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Abstract
Chain of thought (CoT) has proven useful for problems requiring complex reasoning. Many of these problems are
both textual and multimodal. Given the inputs in different modalities, a model generates a rationale and then uses it to
answer a question. Because of the hallucination issue, the generated soft negative rationales with high textual quality
but illogical semantics do not always help improve answer accuracy. This study proposes a rationale generation
method using soft negative sampling (SNSE-CoT) to mitigate hallucinations in multimodal CoT. Five methods were
applied to generate soft negative samples that shared highly similar text but had different semantics from the original.
Bidirectional margin loss (BML) was applied to introduce them into the traditional contrastive learning framework that
involves only positive and negative samples. Extensive experiments on the ScienceQA dataset demonstrated the
effectiveness of the proposed method. Code and data are released at https://github.com/zgMin/SNSE-CoT.

Keywords: Multimodal chain of thought, Soft negative sampling, Bidirectional margin loss.

1. Introduction

Artificial intelligent systems have long been aimed
at behaving dependably and learning complicated
tasks quickly. As humans, we can use an explicit
chain-of-thought (CoT) reasoning process, which
is often articulated as an explanation, to make de-
pendable decisions (Wei et al., 2022). Neverthe-
less, for a specific task, machine learning models
are often trained using a large number of input–
output samples. These black-box approaches only
produce a final decision without consistently dis-
closing the underlying reasoning. CoT methods
have recently been demonstrated to be extremely
useful for large-scale language models (LLMs)
in handling tasks that require complex reasoning.
Most previous studies have focused only on lan-
guage modalities, whereas inference may exist in
multiple modalities, such as visual question answer-
ing (VQA). Given the inputs in different modalities,
an intelligent system is required to infer answers
using multi-hop intermediate reasoning.

Consider the ideas that an individual may have
in response to the inquiry shown in Figure 1. An
individual can start by remembering the information
about the definition of a magnetic force learned
from textbooks as a lecture: ". . . Whether a magnet
attracts or repels other magnets depends on the
positions of its poles, or ends . . . If different poles
are closest to each other, the magnets attract . . .
If the same poles are closest to each other, the
magnets repel . . . ". Then, a chain of reasoning
can be formed as an explanation: "The north pole
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of one magnet is closest to the south pole of the
other magnet. → Poles that are different attract.
→ These magnets will attract each other.". This
finally leads to the correct answer: "These magnets
attract each other.".

Early exploration of multimodal CoT involved
transforming the inputs of different modalities into
one modality and prompting LLMs to answer. One
viable solution is to extract the caption of an im-
age and concatenate it using the original language
modality as input (Lu et al., 2022, 2023). How-
ever, a simplified caption cannot encompass all
the details expressed by the image, leading to in-
formation loss in the reasoning process. Using
only these captions may result in a lack of mutual
synergy in the latent space of the multimodality.
An alternative solution to facilitate the interaction
between modalities is to fine-tune small models
with cross-attentions to align multimodal features.
Nevertheless, previous studies have shown that
models trained with fewer than 100 billion parame-
ters tend to produce illogical CoTs with hallucinated
rationales (Ho et al., 2022; Magister et al., 2022).
The challenge lies in the fact that the language
model (LM) does not see images during pretraining
and thus has no information about visual elements
or methods to exploit vision features.

Recent studies have suggested incorporating
both language and vision modalities into a two-
stage framework, that is, rational generation and
answer inference (Zhang et al., 2023b). Instead of
prompting the LM with an image caption, the vision
features are extracted using a vision encoder and
fed to a decoder along with the encoded language

https://github.com/zgMin/SNSE-CoT
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Figure 1: The latent distribution of the samples. R+ represents positive samples, R# represents soft
negative samples, and R- represents negative samples.

representation.
Although vision features are beneficial for better

rationale generation, many reported errors stem
from hallucinations (Zhang et al., 2023b). Consid-
ering the same example in Figure 1, an appropriate
rationale is, The north pole of one magnet is closest
to the south of the other magnet. However, simply
modifying one word can make the rationale unrea-
sonable, that is, The south pole of one magnet is
closest to the south of the other magnet. For the de-
coder of generation, this inappropriate rationale can
achieve an extremely low negative log-likelihood
but will finally mislead the answer inference.

