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Abstract

Aspect category sentiment analysis (ACSA) aims to simultaneously detect aspect categories and their corresponding
sentiment polarities (category-sentiment pairs). Some recent studies have used pre-trained generative models to
complete ACSA and achieved good results. However, for ACSA, generative models still face three challenges. First,
addressing the missing predictions in ACSA is crucial, which involves accurately predicting all category-sentiment
pairs within a sentence. Second, category-sentiment pairs are inherently a disordered set. Consequently, the model
incurs a penalty even when its predictions are correct, but the predicted order is inconsistent with the ground truths.
Third, different aspect categories should focus on relevant sentiment words, and the polarity of the aspect category
should be the aggregation of the polarities of these sentiment words. This paper proposes a hierarchical generative
model with a coverage mechanism using sequence-to-set learning to tackle all three challenges simultaneously. Our
model’s superior performance is demonstrated through extensive experiments conducted on several datasets.

Keywords: Aspect Category Sentiment Analysis, Hierarchical Sequence-to-Set Model, Coverage Mecha-
nism

1. Introduction

Sentiment analysis is the process of analyzing peo-
ple’s emotions, attitudes, opinions, and sentiment
expressions in textual reviews (Liu, 2012). Aspect-
based sentiment analysis (ABSA) (Pontiki et al.,
2014) is a fine-grained sentiment analysis task that
involves many subtasks, aspect category detection
(ACD) and aspect sentiment classification (ASC)
are two of them. ACD detects the aspect categories
mentioned in a sentence, and ASC predicts the sen-
timent polarities according to the detected aspect
categories (Zhang et al., 2022). For example, in
the sentence “The food is delicious, but
the price is a bit expensive.", the two
aspect categories (food, price) are detected
by ACD, and the sentiment polarities of detected
aspect categories (positive, negative) can
be predicted by ASC. In this paper, we focus on
ACSA, which aims to jointly detect the discussed
aspect categories (ACD) and their corresponding
sentiment polarities (ASC) (Zhang et al., 2022).
For the previous example, ACSA models can di-
rectly predict two category-sentiment pairs (food,
positive) and (service, negative).

Previous studies for ACSA can be categorized
into two types: the pipeline and the joint approach.
The most straightforward way to address ACSA is
the pipeline approach (Brun et al., 2016; Lee et al.,
2017; Kumar et al., 2016), which first identified the
aspect categories contained in the sentence, then
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Figure 1: (a) An example of the missing prediction
of aspect categories. (b) An example of different as-
pect categories focus on different sentiment words,
where the final polarity is the aggregation of each
polarity identified from the sentiment words.

predicted the polarity of the detected aspect cat-
egories. Obviously, the result of detecting aspect
categories has a great impact on the performance
of these approaches. Therefore, many recent re-
searchers handled ACSA in a joint way by the clas-
sification method. These approaches (Cai et al.,
2020; Hu et al., 2019; Gu and Zhang, 2022; Fu
et al., 2021; Li et al., 2020c,b; Wang et al., 2019;
Li et al., 2020a; Zhou and Law, 2022) employed
multi-label classifiers to tackle the task since a sen-
tence contains one or more category-sentiment
pairs. They first obtained the contextual represen-
tation of sentences through Long Short-term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997),
Convolutional Neural Networks (CNN) (Kim, 2014),
Gated Recurrent Unit (GRU) (Cho et al., 2014), or
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Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2018). Then these
contextual representations were fed into multiple
classifiers to identify different aspect categories
and corresponding sentiment polarities. In recent
years, generative models have achieved very good
results in many natural language processing tasks.
In view of this, Liu et al. (2021) used the pre-trained
generative model BART (Lewis et al., 2020) for
ACSA and achieved the best results so far.

However, for ACSA, generative models still
face three challenges. (1) How to alleviate the
missing predictions, namely correctly predicting
all category-sentiment pairs contained in a
sentence. Take Figure 1(a) as an example, the
model detects two pairs but misses the last one.
(2) Category-sentiment pairs are inherently a
disordered set. Consequently, the model incurs
a penalty even when its predictions are correct,
but the predicted order is inconsistent with the
ground truths. For example, as shown in Figure
1(a), the model predicts the sentence contains
two category-sentiment pairs {(service, pos-
itive),(food, positive)}, but the ground
truths are {(food, positive), (service,
positive), (price, positive)}. In this
case, although the predictions are correct, the
model is still penalized due to the different order of
the outputs. (3) It is crucial to ensure that different
aspect categories focus on different sentiment
words, and the polarity of the aspect category
should be the aggregation of the polarities of these
sentiment words. As shown in Figure 1(b), the sen-
tence “The dishes are remarkably tasty
and such a cozy and intimate place",
for aspect category food, its polarity comes from
the sentiment word tasty. Similarly, the polarity
of ambiance comes from an aggregation of
sentiment words cozy and intimate.

