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Abstract
Fine-tuning Large Language Models (LLMs) for machine translation is effective but costly. It also increases the
risk of overfitting and catastrophic forgetting, especially when training data is limited. To tackle these challenges,
we propose a novel method that involves adjusting task-related layers in large models to better harness their
machine translation capabilities. This method aims to retain the model’s knowledge on other tasks while optimizing
performance on translation tasks. By revealing the structure and characteristics of attention weights through singular
value decomposition (SVD), we can make fine adjustments to specific layers, leveraging the model’s potential for
more accurate and efficient translations. Our method not only addresses computational resource consumption
and catastrophic forgetting but also offers a new perspective on utilizing the capabilities of large models effectively.
Experimental validation shows that adjusting task-related layers significantly improves performance on translation
tasks while maintaining stability and accuracy on other tasks. This finding provides valuable insights for fine-tuning
and applying large models, advancing the field of machine translation.
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1. Introduction

In recent years, LLMs have demonstrated substan-
tial potential and value across various domains of
Natural Language Processing (NLP), including text
generation, text summarization, sentiment analy-
sis, and question-answering systems, among oth-
ers. LLMs such as GPT-3 (Brown et al., 2020),
BLOOM (Scao et al., 2022) and LLaMA (Touvron
et al., 2023), by learning from extensive text data,
have achieved the capability to understand and
generate complex human languages, thereby at-
taining remarkable results in a myriad of NLP tasks.
Although the exemplary performance of large lan-
guage models in most NLP applications, how to
implement machine translation with LLMs still en-
compasses numerous unresolved challenges and
unexplored issues.

Although adapting machine translation tasks
through fine-tuning pre-trained large models
(PLMs) is a very effective approach, it also in-
creases the risk of model overfitting and leads to
catastrophic forgetting problems, especially when
the available training data is relatively scarce. To
mitigate this issue, some research works have
adopted methods like adapter (Alam and Anasta-
sopoulos, 2022) and prompt (Zhang et al., 2023a)
to enhance the capabilities of the models. These
methods have made certain optimizations regard-
ing the issue of resource consumption and have
significantly improved the capabilities of the mod-
els. However, they mainly focus on adjustments

at the data level and do not adjust the correspond-
ing parameters based on the machine translation
task itself, leaving potential room for improvement
in model performance on specific tasks. This may
lead the model to generate translations that seem
reasonable but are actually inaccurate (Zhang et al.,
2023b).

Additionally, apart from neural machine trans-
lation based on encoder-decoder, LLMs perform
machine translation usually understand the map-
ping relationships between different languages by
learning a large amount of multilingual text data
and generate corresponding translations. However,
due to the specific definitions and contexts of cross-
language interactions in the model’s training data
often being vague and variable, the model cannot
clearly define specific cross-language interaction
rules.

To address above issues, we propose a novel
method, which involves adjusting the task-related
layers in large models to harness the model’s ma-
chine translation capabilities better and improve the
performance on specific tasks. This method aims to
retain the model’s knowledge on other tasks while
optimizing the performance on a specific transla-
tion task. The core idea is to reveal the inherent
structure and characteristics of attention weights
through SVD (Garneau et al., 2020), understand
the behavior of the model at each layer, and make
fine adjustments to specific layers, thereby better
leveraging the model’s potential to achieve more
accurate and efficient translations. This method not
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only helps address the issues of computational re-
source consumption and catastrophic forgetting but
also offers a new research direction and perspec-
tive on how to utilize the capabilities of LLMs more
effectively. Through experimental validation, we
found that this strategy of adjusting task-related lay-
ers indeed significantly improves the performance
of large models on specific translation tasks while
maintaining stability and accuracy on other tasks.
This finding provides valuable insights for the fine-
tuning and application of large models and is ex-
pected to further propel advancements in the field
of machine translation.

In summary, the main contributions of this paper
are as follows:

• We propose a novel adjustment strategy focus-
ing on task-related layers, allowing for more
precise extraction of the model’s machine
translation capabilities.

