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 634–639.

Roberto Martínez-Cruz, Alvaro J López-López, and
José Portela. 2023. Chatgpt vs state-of-the-art
models: A benchmarking study in keyphrase gen-
eration task. arXiv preprint arXiv:2304.14177.

Olena Medelyan, Eibe Frank, and Ian H Witten.
2009. Human-competitive tagging using auto-
matic keyphrase extraction. Association for Com-
putational Linguistics.

Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing
He, Peter Brusilovsky, and Yu Chi. 2017.
Deep keyphrase generation. arXiv preprint
arXiv:1704.06879.

Rada Mihalcea and Paul Tarau. 2004. Textrank:
Bringing order into text. In Proceedings of the
2004 conference on empirical methods in natural
language processing, pages 404–411.

Funan Mu, Zhenting Yu, LiFeng Wang, Yequan
Wang, Qingyu Yin, Yibo Sun, Liqun Liu, Teng
Ma, Jing Tang, and Xing Zhou. 2020. Keyphrase
extraction with span-based feature representa-
tions. arXiv preprint arXiv:2002.05407.

Nhung TH Nguyen, Makoto Miwa, and Sophia Ana-
niadou. 2023. Span-based named entity recogni-
tion by generating and compressing information.
arXiv preprint arXiv:2302.05392.

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase extraction in scientific publications. In
International conference on Asian digital libraries,
pages 317–326. Springer.

OpenAI. 2022. ChatGPT.

Aitor Ormazabal, Mikel Artetxe, Aitor Soroa, Gorka
Labaka, and Eneko Agirre. 2022. Principled para-
phrase generation with parallel corpora. arXiv
preprint arXiv:2205.12213.

Martin F Porter. 1980. An algorithm for suffix strip-
ping. Program, 14(3):130–137.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Robin Rombach, Andreas Blattmann, Dominik
Lorenz, Patrick Esser, and Björn Ommer. 2022.
High-resolution image synthesis with latent dif-
fusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recog-
nition, pages 10684–10695.

Dhruva Sahrawat, Debanjan Mahata, Haimin
Zhang, Mayank Kulkarni, Agniv Sharma, Rakesh
Gosangi, Amanda Stent, Yaman Kumar, Ra-
jiv Ratn Shah, and Roger Zimmermann. 2020.
Keyphrase extraction as sequence labeling using
contextualized embeddings. In Advances in In-
formation Retrieval: 42nd European Conference
on IR Research, ECIR 2020, Lisbon, Portugal,
April 14–17, 2020, Proceedings, Part II 42, pages
328–335. Springer.

Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. 2015. Deep
unsupervised learning using nonequilibrium ther-
modynamics. In International conference on ma-
chine learning, pages 2256–2265. PMLR.

Mingyang Song, Yi Feng, and Liping Jing. 2022. Hy-
perbolic relevance matching for neural keyphrase
extraction. In Proceedings of the 2022 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 5710–5720.

Mingyang Song, Xuelian Geng, Songfang Yao, Shi-
long Lu, Yi Feng, and Liping Jing. 2023. Large
language models as zero-shot keyphrase extrac-
tor: A preliminary empirical study. arXiv preprint
arXiv:2312.15156.

Mingyang Song, Liping Jing, and Lin Xiao. 2021.
Importance estimation from multiple perspec-
tives for keyphrase extraction. arXiv preprint
arXiv:2110.09749.

https://openai.com/chatgpt

6047

Karen Sparck Jones. 1972. A statistical interpre-
tation of term specificity and its application in
retrieval. Journal of documentation, 28(1):11–
21.

Si Sun, Zhenghao Liu, Chenyan Xiong, Zhiyuan
Liu, and Jie Bao. 2021. Capturing global informa-
tiveness in open domain keyphrase extraction.
In Natural Language Processing and Chinese
Computing: 10th CCF International Conference,
NLPCC 2021, Qingdao, China, October 13–17,
2021, Proceedings, Part II 10, pages 275–287.
Springer.

Yi Sun, Hangping Qiu, Yu Zheng, Zhongwei Wang,
and Chaoran Zhang. 2020. Sifrank: a new base-
line for unsupervised keyphrase extraction based
on pre-trained language model. IEEE Access,
8:10896–10906.