One viable solution to mitigate the hallucinated
generation is to treat these inappropriate rationales
as negative samples for contrastive learning. Neg-
ative samples are difficult to exclude if textual fea-
tures are used to measure the distribution of the
latent space. Several recent studies have defined
these rationales as soft negative samples. Here,
negative denotes that the samples differ semanti-
cally from the originals, whereas soft denotes that
the samples share many textual similarities with the
originals and cannot be simply regarded as pure
negative samples.

This study proposes a rationale generation
method using soft negative sampling (SNSE-CoT)
to mitigate hallucinations in multimodal CoT. Con-
trastive learning was introduced to enhance ratio-
nale generation, and five methods were applied to

generate soft negative samples that shared highly
similar text but had different semantics from the orig-
inal. Bidirectional margin loss (BML) was applied
to introduce them into the traditional contrastive
learning framework that involves only positive and
negative samples.

Extensive experiments were conducted on the
ScienceQA dataset (Lu et al., 2022) to validate the
effectiveness of the SNSE-CoT. The results showed
that the proposed model outperformed models of
previous studies in most categories for multimodal
CoT.

The remainder of this paper is organized as fol-
lows. Section 2 reviews the preliminary knowledge.
Section 3 describes the proposed SNSE-CoT in
detail. Section 4 summarizes the experimental set-
tings and empirical results. Section 5 briefly re-
views the related works. Conclusions are drawn in
Section 6.

2. Preliminary

A multimodal CoT applies two-stage training, in-
cluding rationale generation and answer inference.
Figure 2 shows the overall architecture of the two-
stage model. An input X consists of an image input
Xv and a language input Xl, where Q denotes the
question text and C denotes the context text. The
goal is to select correct answer A from multiple op-
tions M . To implement a multimodal CoT, the first
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Figure 2: The overall architecture of the two-stage
model.

stage is rationale generation, in which the model is
required to generate a rationale.

R = f(X) (1)

For answer inference, rationale R is appended
to original language input X̄l as a new input, that
is, X̂l = X̄l ◦R, where ◦ is a concatenate operator.
Then, updated input X ′ = {X̂l, Xv} is fed into the
model to infer the final answer.

A = g(X ′) (2)

In both stages, two independent transformer-
based models f and g with the same architecture
are trained. The aliases of both the stages can be
represented as X → R and X ′ → A, respectively.
Encoding. For both stages, the vision and lan-
guage inputs are Xv and Xl ∈ {X̄l, X̂l}, respec-
tively, where X̄l is used for rationale generation,
and X̂l is used for answer inference. The T5 en-
coder (Carion et al., 2020) is used to encode lan-
guage input X̂l, and the DETR (Raffel et al., 2020)
vectorizes vision input Xv into vision features.

Hl = T5-Encoder(Xl) (3)
Hv = Wh · DETR(Xv) (4)

where Hl ∈ Rn×d is the hidden representation of
the last layer of the T5 encoder, n denotes the
length of the language input, and d denotes the
dimensionality. Hv ∈ Rm×d is a vision feature,
where m denotes the number of image patches,
and Wh ∈ Rd×dv is a linear projection used to trans-
form the dimensionality from dv to d.
Interaction. To integrate both vision and language
representations, cross-attention with single-head
self-attention is used to align text tokens with image
tokens.

Ĥv = softmax
[
(WQHl) · (WKHv)

⊤
√
d

]
(WV Hv)

(5)

where WQ, WK , and WV denote weight matrices
for self-attention. Subsequently, a gated fusion
mechanism is applied to integrate both features
that is denoted as follows:

σ = sigmoid(WlHl +WvĤv) (6)
HEnc = (1− σ) ·Hl + σ · Ĥv (7)

where Wl and Wv denote trainable matrices.
Decoding. The model predicts the probability of
generating a target Y ∈ {R,A} with length N . The
models are trained by minimizing the negative like-
lihood loss.

LNLL = −
N∑
i=1

log pθ(Yi|Xl, Xv, Y<i) (8)

where θ denotes all trainable parameters of either
f or g.

3. Mitigating Hallucinated Generation

Both the quality and semantic correctness of ra-
tionale generation ultimately affect the choice of
answer inference. This study proposes enhancing
the ability to discriminate soft negative samples by
introducing a bidirectional margin loss.