• By adjusting task-related layers, we effectively
address the issue of catastrophic forgetting,
especially its impact on the model’s in-context
ability, while preserving the model’s knowledge
on other tasks.

• While enhancing model capabilities, our
method places a strong emphasis on the ef-
ficient utilization of computational resources,
providing a pathway for efficient model training
and application under resource-constrained
scenarios.

2. Related Work

2.1. Large Language Models

At present, the foundational structure of LLMs is
Transformer (Vaswani et al., 2017). LLMs have
shown great potential in many applications of NLP.
Many relatedworks that using a decoder-only lan-
guage model can perform multi-task learning on un-
supervised monolingual corpora (Radford, 2019).
(Ren et al., 2023) discovered the scaling law of
LLMs, indicating that as the neural network pa-
rameters increase, the capabilities of LLMs also
enhance. When parameters reach a certain extent,
the model will bring astonishing emergent abilities
(Zhang et al., 2022), which is only present in large
models. An increasing amount of work has started
to focus on the scaling of large language models
such as GPT-3 (Brown et al., 2020), BLOOM (Scao
et al., 2022) and LLaMA (Touvron et al., 2023).
They have shown promising results across a vari-
ety of different NLP tasks.

However, the massive scale of LLMs makes fine-
tuning very difficult. To overcome this challenge,

some research has proposed adapter-based fine-
tuning methods. The adapters of LLMs refer to neu-
ral modules integrated into LLMs, which contain a
small number of additional trainable parameters, al-
lowing for effective fine-tuning on specific tasks
without affecting the pre-trained parameters of
LLMs. For example, the introduction of parameter-
efficient fine-tuning (PEFT) (Houlsby et al., 2019;
Lester et al., 2021; Mangrulkar et al., 2022; Fu
et al., 2023) allows the model to achieve perfor-
mance fully equivalent to full-parameter fine-tuning
by adjusting only a small number of parameters. In
the PEFT, Series Adapter adds the bottleneck feed-
forward layer in series to each multi-head and feed
forward layer of a Transformer block (Houlsby et al.,
2019). And the Parallel Adapter integrates bottle-
neck feed-forward layers in Parallel with the multi-
head and feed-forward layers of a Transformer
block in LLMs (Pfeiffer et al., 2020). LoRA intro-
duces trainable low-rank decomposition matrices
within the existing layers of LLMs, enabling the
model to adapt to new data while keeping the origi-
nal LLMs fixed to retain previous knowledge.

2.2. LLMs for machine translation

Using LLMs for machine translation with prompt-
tuning is attracting increasing attention. (Lin et al.,
2022) evaluate GPT-3 and XGLM-7.5B on 182 di-
rections. (Bang et al., 2023) evaluate ChatGPT on
12 directions. The capability of the prompt-tuning
LLMs largely depends on its surface representation,
small modifications to the prompt can stimulate the
abilities inherent in the model, leading to highly
variable performance. Prompting LLMs to imple-
ment MT is far from the encoder-decoder NMT. In
NMT, the target language label is usually appended
to the source input to indicate the translation di-
rection (Johnson et al., 2017; Zhang et al., 2020).
Additionally, incorporating retrieved phrases and
sentences into the input can enhance the transla-
tion quality (Li et al., 2022; Garcia and Firat, 2022).
(Agrawal et al., 2023) explored strategies for se-
lecting specific input examples and observed that
input-relevant examples based on n-gram overlap
significantly enhanced the capability of the prompt.