In this paper, we propose a hierarchical
sequence-to-set model with the coverage mecha-
nism (HCSGM) to directly output pairs for address-
ing the above challenges. HCSGM is based on an
autoregressive sequence-to-set architecture. To al-
leviate the missing predictions, in the decoder, we
employ a coverage mechanism (Tu et al., 2016) to
memorize the part covered by previous time steps
in the sentence. On the other hand, considering
the third challenge mentioned before, we design a
hierarchical generative mechanism to identify the
aspect categories and their sentiment polarities.
Finally, a set prediction loss is introduced to op-
timize the model to avoid the penalty of different
prediction orders. Empirical results demonstrate
that our models are superior to many state-of-the-
art approaches. Our main contributions can be
summarized as follows:

• A coverage mechanism is introduced to alle-

viate the missing predictions when detecting
category-sentiment pairs.

• We design a hierarchical generative mecha-
nism to ensure that different aspect categories
can focus on relevant sentiment words and
aggregate the polarity of the sentiment words.

• A set prediction loss is introduced to train the
model and avoid the penalty of different pre-
diction orders.

2. Related Works

In this section, we will introduce a brief review of
ACSA. There are two main types of methods for
ACSA (Zhang et al., 2022): the pipeline and the
joint approach.

2.1. Pipeline Approach
The easiest and most straightforward way to han-
dle ACSA is the pipeline approach (Zhang et al.,
2022). For example, XRCE (Brun et al., 2016) and
IIT-TUDA (Kumar et al., 2016) heavily depended on
feature engineering and divided their pipelines into
two separate tasks: aspect detection and aspect
polarity classification. Although Lee et al. (2017)
incorporated multi-task learning, the prediction of
aspect category and polarity still remained sepa-
rate in the approach. Obviously, the key problem
with these approaches is that the performance of
aspect detection determines the performance of
the entire model. In other words, errors in aspect
detection can affect aspect polarity classification.
Furthermore, these pipeline approaches ignored
the correlations between the two separate tasks,
which was found to be important for the tasks (Hu
et al., 2019). Therefore, many recent researchers
handled the ACSA task in a joint way.

2.2. Joint Approach
Many recent researchers handled the ACSA task
in a joint way by the classification method. Firstly,
Schmitt et al. (2018) jointly modeled the aspect de-
tection and polarity classification in an end-to-end
trainable neural network. They added a label (N/A)
to the sentiment label space for predicting non-
existing aspect categories. Similarly, Wang et al.
(2019) used a capsule network structure to predict
multiple aspect categories and their polarities.

However, the study (Hu et al., 2019) found that
there were only a few words related to the opinion
in each aspect, and they proposed a constrained
attention network for multi-aspect sentiment anal-
ysis. Due to the importance of sentiment-related
information associated with the mentioned aspect,
the studies (Gu and Zhang, 2022; Fu et al., 2021)
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utilized various attention mechanisms to identify
such information and obtained good results. The
previous methods need to train multiple classifiers
separately, and the information among classifiers
was not well shared. Therefore, Li et al. (2020a)
proposed a novel joint model which contains a
shared sentiment prediction layer for ACSA. Simi-
larly, AC-MIMLLN-BERT (Li et al., 2020c) predicted
the sentiment of an aspect category by aggregat-
ing all sentiment words. Recently, considering the
good performance of graph neural networks (GNN)
in NLP, Li et al. (2020b); Yang et al. (2020); Cai
et al. (2020) introduced GNN to model the cor-
relations between aspect categories or between
sentiment words, and achieved good results. Fur-
thermore, Liu et al. (2021) adopted pertained gen-
erative model BART (Lewis et al., 2020) for ACSA
and outperformed previous models. However, the
model requires the pre-trained generative model
and some prompt templates.