3.1. Soft Negative Sampling
A high-quality soft negative sample is indistinguish-
able from the target sample and has different se-
mantics for key information. Typically, high-quality
soft negative samples are difficult to generate but
can be obtained by modifying the target sample
and observing the following three principles.

• Principal 1: Soft negative samples have dif-
ferent semantics from the target sample for key
information. As shown in Figure 3(a), if this
cannot be guaranteed, then the introduction
of soft negative samples may move the gener-
ated samples away from the positive samples.

• Principal 2: The modification of the target
sample should be few. Soft negative samples
have high text similarity and a highly similar dis-
tribution with the target sample. The fewer the
modifications to the target sample, the higher
the text similarity and the higher the difficulty to
distinguish the soft negative samples from the
target sample. The number of modifications
can be moderately increased according to the
increase in the length of the target sample. As
shown in Figure 3(b), if excessive modifica-
tions are introduced, the soft negative sam-
ples are far from the distribution of the positive
samples, resulting in a negligible impact.

• Principal 3: The generation of soft negative
samples should be multiple and random. Multi-
ple soft negative samples should be distributed
as evenly as possible around the positive sam-
ple region in the latent space. As shown in
Figure 3(c), when the soft negative samples
are on the same side as the target sample, they
may push the generated samples away from
the positive sample region instead of toward
the target sample.
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(a) Principal 1 (b) Principal 2 (c) Principal 3

Figure 3: Possible situations arising from non-observance of the modification principle. R is the generated
rationale.

The proposed soft negative sampling is specified
using five methods as follows:

• Affirmation-Negation Transformation. Ap-
ply explicit negation with negative words, and
based on the parsing information of SpaCy1,
convert the sentences into syntactically correct
and semantically clear negations.

• Number Transformation. Randomly select
some numbers in the sentence and replace
them with random numbers of equal length.
When the length is greater than 1, ensure that
the first number is not 0.

• Orientation Transformation. Randomly se-
lect some orientation words in the sentence
and replace them with the opposite direction.

• Unit Transformation. Randomly select some
unit words in the sentence and replace them
with other units of the same category at ran-
dom.

• Option Transformation. Randomly select
some strings that contain the correct option
in the sentence and replace them with other
options.

Specifically, if other transformations fail to be im-
plemented, we use an affirmation-negation trans-
formation.

The modification of key information varies de-
pending on the form of the sample. For multimodal
reasoning, the explanation is modified first and then
the lecture. The explanation provides reasoning
ideas for a specific problem, which is considered to
contain more important information, whereas the
lecture typically provides methodological guidance,
examples, and background knowledge for solving
the problem. The rationale is a concatenation of
lectures and explanations. If the rationale is devoid
of any content , we use Not as a rationale.

1https://github.com/explosion/spaCy.

3.2. Bidirectional Margin Loss
The generated positive and soft negative samples
of the target rationale are further extracted using
the following steps:

ER = emb(R) (9)
h = mean(WRER + bR) (10)

where emb(·) represents the embedding layer of
the encoder in the rationale generation, and WR

and bR represent the trainable matrix and bias, re-
spectively.

Cosine similarity difference ∆ between positive
and soft negative pairs is calculated as follows:

∆ = cos(hi, h
#
ij)− cos(hi, h

+
i ) (11)

where cos(·) is the cosine similarity, hi is the repre-
sentation of the generated sample, h+

i denotes the
corresponding positive sample, and h#

ij denotes
the corresponding j-th soft negative sample. BML
is used to model semantic similarity differences.

LBML =
1

k

k∑
j=1

(ReLU(∆+α) + ReLU(−∆−β))

(12)

where k denotes the number of soft negative sam-
ples corresponding to each target sample, and α
and β denote the bottom and upper differences in
semantic similarity difference between the positive
and soft negative pairs, respectively. The BML aims
to constrain ∆ within an interval of ∆ ∈ [−β,−α].

3.3. Training Objective
The training objectives for rationale generation and
answer inference are respectively expressed as

https://github.com/explosion/spaCy.
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follows:

LRG = LNLL + λLBML (13)
LAI = LNLL (14)

where λ is used to balance the two losses.