Still, these methods still rely on fine-tuning the
model with conventional methods or prompting
frozen LLMs, rather than fine-tuning for a specific
task. Our research aims to identify the key model
parameters for machine translation tasks by observ-
ing changes in model parameters, and to fine-tune
the model accurately while reducing computational
overhead.
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Figure 1: The consists of two stages

3. Proposed Method

Although the LLMs can implement translation, per-
forming translation under a decoder-only architec-
ture, the definition and context of cross-lingual in-
teractions often become ambiguous and variable,
making it challenging for the model to define spe-
cific cross-lingual interaction rules. In this paper,
we propose an adaptive parameter unfreezing strat-
egy that pivots on the quantified discrepancy be-
tween adjacent layers within the decoder. The core
around identifying and unfreezing the parameters
of the layer that manifests the maximal discrepancy
in its attention weights, thereby directing the train-
ing to focus on these potentially critical parameters.
The method consists of two steps, which we show
in Figure 1. The first step involves determining the
specific layers to unfreeze through SVD analysis.
The second step is to unfreeze the parameters for
fine-tuning.

3.1. Identification of Special Layers

Let A(l) denote the attention weights of the lth layer
in the decoder, the Singular Value Decomposition
(SVD) of which can be articulated as:

A(l) = U(l)Σ(l)(V(l))T (1)

where U(l), Σ(l) and V(l) represent the left sin-
gular vectors, singular values, and right singular
vectors, respectively, of the attention weights A(l) at
layer l. Given that the singular values Σ(l) capture
the energy or importance of different components in

the attention mechanism, the discrepancy D(l, l+1)
between two adjacent layers l and l+1 can be quan-
tified by comparing their respective singular values.
One possible metric for such quantification can be
given as:

D(l, l + 1) = ∥Σ(l) − Σ(l+1)∥F (2)

where ∥ · ∥F denotes the Frobenius norm.
To assess the significance of the discrepancy,

we evaluate D(l, l + 1) in valid dataset. Formally,
we define D̄(l, l+1) , the average discrepancy over
n examples between layers l and l + 1 as:

D̄(l, l + 1) =
1

n

n∑
i=1

Di(l, l + 1) (3)

where Di(l, l + 1) is the discrepancy between
layers l and l + 1 for the ith example. The layer to
unfreeze, l∗ is determined by:

l∗ = argmax
l

D̄(l, l + 1) (4)

Within the context of multilingual machine trans-
lation, the universality and flexibility of this adaptive
unfreezing strategy become especially pertinent,
as different target languages may exhibit varying
patterns of inter-layer disparities. Consequently, we
extend this layer unfreezing approach to multilin-
gual scenarios, conducting a specific analysis and
adjustment of the inter-layer discrepancies for each
language pair, to facilitate individualized optimiza-
tion for each target language. For a given source
language translating into multiple target languages,
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we individually evaluate the inter-layer discrepan-
cies for each target language and decide the layer
to unfreeze for that specific language pair. Formally,
let L denote the set of target languages, for each
target language lang ∈ L , we compute its inter-
layer discrepancies D̄l(l, l + 1) and determine the
layer l∗lang to unfreeze:

l∗lang = argmax
l

D̄l(l, l + 1) (5)

In this manner, the model can dynamically adjust
its parameter optimization process according to
the unique characteristics and specific inter-layer
disparity patterns of each target language. This
multilingual adaptive layer unfreezing strategy is
anticipated to further enhance the performance and
generalization capability of the translation model
across various target languages.

prompt

Translate the following sentence from [src] to [tgt]:
[src] : [source sentence]
[tgt] : [target sentence] 

Figure 2: The template for prompting

3.2. Fine-tuning Specific Parameters
Assuming the model parameters are denoted as Θ
= {θ1, θ2 · · · θn}. n represents the total number of
layers in the model. Based on the specific layers
provided in Section 3.1, we can unfreeze particular
parameters represented by θi for training. During
training, the data needs to be formatted in a specific
manner. Embed the source language X and the
target language Y into the template T. we adopt the
following template in Figure 2. where [src] and [tgt]
denote source and target language name of the lan-
guage pair, [source sentence] represents X, [target
sentence] represents Y. Perform Causal Language
Modeling tasks during training, Y is used as the su-
pervisory signal. There’s a slight difference during
the inference phase, there is no Y. The prompt first
converts each source input X into a prompt accord-
ing to template T, then generates a translation Y
by providing the prompt to the LLM. In this study,
we consider zero-shot prompting for translation.