3. Model

3.1. Problem Formalization
We define some notations and describe the ACSA
task. Given a predefined aspect category set
A = {a1, a2, . . . aM} , sentiment polarity set P =
{positive, negative, neutral}, and a sentence x
containing N words. Our task is to detect all the
mentioned category-sentiment pairs y from x, for-
mulated as:

y = [y1, y2, ..., yT ], (1)

where yk = (yak , y
s
k) is the kth predicted aspect

category and aspect sentiment polarity (category-
sentiment pair). Consequently, the ACSA can be
conceptualized as the search for an optimal se-
quence y, which maximizes the conditional proba-
bility p(y|x). This probability is computed as:

p(y|x; θ) =
T∏

t=1

p(yat |ya
1:t−1,x; θ)p(y

s
t |yat ,x; θ), (2)

where ya
1:t−1 denotes a sequence [ya1 , y

a
2 , ..., y

a
t−1].

This indicates that yat is associated with not only
the given sentence x but also the preceding aspect
categories. And θ denotes all model parameters.

3.2. Model Architecture
An overview of our proposed model is shown in Fig-
ure 2. It consists of two parts: Sentence Encoder
and Decoder. We first use BERT as an encoder.
In the decoder, a coverage mechanism and a hier-
archical generative mechanism are introduced to
generate category-sentiment pair sequences.

3.2.1. Sentence Encoder

A sentence x in a review is composed of N words,
which is formulated as:

x = [w1, w2, ..., wN ], (3)

where wi denotes ith word in the sentence. The
efficacy of the pre-trained BERT model (Devlin
et al., 2018) has been extensively demonstrated
in numerous natural language processing (NLP)
tasks. Therefore we employ BERT to encode
x and output the context-aware representations
H = [hCLS ,h1,h2, ...,hN ,hSEP ]. It is important
to note that two special tokens, namely [CLS] and
[SEP], are inserted at the start and end of each in-
put sentence, respectively. Then we adopt hidden
state hCLS ∈ Rd to obtain the initial hidden state of
the decoder, which is computed by:

s0 = W0hCLS + b0, (4)

where W0 and b0 are the linear transformation
weight and bias.

3.2.2. Decoder

The probability of generating the tth aspect cate-
gory yat is defined as:

p(yat |ya
1:t−1,x) = softmax(W1st + b1). (5)

where ya
1:t−1 are previous generated aspect cate-

gories. The hidden state st of the decoder is com-
puted by:

st = f(st−1, g(y
a
t−1), ct), (6)

where yat−1 is the predicted aspect category at time
step t−1, and g(yat−1) is the embedding of yat−1,the
activation function f(.) is a Gated Recurrent Unit
(GRU) (Cho et al., 2014). Usually, in the seq2seq
architecture, the context vector ct is the weighted
sum of the encoder outputs H (Bahdanau et al.,
2014), which is formulated by:

ct =

N+2∑
j=1

at,jhj , (7)

where hj ∈ H is the encoder’s outputs for word
wj , and at,j indicates the attention weight for the
jth word of the source text at the t time step of
the decoder, which is computed by the attention
mechanism (Bahdanau et al., 2014):

at,j =
exp (et,j)∑N+2

k=1 exp (et,k)
, (8)

where et,j is computed by:

et,j = vT
a tanh(Wast−1 +Uahj + ba), (9)

whereWa, Ua, va and ba are learnable parameters
and st−1 is the hidden state of the decoder at time
step t− 1.
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Figure 2: Model Architecture.

Coverage Mechanism As mentioned above, a
sentence usually contains one or more category-
sentiment pairs. In order to alleviate the missing
predictions, we introduce a coverage value (Tu
et al., 2016), which can memorize the part covered
by previous time steps in the sentence. According
to the coverage value, the decoder will increase the
attention weight for the words that have previously
received less attention and decrease the attention
weight for the words that have previously received
more attention. Specifically, we rewrite Equation
(9) as:

et,j = vT
a tanh(Wast−1 +Uahj +mac̃t−1,j + ba),

(10)
where ma is the weight vector, and c̃t−1,j is the
coverage value of word wj at time step t− 1 of the
decoder, which is defined as:

c̃t−1,j =

t−1∑
k=1

ak,j . (11)

Intuitively, c̃t−1,j denotes the degree of coverage
derived by word wj that has received the sum of
attention weights at decoder time step t − 1. A
larger value means attention has been paid to wj

by the decoder in the previous time steps. This
mechanism simply lowers the attention weights for
all previously attended words and increases atten-
tion to the remaining words. It is widely utilized
in machine translation. The decoder thoroughly
analyzes the complete source text to generate the
target text, ensuring no information is omitted from

the source text. Lastly, the coverage mechanism
ensures that the decoder’s attention is distributed
across various words at different time steps, pre-
venting it from repeatedly focusing on the same
words. As a result, the model can accurately gen-
erate a greater number of aspect categories from
the source text.