4. Experiments

4.1. Dataset
Empirical experiments were conducted using the
ScienceQA benchmark (Lu et al., 2022), which is
the first multimodal question answering dataset
with a detailed CoT. Science QA features 26 top-
ics, 127 categories, and 379 skills, covering a wide
range of domains. The benchmark dataset was di-
vided into training, validation, and test splits using
12,726, 4,241, and 4,241 examples, respectively.
Eight question categories included were natural
science, social science, language science, textual
context, pictorial context, no context, grades 1–6,
and grades 7–12. For the rationale generation
stage, the optimal model was selected based on
the ROUGE-L score. The predicted results were
evaluated based on accuracy.

4.2. Implementation Details
UnifiedQA (Khashabi et al., 2020) was used to
initialize the T5 model in two stages because it
achieved the best fine-tuning results in the exper-
iments by Lu et al. (2022). The model was fine-
tuned for up to 20 epochs at a learning rate of 5e-5.
The maximum input sequence lengths were 512
and 64 in the rationale generation and answer in-
ference stages, respectively. For the soft negative
samples, one sample was generated for each gen-
eration method in each round, and each sample
was modified randomly in only one place. α, β and
λ were set to 0.1, 0.3 and 0.1, respectively. These
three parameters are further explored in Section
4.5. The random seed number was set to 42 to
ensure reproducibility.

4.3. Baselines
For comparison, three categories of baseline mod-
els were selected as follows:

• MCAN (Yu et al., 2019), Top-Down (Anderson
et al., 2018), BAN (Kim et al., 2018), DFAF
(Gao et al., 2019), ViLT (Kim et al., 2021),
Patch-TRM (Lu et al., 2021), and VisualBERT
(Li et al., 2020).

• UnifiedQABase w/CoT (Lu et al., 2022),
Multimodal-CoTBase, and Multimodal-CoTLarge

(Zhang et al., 2023b).
• GPT-3.5 w/CoT (Lu et al., 2022), LLaMA-

Adapter (Zhang et al., 2023a), LLaVa, LLaVa

Figure 4: Hyperparameters fine-tuning.

(GPT-4) (Liu et al., 2023), and Chameleon
(GPT-4) (Lu et al., 2023).

More details are presented in Appendix A.

4.4. Comparative Results
Table 1 summarizes the experimental results of
the proposed method relative to those of the base-
lines. SNSE-CoTBase performed similarly to hu-
mans. SNSE-CoTLarge outperformed all the pre-
vious methods to achieve the current best perfor-
mance. Compared with Multimodal-CoT, the aver-
age performance of SNSE-CoT increased by ap-
proximately 2.5 to 3%. Moreover, SNSE-CoTLarge

was worse than LLaVa (GPT-4) only for social sci-
ence problems (SOC) for all types of problems,
indicating that the soft negative sample generation
method designed in this study improved the cor-
rectness of the model for generating various types
of CoTs. In particular, SNSE-CoTLarge achieved
substantial improvement in problems with paired
images (IMG), becoming the first method to exceed
90% performance on this type of problem. This
indicated that the contrastive learning approach
strengthened the model’s ability to accurately un-
derstand images of specific problems.

4.5. Hyperparameter Fine-Tuning
To explore the effect of hyperparameters λ in Eq.
(13) and α and β in Eq. (12), a grid strategy was
used. For balanced parameter λ, candidate set
{0, 0.01, 0.1, 1} was used; for bottom difference
α of the cosine similarity difference, the candidate
set {0, 0.1, 0.2, 0.3} was used; and for upper differ-
ence β of the cosine similarity difference, candidate
set {0.1, 0.3, 0.5, 2} was used. β = 2 is a special
value indicating that the upper difference is ignored
because the range of the cosine similarity is -1.0
to 1.0. The results of the parametric analysis are
shown in Figure 4.