4. Experimental Setup

Settings We experiment with bloomz-7b1-mt, a
LLM with 7B parameters pretrained on 46 lan-
guages monolingual corpora. For the maximum
token length, we uniformly set it to 2048. Our im-
plementation is based on the pre-trained models in

transformers (Wolf et al., 2020), and optimized with
ZeRO2 (Rajbhandari et al., 2020) and accelerate
(Gugger et al., 2022) during training.

Datasets We work on six languages: En-
glish(en), Arabic(ar), Spanish(es), Portuguese(pt),
Chinese(zh), French(fr) on opus-100 1. We have
constructed a training set centered around English,
comprising a total of ten language directions, each
including both forward and reverse, with 100000 en-
tries per direction, amounting to a total of 1000000
entries. The validation set is used to evaluate at-
tention weights during parameter tuning. Finally,
we perform major analysis on opus-100 test set.

We evaluate translation performance using
BLEU from SacreBLEU (Post, 2018).

5. Experiments

In this section, we provide a detailed account of a
series of experiments conducted for our proposed
model and method, including Main Result, ablation
studies, visual analysis, low-resource language,
and domain evaluation, aimed at comprehensively
evaluating the effectiveness of our proposed train-
ing approach.

5.1. Main Result
As shown in Figure 3, we visualize the attention
weights during the translation process from English
to French. This attention matrix displays significant
variations across multiple layers in images, espe-
cially between two particular layers. We observed
that the attention distribution of the model under-
goes drastic changes between these two layers,
which might imply that the model has learned cru-
cial mapping relationships or representations be-
tween different language pairs in these two layers.
We also find that the model’s focus points (parts
with higher attention weights) swiftly shift from one
structure to another distinct structure, which might
represent a pivotal turning point in the model learn-
ing syntactic structures or semantic mappings. This
finding is particularly noteworthy because models
typically comprehend input information at a deep
level through appropriate hierarchical decomposi-
tion.

Then, we utilize SVD to determine which layer’s
parameters to unlock. This algorithm is based on a
theory that layers where significant changes occur
in the attention matrix might be crucial for the model
to learn the mapping between the source and target
languages. Our strategy is to update and optimize
the weights at this layer, allowing the model to gain
more flexibility in learning the mappings between
different language pairs at this stage. By unfreez-
ing these layers, the model can further enhance

1https://opus.nlpl.eu/opus-100.php
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Figure 3: Attention weights in English to French machine translation.

its understanding of the more complex structural
mappings between source and target languages,
thereby improving overall translation performance.
As shown in Table 1, compared to three models on
multilingual translation tasks: pre-trained models,
full-parameter fine-tuning models and random pa-
rameter unfreezing models, the specific parameter
unfreezing model showed a significant improve-
ment in performance in most language pairs. Com-
pared to full-parameter fine-tuning models that re-
quire fine-tuning 7B parameters, specific parameter
unfreezing only needs to fine-tune a small number
of parameters to achieve similar effects.

However, in the translation task for Arabic, we
observed an phenomenon: although the transla-
tion performance for most languages improved, the
specific parameter unfreezing model did not show
a significant enhancement in performance for Ara-
bic compared to the random parameter unfreezing
model. Here, we attempt to explore possible rea-
sons. First, the linguistic characteristics of Arabic
itself might be a significant factor. The differences
in word order between Arabic and many other tar-
get languages (especially those using the Latin
alphabet) may require the model to do more "reor-

ganization" work during the transformation process.
This might become a challenge in certain situations,
particularly under our strategy of fine-tuning only
some layers of the model by unfreezing them. Sec-
ondly, the quality of the pre-trained model and the
compatibility with the data might also be a crucial
factor. If the pre-trained model performs weakly in
Arabic compared to other languages, then achiev-
ing desired results might be challenging even with
unfreezing and fine-tuning. In this case, we might
need more professional and precise pre-training
and fine-tuning strategies, such as utilizing richer
and more diverse Arabic pre-training data. Even
though our layer-unfreezing strategy demonstrates
advantages on most language pairs, the case with
Arabic reminds us: in practical applications, we
need to fully consider the characteristics of the tar-
get language, the quality of the pre-trained model,
and the selection of source-target language pairs.