Naftali Tishby, Fernando C Pereira, and William
Bialek. 2000. The information bottleneck method.
arXiv preprint physics/0004057.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Slava Voloshynovskiy, Mouad Kondah, Shideh
Rezaeifar, Olga Taran, Taras Holotyak, and
Danilo Jimenez Rezende. 2019. Information
bottleneck through variational glasses. arXiv
preprint arXiv:1912.00830.

Xiao Wang, Shihan Dou, Limao Xiong, Yicheng
Zou, Qi Zhang, Tao Gui, Liang Qiao, Zhanzhan
Cheng, and Xuanjing Huang. 2022. Miner: Im-
proving out-of-vocabulary named entity recog-
nition from an information theoretic perspective.
arXiv preprint arXiv:2204.04391.

Yansen Wang, Zhen Fan, and Carolyn Rose. 2020.
Incorporating multimodal information in open-
domain web keyphrase extraction. In Proceed-
ings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 1790–1800.

Peter West, Ari Holtzman, Jan Buys, and Yejin
Choi. 2019. Bottlesum: Unsupervised and self-
supervised sentence summarization using the
information bottleneck principle. arXiv preprint
arXiv:1909.07405.

Lee Xiong, Chuan Hu, Chenyan Xiong, Daniel Cam-
pos, and Arnold Overwijk. 2019. Open domain
web keyphrase extraction beyond language mod-
eling. arXiv preprint arXiv:1911.02671.

Ling Yang, Zhilong Zhang, Yang Song, Shenda
Hong, Runsheng Xu, Yue Zhao, Yingxia Shao,
Wentao Zhang, Bin Cui, and Ming-Hsuan Yang.

2022. Diffusion models: A comprehensive sur-
vey of methods and applications. arXiv preprint
arXiv:2209.00796.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei
Huang, and Songfang Huang. 2022. Seqdiffuseq:
Text diffusion with encoder-decoder transformers.
arXiv preprint arXiv:2212.10325.

Xingdi Yuan, Tong Wang, Rui Meng, Khushboo
Thaker, Peter Brusilovsky, Daqing He, and Adam
Trischler. 2018. One size does not fit all:
Generating and evaluating variable number of
keyphrases. arXiv preprint arXiv:1810.05241.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b:
An open bilingual pre-trained model. arXiv
preprint arXiv:2210.02414.

Cenyuan Zhang, Xiang Zhou, Yixin Wan, Xiaoqing
Zheng, Kai-Wei Chang, and Cho-Jui Hsieh. 2022.
Improving the adversarial robustness of nlp mod-
els by information bottleneck. arXiv preprint
arXiv:2206.05511.

Haopeng Zhang, Xiao Liu, and Jiawei Zhang.
2023. Diffusum: Generation enhanced extrac-
tive summarization with diffusion. arXiv preprint
arXiv:2305.01735.

Linhan Zhang, Qian Chen, Wen Wang, Chong
Deng, Shiliang Zhang, Bing Li, Wei Wang,
and Xin Cao. 2021. Mderank: A masked
document embedding rank approach for unsu-
pervised keyphrase extraction. arXiv preprint
arXiv:2110.06651.

Qi Zhang, Yang Wang, Yeyun Gong, and Xuan-
Jing Huang. 2016. Keyphrase extraction using
deep recurrent neural networks on twitter. In
Proceedings of the 2016 conference on empirical
methods in natural language processing, pages
836–845.

Qingyu Zhou and Danqing Huang. 2019. Towards
generating math word problems from equations
and topics. In Proceedings of the 12th Interna-
tional Conference on Natural Language Genera-
tion, pages 494–503, Tokyo, Japan. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/W19-8661
https://doi.org/10.18653/v1/W19-8661
https://doi.org/10.18653/v1/W19-8661

	Introduction
	Related Work
	Keyphrase Extraction
	Diffusion Models for Text
	Variational Information Bottleneck in NLP

	Methodology
	Phrase Representation
	Keyphrase Embeddings Generation
	Input Encoding
	Diffusion Generation Process

	Keyphrase Ranking
	Keyphrase Classification
	Optimization and Inference

	Experiments
	Datasets
	Baselines
	Evaluation Metrics
	Implementation details

	Results and Analysis
	Overall Performance
	Ablation Study

	Case Study
	Conclusion
	Ethics Statement