Balance parameter λ affects the strength of the
soft negative sample rejection. If λ is extremely
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Model Size NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg
Human - 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40
MCAN 95M 56.08 46.23 58.09 59.43 51.17 55.40 51.65 59.72 54.54

Top-Down 70M 59.50 54.33 61.82 62.90 54.88 59.79 57.27 62.16 59.02
BAN 112M 60.88 46.57 66.64 62.61 52.60 65.51 56.83 63.94 59.37
DFAF 74M 64.03 48.82 63.55 65.88 54.49 64.11 57.12 67.17 60.72
ViLT 113M 60.48 63.89 60.27 63.20 61.38 57.00 60.72 61.90 61.14

Patch-TRM 90M 65.19 46.79 65.55 66.96 55.28 64.95 58.04 67.50 61.42
VisualBERT 111M 59.33 69.18 61.18 62.71 62.17 58.54 62.96 59.92 61.87

UnifiedQABase w/CoT 223M 71.00 76.04 78.91 66.42 66.53 81.81 77.06 68.82 74.11
GPT-3.5 w/CoT 175B 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68 75.17

Multimodal-CoTBase 223M 87.52 77.17 85.82 87.88 82.90 86.83 84.65 85.37 84.91
Multimodal-CoTLarge 738M 95.91 82.00 90.82 95.26 88.80 92.89 92.44 90.31 91.68

LLaMA-Adapter 6B 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05 85.19
LLaVa 13B 90.36 95.95 88.00 89.49 88.00 90.66 90.93 90.90 90.92

LLaVa (GPT-4) 13B 91.56 96.74 91.09 90.62 88.99 93.52 92.73 92.16 92.53
Chameleon (GPT-4) - 89.83 74.13 89.82 88.27 77.64 92.13 88.03 83.72 86.54

SNSE-CoTBase 223M 90.05 78.85 89.09 89.64 84.78 90.38 87.67 87.08 87.46
SNSE-CoTLarge 738M 96.80 90.33 93.09 96.73 93.36 94.08 94.71 94.07 94.48

Table 1: Comparison of the experiment results (%). Size = backbone model size. Question classes: NAT
= natural science, SOC = social science, LAN = language science, TXT = text context, IMG = image
context, NO = no context, G1-6 = grades 1-6, G7-12 = grades 7-12. Part 1: Human performance; Part 2:
Traditional VQA; Part 3: Small model with CoT; Part 4: Large model with CoT; Part 5: Our SNSE-CoT
results. Results in bold are the best performance.

small, soft negative samples play a limited role
and performance grows less. When λ is extremely
large, the generated samples have difficulty in clus-
tering toward the target center, and the perfor-
mance may even become worse. α and β con-
strain the range of cosine similarity difference, and
an appropriate bottom and upper difference can
play a better role in soft negative samples. The ef-
fect of bottom difference α on performance is more
important.

4.6. Ablation Studies
Table 2 reports the results of the ablation experi-
ments. To investigate the effectiveness of the pro-
posed soft negative sample generation method, the
number, orientation, unit, and option transforma-
tions were removed separately. For the number
transformation, a slight decrease in performance
was observed after removal, indicating that the
method did not considerably enhance the model’s
numerical understanding. For the orientation and
unit transformations, which further enhance the
model’s understanding of the map and its ability
to compare values, a decrease in performance of
approximately 1% was observed after removal. For
the option transformation, a significant decrease in
model performance was observed after removal be-
cause it is a general transformation that can modify
keywords well for QA problems.

The principle of soft negative sample generation
was also analyzed. The randomness of Princi-
ple 3 was ablated by fixing the soft negative sam-

Model Avg
SNSE-CoTBase 87.46

w/o number 87.12
w/o orientation 86.23
w/o unit 86.03
w/o option 85.69
w/o random 85.57

Table 2: Ablation study on SNSE-CoT (%).

Number 1 2 3 all
Changes 0 -0.59 +0.08 +0.17

Table 3: The impact of the amount of modification
on performance (%). All means all modifications.

ples for each epoch. As observed from the results,
the ablation of randomness did not guarantee that
the soft negative samples were evenly distributed
around the positive sample area, and the perfor-
mance yielded a significant degradation of approxi-
mately 2%.

To explore the effect of the number of modifica-
tions mentioned in Principle 2, the relevant experi-
mental results are reported in Table 3. The small
effect of the number of modifications on the perfor-
mance might be due to the small number of modifi-
able positions in each CoT and the limited increase
in the distance of the soft negative samples from
the target center as the number of modifications
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Figure 5: Visual latent distribution. “ours” repre-
sents samples generated by SNSE-CoT, “mm-cot”
represents samples generated by Multimodal-CoT,
“pos” represents positive samples, and “soft-neg”
represents soft negative samples.

increased.