5.2. Ablation study

In this Section, we conducted another set of abla-
tion experiments: random layer unfreezing. Com-
pared to the previous methods, we did not choose
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Direction Pre-trained Fine-tuning random specific activation
en-fr 19.4 31.6 25.5 31.3
fr-en 23.7 31.7 27.3 32.6
en-ar 10.9 18.0 16.3 17.9
ar-en 27.9 32.9 34.5 32.7
en-es 15.8 35.2 28.8 35.3
es-en 22.7 28.9 26.8 29.2
en-pt 12.4 30.5 24.8 29.1
pt-en 23.5 31.5 29.5 30.7
en-zh 3.8 23.7 18.6 22.2
zh-en 15.8 27.8 25.7 26.8

Table 1: BLEU scores for different language pairs, with bold text indicating the best translation performance.

layers to unfreeze based on explicit criteria or at-
tention matrix analysis, but randomly selected one
or several layers to unfreeze and fine-tune at each
training step. Judging from the experimental per-
formance in Table 1, the results of this method are
slightly inferior to full unfreezing.

In machine learning, goal-directed optimization
is often more effective than random or directionless
optimization. Randomly unfreezing layers might
mean that the model, while being fine-tuned, lacks
a clear and targeted direction for improvement. It
may involve parts of the model that are less needed,
or overlook areas that require urgent optimization.
Since the layers to be unfrozen are randomly se-
lected, it might affect the stability of model training
to some extent. Certain layers may involve core
parameters of the model, and changes to them dur-
ing the training process might render the model’s
learning process unstable. Layers of the model are
usually not entirely independent; the update of one
layer might depend on the parameter state of other
layers. Randomly unfreezing some layers might
break this possibility of coordinated updates. The
partially unfrozen layers might not be the focal point
of the experiment, meaning that even if some lay-
ers are optimized, it might not be well transmitted
throughout the entire network.

In summary, random layer unfreezing might bring
about performance improvement under certain cir-
cumstances because some optimization can still be
beneficial. However, due to its lack of directionality
and possible stability issues, it typically struggles
to outperform methods that involve selectively un-
freezing layers or completely unfreezing them with
a targeted approach.

5.3. Visual Analysis
In this subsection, we will further analyze the
changes brought about by training after unfreezing
specific layers through visualization. We will use
five translations from English to other languages as
samples, to compare the differences in weights for
each language direction between the pre-trained

Direction Pretrain
model Fine-tuning specific

activation
en-id 13.7 24.4 24.6
en-ca 15.8 17.8 17.6
en-hi 6.2 14.9 15.6
en-he 3.9 19.7 19.5

Table 2: BLEU scores for low-resources language
pairs.

model and the model after training with specific
unfrozen layers.

In the Figure 4, we observe a notable phe-
nomenon, that is, after unfreezing specific param-
eters, the model’s attention matrix undergoes a
significant change when handling machine trans-
lation tasks. The first word of each sentence is
Translate.Through visualization, we can see that
in the heatmap, the word Translate attracts the
majority of the model’s attention weights, forming a
very distinct bright spot. Compared to the model’s
distributed attention under general circumstances,
the focused attention of this particular layer demon-
strates how the model tightly locks its focus on this
directive word while completing the translation task.