Hierarchical Generation Mechanism Consider-
ing that different aspect categories should focus on
different sentiment words, the polarity of the aspect
category should be the aggregation of the polari-
ties of these sentiment words. Inspired by Li et al.
(2020c), we design a hierarchical generative mech-
anism. Specifically, for time step t, the decoder
firstly generates aspect category yat by Equation
(5). Then we compute the aspect-aware attention
weight between the predicted aspect category yat
and source word wj by:

a
′

t,j =
exp (e

′

t,j)∑N+2
k=1 exp (e

′
t,k)

, (12)

where e
′

t,j is computed by:

e
′

t,j = vT
s tanh(Wsg(y

a
t ) +Ushj + bs). (13)

As mentioned above, the polarity of an aspect
should be the aggregation of the polarities of the
sentiment words it emphasizes (Li et al., 2020c).
Specifically, for word wj , we predict its polarity by
encoder’s output hj :

pj = Wp2(ReLU(Wp1hj + bp1) + bp2), (14)
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where pj ∈ R3 represents the sentiment predic-
tions of wj belongs to {positive, negative, neutral},
respectively. Then we obtain the aspect category
polarity by aggregating the word sentiment predic-
tions based on the aspect-aware attention weight.
For aspect category yat , its probability of sentiment
polarity is computed by:

p(yst |yat ,x) = softmax(θp1
t + (1− θ)p2

t ),

p1
t =

N+2∑
j=1

pja
′

t,j ,

p2
t = tanh(Wp3st + bp3),

(15)

where a
′

t,j is computed by Equation (12), and p2
t ∈

R3 represents the sentiment predictions by st. And
θ ∈ (0, 1) is a learnable parameter.

3.3. Model Optimization

The main difficulty of training is to score the pre-
dicted pairs with respect to the ground truths. In this
scenario, it is not proper to apply the cross-entropy
loss function to measure the difference between
two sets, since cross-entropy loss is sensitive to the
permutation of the predictions. Inspired by Sui et al.
(2023), we propose a set prediction loss that can
produce an optimal bipartite matching between pre-
dicted and ground truth pairs. Generally, A typical
bipartite matching loss computing mainly includes
2 steps (Sui et al., 2023): finding an optimal match-
ing and calculating the loss. After generating N
predictions, to find the optimal matching, we first
search for a permutation π∗ with the lowest cost:

π∗ = argmin
π∈ON

N∑
i=1

Cmatch(yi, pπ(i)), (16)

where ON is the space of all N -length permuta-
tions, and Cmatch(.) is the matching cost function
between ground truths and predicted pairs, which
is computed by:

Cmatch(yi, pπ(i)) = −Iya
i ̸=ϕ[p

a
π(i)(y

a
i ) + psπ(i)(y

s
i )],
(17)

where paπ(i), p
s
π(i) are aspect and sentiment proba-

bility distribution and computed by Equation(5,15),
yai , y

s
i are target aspect and sentiment, respectively.

This optimal assignment π∗ is computed efficiently
by the Hungarian algorithm (Kuhn, 1955). The sec-
ond step involves computing the loss function for
all pairs identified in the preceding step. We define
the loss function as follows:

L = −
N∑
i=1

[log paπ∗(i)(y
a
i ) + log psπ∗(i)(y

s
i )]. (18)

Dataset #Pos #Neg #Neu #Sen

MAMS Train 2170 2343 3465 3549
Test 245 263 393 400

Rest Train 2177 839 500 2891
Test 657 222 94 767

SRest Test 379 136 80 595
MRest Test 278 86 14 172

Table 1: Statistics of the experimental datasets.
#Pos, #Neg, and #Neu mean the number of pos-
itive, negative, and neutral aspect categories on
datasets, respectively. #Sen denotes the number
of sentences on datasets.