4.7. Visual Latent Distribution of
Samples

We randomly selected ten samples, and the sam-
ples generated by SNSE-CoT, samples generated
by Multimodal-CoT, positive samples, and soft neg-
ative samples of each sample were further ex-
tracted as feature h using Eq. (9) and (10): These
functions were visualized using the tSNE tool.

Figure 5 illustrates this visualization. The soft
negative samples were largely evenly distributed
around the positive samples. This was consistent
with the expectations of this study, and demon-
strated the high quality of the soft negative samples
generated by the proposed method. However, soft
negative samples were still distributed on one side
or far from each other, and our method must be
improved. In terms of the distribution distance be-
tween the samples generated by Multimodal-CoT,
the samples generated by SNSE-CoT, and the tar-
get positive samples, the distribution of the samples
generated by SNSE-CoT was generally closer to
the target samples, or even overlapped. However,
worse cases existed, in which the samples gener-
ated by SNSE-CoT were pushed far away from the
positive sample area by the soft negative samples,
suggesting that the generation of soft negative sam-
ples should more carefully follow the generation
principles proposed in this study.

4.8. Case Analysis

Several examples were selected to further illustrate
the effectiveness of SNSE-CoT in improving the
quality of CoT generation. Table 4 lists the selected
examples corresponding to golden CoT, CoT gen-
erated by Multimodal-CoT, and CoT generated by
SNSE-CoT. A more detailed case analysis is pro-
vided in Appendix C. The results indicated that the
proposed SNSE-CoT enhanced the map numerical
aspects, affirmation-negation comprehension, and
comparison of values in different units. In particu-
lar, the SNSE-CoT was still deficient in numerical
comprehension and was only partially correct in the
relevant example that corresponded to the results
of the ablation experiment.

5. Related Work

5.1. Traditional VQA

VQA is a series of tasks that provides a picture and
natural language question related to that picture,
and the computer can produce the correct answer.
Since the VQA task was first proposed (Antol et al.,
2015), many VQA datasets (Goyal et al., 2017;
Hudson and Manning, 2019; Johnson et al., 2017)
have been constructed to contribute to this research
effort.

Researchers have proposed various approaches
to improve the accuracy and interpretability of the
models. Among them, joint embedding approaches
(Li et al., 2020) jointly encode the image and ques-
tion and then decode the features of the mixed
modality to generate the answer. More studies
have focused on the application of attention mecha-
nisms (Anderson et al., 2018; Gao et al., 2019; Kim
et al., 2018; Yuan et al., 2023) that have shown that
models are more effective at capturing key image
parts based on questions. Compositional models
(Andreas et al., 2016; Xiong et al., 2016) provide a
method to dynamically compose modules to gener-
ate answers based on the type of question. Other
researchers have focused on introducing external
knowledge bases (Wu et al., 2016) to supplement
the knowledge required to answer questions by re-
trieving knowledge bases. Each of these models
has its own characteristics; however, they are all
black-box models that output only answers.

ScienceQA datasets containing multimodal con-
texts and different topics in the scientific domain
have been proposed. Most answers are anno-
tated with lectures and explanations that allow mul-
timodal CoT reasoning to be elicited and the rea-
soning process to be explicitly presented.
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ID Golden CoT MultiModal-CoT SNSE-CoT
6902 . . . This is the Pacific Ocean. . . . This is the Indian Ocean. . . . This is the Pacific Ocean.
7301 . . . there were 6 solute par-

ticles on the left side of the
membrane and 2 solute par-
ticles on . . .

. . . there were 5 solute parti-
cles on the left side of the mem-
brane and 6 solute particles on
. . .

. . . there were 5 solute par-
ticles on the left side of the
membrane and 2 solute par-
ticles on . . .

10130 . . . Animals get their food by
digesting other organisms.

. . . Animals cannot their food
by digesting other organisms.

. . . Animals get their food by
digesting other organisms.

12785 . . . the temperature of the air
on a hot day is 36°C. 36°F is
too cold.

. . . the temperature of the air
on a hot day is 36°F. 36°F is
too hot.

. . . the temperature of the air
on a hot day is 36°C.n36°F
is too cold..

Table 4: CoT outputs of different models. ID indicates the identification number of the question in the
ScienceQA dataset. Keywords are labeled with different colors, where red refers to wrong words, green
refers to correct words.