This phenomenon may be a strategy gradually
learned by the model during the training process,
through optimizing the objective function, that is,
to focus attention as much as possible on the key-
words describing the nature of the task when deal-
ing with translation tasks, in order to execute the
task more precisely and efficiently. The model fo-
cuses the majority of its attention on the word Trans-
late. This helps the model maintain a very clear and
stable objective when performing tasks, ensuring
the model understands that its primary role is ma-
chine translation, and minimizing the interference
of other non-essential information. Such a strategy
may also enhance the robustness of the model to
a certain extent. When faced with input texts of
various types and styles, it can eliminate poten-
tial disturbances in the language-to-be-translated
related to machine translation tasks.
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Pretrain model Specific parameter
tuning model

Unfreezing the 19th layer for English to French.

Pretrain model

Pretrain model

Unfreezing the 13th layer for English to Arabic.

Specific parameter
tuning model

Specific parameter
tuning model

Unfreezing the 19th layer for English to Portuguese.

Pretrain model Specific parameter
tuning model

Unfreezing the 18th layer for English to Spanish.

Pretrain model Specific parameter
tuning model

Unfreezing the 16th layer for English to Chinese.

Figure 4: Comparison before and after training.

5.4. Low-resource language

In machine translation tasks, many language pairs
lack bilingual parallel sentences (Zhu et al., 2023a),
resulting in unequal resources for different lan-
guages within a model, which is also the case in
LLMs. In this experiment, we focused on four lan-
guage pairs: English to Indonesian (en-id), English
to Catalan (en-ca), English to Hindi (en-hi), and
English to Hebrew (en-he), each of which repre-
sents less than 2% of the training set in the original
BLOOM task. Based on the performance exhibited
by the model through the previous specific parame-
ter unfreezing strategy, we explored whether similar
trends could be observed or new patterns could be
found in these low-resource language pairs. The
results are shown in Table 2.

After implementing the specific parameter un-
freezing strategy on the four language pairs, we
observed that the model did indeed achieve a cer-
tain degree of performance improvement on all lan-
guage pairs. However, at the same time, we also
found that this improvement is basically on par with
or slightly lacking compared to the level achieved
with full parameter fine-tuning. The model’s ca-

pability on low resources is inherently inferior to
high-resource languages(Li et al., 2023). Although
specific parameter unfreezing can accelerate the
model’s training speed and enhance performance
to a certain extent, it also means that the model
can only learn and optimize in the parts of the pa-
rameters that are unfrozen, failing to effectively un-
lock the model’s full capability. Consequently, this
imposes certain limitations on the model’s overall
adaptability and learning ability.

5.5. Catastrophic Forgetting
In the deep learning, catastrophic forgetting refers
to the phenomenon where a model forgets previ-
ously learned knowledge when learning new knowl-
edge. In the scenario of multilingual machine trans-
lation, this forgetting is particularly evident when
the model is fine-tuned on a specific language pair,
which may lead to a significant decline in perfor-
mance on other non-fine-tuned target languages.
In this experiment, we focus on exploring and ad-
dressing this issue by implementing two strate-
gies: full-parameter fine-tuning and specific layer
unfreezing, and validating them across multiple lan-
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Trained Language Pairs Untrained Language Pairs Fine-tuning specific activation

en-fr

en-ar 7.4 9.5
en-pt 9.2 11.5
en-es 12.9 14.9
en-zh 3.7 4.2

en-ar

en-fr 13.8 15.2
en-pt 9.1 10.9
en-es 12.4 14.5
en-zh 2.1 2.2

en-pt

en-fr 17.5 18.2
en-ar 6.87 9.7
en-es 13.7 15.1
en-zh 2.6 3.9

en-es

en-fr 15.8 17.9
en-ar 8.6 8.9
en-pt 10.1 11.7
en-zh 2.8 3.1

en-zh

en-fr 15.6 17.9
en-ar 7.4 8.6
en-pt 10.9 11.1
en-es 11.5 14.1

Table 3: Evaluation Results for Untrained Language Pairs Under Single-Language Training.