4. Experiments and Analysis

In this section, we will evaluate our proposed model
on four real-world datasets. We first introduce the
datasets, evaluation metrics, baseline methods,
and experimental settings and then compare our
method with the baseline methods. Finally, we
provide an elaborate analysis and discussion of
experimental results.

4.1. Datasets

We evaluate our model on four datasets, and the
statistics of the datasets are shown in Table 1.

• MAMS was proposed by Jiang et al. (2019),
which is a large-scale Multi-Aspect Multi-
Sentiment (MAMS) dataset, in which each sen-
tence contains at least two different aspect
categories with different sentiment polarities.

• Rest was constructed by SemEval-2014 Task4
(Pontiki et al., 2014), which has been widely
used in previous studies (Fu et al., 2021; Wang
et al., 2019; Li et al., 2020c). And we removed
the data that contains some information of con-
flicting polarity.

• SRest and MRest have the same training and
validation sets as Rest dataset. However, the
data only containing more than one category-
sentiment pairs can be selected for the test
set on MRest dataset, and the data only con-
taining one category-sentiment pair can be
selected for the test set on SRest dataset.

4.2. Compared Methods

We compare our proposed model with classification
and generative model baselines. To ensure the
fairness of the comparison, we implement some
baselines without source code and repeated the
experiment three times on the dataset.
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4.2.1. Classification Baselines

We have selected several classic classification
baselines, they adopted BERT, CNN, and LSTM as
encoders, respectively.

• AddOneDim-LSTM (Schmitt et al., 2018)
jointly detected aspect categories and clas-
sifies their polarity in an end-to-end train-
able LSTM. This model added a label (N/A)
to the sentiment label space for predicting
non-existing aspect categories. AddOneDim-
CNN and AddOneDim-BERT are similar to
AddOneDim-LSTM and replaces LSTM with
textCNN (Kim, 2014) and BERT (Devlin et al.,
2018) as the encoder, respectively.

• AS-Capsules (Wang et al., 2019) is an aspect-
level sentiment capsules model, which is ca-
pable of performing aspect detection and sen-
timent classification simultaneously1.

• AC-MIMLLN-BERT (Li et al., 2020c) is a multi-
instance and multi-label learning network for
aspect-category sentiment analysis, which first
predicted the sentiments of each word from the
source text, then found the key words for the
aspect categories, finally obtained the senti-
ments of the aspect categories by aggregating
the sentiments of the key words2.

• MSS (Shi et al., 2023), based on the graph
convolutional network (GCN), is a novel unified
framework to handle all defined sub-tasks for
aspect-based sentiment analysis.

4.2.2. Generation Baselines

We also implement two classic generative models
based on Seq2Seq architecture.

• Seq2Seq-att is a classic generative model pro-
posed by Sutskever et al. (2014) and intro-
duces bahdanau attention mechanism (Bah-
danau et al., 2014). We implement Seq2Seq-
att model based on open-sourced code3. In
our implementation, the output of the decoder
is used separately to predict the aspect cate-
gory and its sentiment polarity.

• BART-generation (Liu et al., 2021) is a pre-
trained BART model for ACSA.

We further develop two variants of the proposed
model. SGM is a basic generative model with a
BERT encoder and GRU decoder. In the decoder,
we feed separately concatenation of decoder output

1https://github.com/thuwyq/WWW19-AS-Capsules
2https://github.com/l294265421/AC-MIMLLN
3https://github.com/bentrevett/pytorch-seq2seq

st into two full-connection layers to predict the as-
pect category and its sentiment polarity simultane-
ously. CSGM is similar to SGM on architecture but
integrates the coverage mechanism. HCGSM+SL
is our complete model and uses the set prediction
loss to train the model. In addition, other variants
and baseline models use cross-entropy loss to train
the models.

4.3. Implementation Details
We implement the baseline models (Seq2Seq-
att, BART-generation, AddOneDim-LSTM,
AddOneDim-CNN and AddOneDim-BERT). And
all hyper-parameters of the models are tuned on
the validation dataset by using grid search and
early stopping. Our models are developed by
Pytorch (Paszke et al., 2019). We set the initial
learning rate to 5e− 5 for the decoder and 3e− 5
for the encoder, adopt the dropout strategy to avoid
overfitting, and the dropout rate is 0.5. To make a
fair comparison, our models and the BERT-based
baselines adopt BERT-base-uncased4 as an
encoder, the detailed BERT-base-uncased model
settings refer to Devlin et al. (2018). We apply
gradient clipping to prevent exploding gradient
and set it to 1. In the training phase, AdamW
(Loshchilov and Hutter, 2017) is used to optimize
the model with a batch size of {16,24,32,48},
and our models use the same hyper-parameter
settings. During testing, we use greedy search as
the decoding algorithm5.