5.2. CoT Reasoning

CoT encourages LLMs to generate intermediate
chains of reasoning to solve problems, and LLMs
typically use two technical paradigms for CoT rea-
soning: zero-shot CoT (Kojima et al., 2022) and
few-shot CoT (Wei et al., 2022; Zhang et al., 2022).
Few-shot CoT uses step-by-step reasoning demon-
strations as the conditions for reasoning, each of
which contains the question and chain of reasoning
leading to the final answer and can be produced
manually or automatically, called Manual-CoT (Ko-
jima et al., 2022) and Auto-CoT (Zhang et al., 2022),
respectively. Effective demonstrations make few-
shot CoT a stronger performer than zero-shot CoT
and have attracted more research interest.

Certain studies have focused on the ability to
inspire CoT reasoning in small models. However,
models with 100 billion parameters tend to produce
illogical CoTs, leading to incorrect answers (Wei
et al., 2022). The performance substantially drops
when small models are directly fine-tuned to gen-
erate CoTs to reason answers (Lu et al., 2022).
Knowledge distillation is employed by fine-tuning
the student model on the output of the CoT gener-
ated by the larger teacher model (Ho et al., 2022;
Magister et al., 2022), and significant performance
improvement is obtained.

As stated in Section 1, several studies focused
on multimodal CoT reasoning. The critical chal-
lenge is to unify vision and language modalities.
The images are converted into captions to prompt
the LLMs for CoT inference (Lu et al., 2022, 2023).
However, caption conversion loses considerable
information, and researchers have attempted to in-
teractively combine vision and language modalities
in large and small models (Liu et al., 2023; Zhang
et al., 2023a,b) to obtain remarkable results. For
instance, Zhang et al. (2023b) indicated that the
introduction of the visual modality supplemented
more information and alleviated the hallucinations

of the small model CoT, and the small model CoT
reasoning ability made a qualitative leap.

5.3. Contrastive Learning

Contrastive learning allows the models to learn from
both positive and negative samples. Three key is-
sues in contrastive learning are construction of pos-
itive and negative samples, design of the encoder,
and selection of the loss function. The develop-
ment of contrastive learning can be divided into
four phases.

In the first phase, the various methods and mod-
els are not unified, nor are the objective functions
and agent tasks (Wu et al., 2018; Ye et al., 2019). In
the second phase (Chen et al., 2020a,b), the details
tend to be uniform, objective function is InfoNCE or
similar, and model is a combination of the encoder
and projection head. Stronger data augmentation
is used. Momentum encoders have been proposed
to solve feature inconsistency problems. In the third
phase, contrastive learning eliminates the use of
negative samples (Chen et al., 2020b; Grill et al.,
2020); this stage is a summary generalization of all
methods. In the fourth phase, most studies have
focused on the use of contrastive learning in trans-
formers (Caron et al., 2021).

Recently, the concept of soft negative samples
(Wang et al., 2022) was proposed to guide models
to focus on semantic similarity and alleviate feature
suppression.

Most negative samples for these methods orig-
inate from other samples within the same batch,
and few studies have focused on the manner in
which negative samples are generated.

6. Conclusions

This study proposed mitigating hallucinated ratio-
nale generation by using soft negative sampling
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for multimodal scientific quiz questions to gen-
erate more accurate CoTs. Specifically, we de-
signed five high-quality soft negative sample gen-
eration methods: affirmation-negation transforma-
tion, number transformation, orientation transfor-
mation, unit transformation, and option transfor-
mation. Bidirectional margin loss was used to en-
able the model to distinguish between soft nega-
tive samples. Experimental results showed that
the proposed method outperformed the methods
in the previous studies on the ScienceQA bench-
mark dataset and validated the effectiveness of the
proposed methods.

Future work will attempt to design a general
method for automatically generating soft negative
examples such that the model self-corrects for
small semantic differences.
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A. Baseline Models

For comparison, three categories of baseline mod-
els are selected as follows:

A.1. Traditional VQA
Traditional VQA baselines consider the question,
context, and choices as the textual input and the
image as the vision input, and predict the score
distribution over choice candidates via a linear clas-
sifier.

• MCAN (Yu et al., 2019) designs self-attention
units and guided attention units, and con-
structs a new deep co-attention network
through the combination and stacking between
them.