guage pairs.
The experiment was set up with five language

pairs. Each of these five pairs was individually
subjected to full-parameter fine-tuning and spe-
cific layer unfreezing fine-tuning, and subsequently
tested on the remaining four languages. The ex-
perimental results are shown in Table 3. Through
the experimental results, we can observe that the
full-parameter fine-tuning performs worse in the
cross-language generalization experiment com-
pared to the specific layer unfreezing strategy. Full-
parameter fine-tuning may lead the model to over-
optimize for a specific language pair, sacrificing
its generalization capability across other language
pairs. Comprehensive parameter updates might re-
shape the model’s language representation and
generalization capabilities, and this specialized
learning might not be beneficial for maintaining
performance on other language pairs. Since all
parameters are retuned, the model might lose the
multi-language universal knowledge or specific lan-
guage grammatical and semantic rules accumu-
lated during the pre-training phase, while gradually
adapting to the new language pair.

The strategy of specific layer unfreezing can of-
ten better preserve the language representation
capabilities of a pre-trained model because it only
updates parameters in certain layers, allowing the
model to acquire new language feature learning
while retaining original multilingual knowledge. This
method can achieve more refined fine-tuning ob-
jectives by selectively unfreezing certain crucial
layers, for example, those more closely related to

specific tasks or language features, thereby improv-
ing performance on the target language pair while
maintaining some level of generalization capability
on other language pairs.

5.6. Multilingual Translation Hierarchical
Analysis

In this section, we analyzed the factors that affect
the changes of model weights. In general, models
may tend to learn to capture universal language
features at lower layers and capture more specific
language features at higher layers (Collobert et al.,
2011). The difficulty of translation may vary for
different languages. Some language pairs may re-
quire more lower-level features to handle grammar
structures and basic translation, while others may
require more higher-level features to handle seman-
tics and context. This could lead to variations in
attention weights concentrated at different layers.
On the other hand, the distribution of the data in
the pre-training corpus can also affect the changes
in attention weights. In language pairs with abun-
dant resources, the model may learn higher-level
features more quickly, leading to attention weight
changes that are more concentrated at higher lay-
ers. Conversely, in language pairs with limited re-
sources, the model may rely more on lower-level
features, resulting in attention weight changes that
are more concentrated at lower layers. In Table 4,
we present the data distribution of BLOOM during
model training, as well as the target layers unfrozen
by our unfreezing strategy and the final results ob-
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Direction Distribution(%) Layer(th) BLEU
en-ar 4.6 13 31.3
en-fr 12.9 19 17.9
en-es 10.8 18 35.3
en-pt 4.9 19 29.1
en-zh 16.2 16 22.2

Table 4: The distribution of en-xx target language
data in BLOOM, the unfreezing positions, and the
BLEU scores obtained after training with special
unfreezing.

tained. Arabic and Chinese exhibit significant gap
compared to English. However, due to the larger
volume of Chinese data, the layers where weight
changes occur tend to be positioned higher than
those in Arabic. The data volume for Portuguese is
approximately similar to Arabic, but Portuguese is
more similar to English. Therefore, the model tends
to learn higher-level features, and the layers where
weight changes occur are also positioned higher. In
summary, the proximity of language pairs and the
data distribution in pre-trained models are key fac-
tors that determine where attention weight changes
are concentrated. This difference can help identify
the appropriate unfreezing strategy, allowing for the
selection of unfrozen layers based on the specific
requirements of each language pair.

6. Conclusion

In this paper, we explore the challenges and unre-
solved issues in implementing machine translation
with LLMs. We propose a novel method that in-
volves adjusting task-related layers in large models
to better harness their machine translation capa-
bilities. Our approach aims to retain the model’s
knowledge on other tasks while optimizing perfor-
mance on a specific translation task. We achieve
this by revealing the structure and characteristics
of attention weights through SVD, understanding
the model’s behavior at each layer, and making fine
adjustments to specific layers. This method not
only addresses computational resource consump-
tion and catastrophic forgetting but also offers a
new perspective on utilizing large models more ef-
fectively.
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