We adopt Precision (P), Recall (R), and F1-score
(F1) as evaluation metrics that are calculated by
comparing the gold category-sentiment pair, and
the F1-score is micro-F1. Note that only if the pre-
dictions of aspect category and sentiment polarity
are identical to the ground truth, the results are
treated as correct. Finally, to reduce the random-
ness of results, we run all models three times and
report the average results on the test datasets.

4.4. Performance Comparison
Table 2 shows the results of different models on four
datasets. In all classification baselines, the models
using BERT as the encoder obtain better results
than other classification methods. In particular, the
F1 of AC-MIMLLN-BERT, AddOneDim-BERT, and
MMS on all datasets far exceed other classification
models. This indicates that incorporating BERT
can effectively improve the performance of classifi-
cation models.

In all generative baselines, it can be seen from
Table 2 that the pre-trained generation model BART-

4https://huggingface.co/bert-base-uncased
5Our source code is available at https://github.

com/sygogo/HCSGM-ACSA

https://github.com/sygogo/HCSGM-ACSA
https://github.com/sygogo/HCSGM-ACSA
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Category Models MAMS Rest
P R F1 P R F1

Classsification

AddOneDim-LSTM † 58.742 59.563 59.150 72.349 71.326 71.834
AddOneDim-TextCNN † 56.469 56.937 56.702 64.902 67.523 66.187

AddOneDim-BERT † 73.246 71.809 72.520 79.943 80.301 80.122
AS-Capsules 69.250 68.479 68.862 75.799 73.826 74.799

MSS ⋆ - - - 82.520 77.040 79.680
AC-MIMLLN-BERT 73.228 73.770 73.498 79.829 77.287 78.537

Generation Seq2Seq-att † 58.239 54.384 56.245 69.696 62.076 65.666
BART-ACSA † 72.888 71.624 72.250 81.979 80.884 81.428

Our

SGM 68.926 67.037 67.968 81.489 78.040 79.727
CSGM 68.680 67.703 68.188 81.508 79.274 80.375

HCSGM 73.882 73.437 73.659 81.438 81.295 81.366
HCSGM+SL 74.922 73.363 74.134 81.578 82.049 81.813

Category Models SRest MRest
P R F1 P R F1

Classsification

AddOneDim-LSTM † 66.284 72.325 69.173 85.057 69.753 76.649
AddOneDim-TextCNN † 58.301 66.499 62.131 78.334 69.136 73.448

AddOneDim-BERT † 75.488 82.073 78.643 88.652 77.513 82.709
AS-Capsules 70.549 73.949 72.209 85.904 73.633 79.296

AC-MIMLLN-BERT 73.166 76.303 74.701 90.735 76.896 83.244

Generation Seq2Seq-att † 65.322 66.387 65.850 79.773 55.291 65.313
BART-ACSA † 77.760 81.681 79.672 89.851 79.630 84.432

Our

SGM 78.162 80.392 79.261 87.897 74.339 80.551
CSGM 78.103 81.120 79.583 87.924 76.367 81.739

HCSGM 77.545 82.185 79.798 88.638 79.894 84.039
HCSGM+SL 77.734 82.689 80.135 88.610 81.041 84.657

Table 2: Comparisons of baselines performances in ACSA. The evaluation results in terms of micro-
Precision (P,%) micro-Recall (R,%) and micro-F1 (F1,%), and the baselines marked † are our implemen-
tations, ⋆ refers to citing from Shi et al. (2023). We run all models three times and report the average
results on the test sets. The best F1 results are bold.

generation has achieved better results in perfor-
mance, and its performance far exceeds that of
Seq2Seq-att and classification models. Further-
more, our complete model achieves an obvious
improvement in F1 over the second-best Model.

4.5. Ablation Study
In this section, we will further analyze the influence
of the coverage mechanism, hierarchical genera-
tive mechanism, and set prediction loss, respec-
tively.