• Top-Down (Anderson et al., 2018) proposes a
new visual attention mechanism that combines
bottom-up and top-down to allow attention to
be calculated more naturally at the object and
other prominent area level.

• BAN (Kim et al., 2018) uses variants of multi-
modal residual networks for joint representa-
tion and finally classification by MLP to predict
answers.

• DFAF (Gao et al., 2019) proposes a multimodal
feature fusion method using external and inter-
nal modal information flow.

• ViLT (Kim et al., 2021) and Patch-TRM (Lu
et al., 2021) parse the diagram in a pyramid lay-
out and apply cross-modal transformers with
attention mechanism to learn the meaningful
joint diagram-question feature.

• VisualBERT (Li et al., 2020) is a visual lan-
guage pretraining model using a self-attention
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mechanism to mine the relationship between
text and image regions in the input image.

A.2. Small Model with CoT

• UnifiedQABase w/CoT (Lu et al., 2022) extracts
the caption of an image and concatenates it
with the original language modality as the input
to fine-tune the LM.

• Multimodal-CoTBase and Multimodal-CoTLarge

(Zhang et al., 2023b) use gated fusion mecha-
nisms to combine language and visual modali-
ties into a two-stage framework.

A.3. Large Model with CoT

• GPT-3.5 w/CoT (Lu et al., 2022) uses the same
method as that of UnifiedQABase w/CoT to
prompt LLMs.

• LLaMA-Adapter (Zhang et al., 2023a) adjusts
LLaMA (Touvron et al., 2023) to an instruction-
following model by fine-tuning the adapter to
insert vision features into the LM.

• LLaVa (Liu et al., 2023) is a multimodal large
model fine-tuned using a multimodal instruc-
tion dataset.

• LLaVa (GPT-4) (Liu et al., 2023) collaborates
with GPT-4 to first explain the cause and then
infer the answer.

• Chameleon (GPT-4) (Lu et al., 2023) uses
GPT-4 as a natural language planner to break
down problems into chains of multiple tool com-
binations (design workflow) and then invoke
tools to collaboratively solve problems.

B. Role of Vision Features

To explore the impact of the proposed method on
the LM, the vision features were further removed.
Table 5 shows the differences in performance be-
fore and after the removal of vision features for
different sizes of LMs.

Removing the vision features significantly re-
duced the performances (approximately 12% and
9%, respectively) of both LMs of different sizes,
where the performance of the large model reduced
relatively slightly. Large performance degradation
was mainly generated in the IMG and image-related
data. A noticeable performance degradation was
also observed in non-image-related data because
with the vision features removed, more error CoTs
were generated in the rationale generation phase,
further disrupting the inference logic in the answer
inference phase.

C. Examples of Case Studies

This section presents a detailed case study. As
shown in Figures 6 and 7, the proposed method
was well enhanced in terms of identifying the map
regions. As shown in Figures 8 and 9, the unit
comparison capability of the model also improved.
However, Figures 10 and 11 show that a partially
correct CoT may still lead to incorrect answer infer-
ences, and this misdirection is more likely to occur
when the conclusion sentence is incorrect. Simi-
larly, as shown in Figures 12 and 13, guaranteeing
the overall correctness of the CoT in terms of num-
ber understanding is difficult, even if some numbers
can be improved. For common sense problems,
models could easily learn common sense that re-
quired only memorization (see Figure 14) but strug-
gled to learn common sense that required logical
computation (see Figure 15).
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Model NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg
SNSE-CoTBase 90.05 78.85 89.09 89.64 84.78 90.38 87.67 87.08 87.46

w/o vision features 75.63 70.76 79.82 74.18 68.51 83.15 75.83 73.66 75.41
SNSE-CoTLarge 96.80 90.33 93.09 96.73 93.36 94.08 94.71 94.07 94.48

w/o vision features 82.09 82.34 89.42 88.60 81.35 90.10 84.69 83.31 85.84

Table 5: Ablation results of vision features(%).

Figure 6: Example of ID 517.

Figure 7: Example of ID 6902.
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Figure 8: Example of ID 348.

Figure 9: Example of ID 12785.
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Figure 10: Example of ID 9653.

Figure 11: Example of ID 6964.
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Figure 12: Example of ID 7301.



6075

Figure 13: Example of ID 4740.
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Figure 14: Example of ID 10130.

Figure 15: Example of ID 13068.
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