4.5.1. Impact of Coverage Mechanism

To further analyze the effectiveness of the coverage
mechanism, we conducted an ablation study. First
of all, it can be seen from Table 2 that compared
with the standard attention decoder (SGM), after
the introduction of the coverage mechanism, the
model performance has been greatly improved in
the ACSA task. As mentioned above, the coverage
mechanism can help the model recall more aspect
categories, so we conducted experiments on the
ACD task, and the results are shown in Table 3.

It can be seen that after the introduction of the
coverage mechanism, F1 and accuracy have been
greatly improved, especially on the MRest dataset,
the improvement is more obvious.

4.5.2. Impact of Hierarchical Generative
Mechanism

In this section, we study the ability of the mod-
els to predict sentiment polarity. We first define a
new metric: Polarity Prediction Error Rate (PPER),
which is computed by:

PPER =
#FPp

#GP
, (19)

where #GP denotes the number of ground truth
pairs, and #FPp denotes the number of false pre-
dicted pairs due to polarity prediction error. For
example, the ground truth is

{(food, positive), (service, positive)}, (20)

and predicted pairs are

{(food, positive), (service, negative)︸ ︷︷ ︸
polarity error

, (price, positive)︸ ︷︷ ︸
category error

}.

(21)
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Model MAMS Rest SRest MRest
F1 Acc F1 Acc F1 Acc F1 Acc

SGM 92.355 93.979 95.230 95.976 95.998 96.919 93.367 92.713
CSGM 92.231 93.865 95.716 96.367 96.181 97.053 94.601 93.992

Table 3: Performance of ACD on four datasets.The evaluation results in terms micro-F1 (F1,%) and
accuracy (Acc,%).

Figure 3: Case study on MAMS dataset. False prediction pairs are marked with “×” and missing pairs are
marked with "?".

Figure 4: Comparsion of PPER (%) on four
datasets.

In this case, #GP = 2, the predicted
pair (service, negative) is a false predicted pair
due to sentiment polarity prediction error, and
(price, positive) is also a false predicted pair due
to aspect category prediction error. Therefore,
#FPp = 1 and PPER = 0.5. It can be seen that
PPER represents the prediction ability of the model
for sentiment polarity. When PPER is lower, the
prediction ability of the model is better.

Then we compute PPER of four models on four
datasets, and the experimental result is shown in
Figure 4. It can be seen that PPER of introducing
the hierarchical generative mechanism decreases
significantly on every dataset due to the introduc-
tion of the hierarchical generative mechanism, es-

pecially on the MAMS dataset. On the contrary, the
introduction of the coverage mechanism and set
loss has basically no obvious impact on PPER.

4.5.3. Impact of Set Loss

Table 2 demonstrates that adding set predic-
tion loss significantly improves F1, especially on
datasets with more than one aspect category, such
as MRest and MAMS. However, the increase in F1
is smaller on datasets with only one aspect cate-
gory, such as SRest.

4.6. Case Study
Finally, we present a case study on MAMS dataset
by different models. Figure 3 presents the cases
of SGM, CSGM, and HCSGM, respectively. For
case one, we can see that SGM generates two
correct category-sentiment pairs and misses one
pair (service, neutral). After introducing the
coverage mechanism, the model CSGM accurately
generates three aspect categories, but the pre-
dicted polarity of the last aspect category is still
wrong. Finally, the model HCSGM using the hierar-
chical generative and coverage mechanism com-
pletely correctly generates all category-sentiment
pairs. The second case also shows the same re-
sult.

It can be seen from the case study that the cov-
erage mechanism alleviates the missing predic-
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tion of aspect categories, and the hierarchical gen-
erative mechanism correctly predicts the polarity
of these aspect categories and finally makes the
model achieve better performance.

5. Conclusions

In this paper, we propose a hierarchical sequence-
to-set model with a coverage mechanism for ACSA.
It includes a BERT-based encoder and a GRU de-
coder, meanwhile, a coverage mechanism is intro-
duced to avoid the missing predictions of category-
sentiment pairs. Furthermore, in the decoder, we
design a hierarchical generative mechanism to en-
sure that different aspect categories can focus on
different sentiment words. The extended experi-
ments show that our model achieves better per-
formance on four datasets. In addition, we also
perform an ablation study, which proves the effec-
tiveness of the coverage and hierarchical genera-
tive mechanism.
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