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Abstract
Chinese Spelling Check (CSC) aims to detect and correct error tokens in Chinese contexts, which has a wide
range of applications. However, it is confronted with the challenges of insufficient annotated data and the issue that
previous methods may actually not fully leverage the existing datasets. In this paper, we introduce our plug-and-play
retrieval method with error-robust information for Chinese Spelling Check (RERIC), which can be directly applied to
existing CSC models. The datastore for retrieval is built completely based on the training data, with elaborate designs
according to the characteristics of CSC. Specifically, we employ multimodal representations that fuse phonetic,
morphologic, and contextual information in the calculation of query and key during retrieval to enhance robustness
against potential errors. Furthermore, in order to better judge the retrieved candidates, the n-gram surrounding the
token to be checked is regarded as the value and utilized for specific reranking. The experiment results on the
SIGHAN benchmarks demonstrate that our proposed method achieves substantial improvements over existing work.
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1. Introduction

The purpose of Chinese Spelling Check (CSC) is to
detect and correct spelling errors in Chinese texts,
which often occur between characters with similar
pronunciations and morphologies. The research
on CSC is significant since it benefits various NLP
tasks, such as speech recognition, optical character
recognition, Chinese grammar error correction, and
so on. With the development of deep learning and
pretrained language models, great progress has
been made in this task (Etoori et al., 2018; Guo
et al., 2019; Zhang et al., 2020). Further, many
current works have turned to introducing phonetic
and morphologic information (Nguyen et al., 2020;
Wang et al., 2021; Zhang et al., 2021). They are
based on statistics from Liu et al. (2011) that most
Chinese spelling errors are caused by phonetic or
morphologic (graphic) similarity.

However, Chinese spelling check is still challeng-
ing because it suffers from subtle and diverse errors.
Furthermore, we speculate that current methods
have not fully utilized the training data, let alone the
lack of adequate parallel corpora. As briefly shown
in Table 1, even the superior model REALISE (Xu
et al., 2021) in existing studies fails to correct the
spelling error "设(set)" to "这(this)" though the same
problem in similar contexts occurs a few times in
the training set. Meanwhile, REALISE cannot deal
with the case of "偷(steal)" while the correct context
"...人偷了..." often appears. Therefore, to make
better use of the existing dataset, we introduce the
retrieval-augmented method with our elaborately
designed error-robust information (ERI) and rerank-
ing mechanism on k-nearest neighbors (KNN).

Error
Pair
in

Training
Set

Input 因为设(set)是校长的工作。
Output (correct) 因为这(this)是校长的工作。
Output (model) 因为涉(relate)是校长的工作。
Translation Because this is the principal’s job.

Samples in
training set

我以为设(这)是她主演的电影。
我们设(这)个周末见面。
大家认为设(这)是正常的。...

Correct
Usage

in
Training

Set

Input 旁边的人头(head)了我的手册。
Output (correct) 旁边的人偷(steal)了我的手册。
Output (model) 旁边的人投(cast)了我的手册。
Translation Someone nearby stole my manual.

Samples in
training set

有人偷了我的钱包。
有个女生偷了我的东西。
店里的珠宝都被人偷了。...

Table 1: Examples of Chinese spelling errors, in-
cluding inputs, correct outputs, outputs from model
REALISE, and related samples in the training set.

Retrieval-augmented text generation, a new
paradigm known as "open-book exam", can fur-
ther improve the performance of target tasks by
integrating deep learning models with traditional re-
trieval technologies (Guu et al., 2020; Weston et al.,
2018; Gu et al., 2018). Among them, algorithms
based on KNN retrieval always predict tokens with
a nearest neighbor classifier over a large datastore
of cached examples, using representations from
a neural model for similarity search (Khandelwal
et al., 2019, 2020; Kassner and Schütze, 2020).
And they have been proven effective for many NLP
tasks, such as machine translation, language mod-
eling, dialogue generation, and so on. However,
by contrast, CSC has some significant differences
and difficulties, on the basis of which we propose
our corresponding RERIC method.
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Above all, we follow the basic pattern of the CSC
task and retrieval-augmented text generation to en-
hance the prediction of each token in inputs. How-
ever, both correct and incorrect tokens exist in the
input text, which makes it confusing and unrea-
sonable to arbitrarily store the traditional semantic
representations of each token for retrieval. As men-
tioned before, incorrect tokens, namely spelling
errors, are often caused by phonetic and morpho-
logic similarity. So we incorporate the phonetic and
morphologic information of each token itself into
the calculation of the query and key.

More importantly, the contextual information
around the target token is elaborately encoded in-
stead of its own semantic representation. We sup-
pose that such phonetic and morphologic informa-
tion fused with contextual encoding is more robust
and insensitive, no matter whether the target token
is correct or not. Furthermore, there are many over-
laps between each pair of input and output texts
in CSC since only a few tokens are incorrect. So
we propose to store the n-gram surrounding the
target token as the value to construct the datastore
for further reranking instead of conventionally just
storing the token itself. The retrieved candidate
is more likely to be the right one if it contains the
n-gram that overlaps more with the corresponding
positions in the input.

To sum up, we retrieve the k nearest neighbors
of the target token with its fused and error-robust
information. Then we rerank them based on the
extent of n-gram overlap and finally obtain the word
distribution through the specific calculation. We
introduce our RERIC method above into the pre-
trained CSC model by linearly interpolating the orig-
inal word distribution with that from retrieval. The
experimental results of RERIC on commonly used
SIGHAN benchmarks surpass those of the previous
methods. And following ablation studies show that
conventional retrieval-augmented methods on CSC
will result in failure, verifying the effectiveness and
necessity of our proposed error-robust information
and reranking mechanism. Furthermore, we can
easily expand relevant data by directly adding non-
parallel texts to the datastore, unlike other works
that need to struggle with constructing pseudo-data.
Our contributions are as follows:

1) To our best knowledge, our work is the first to
employ the retrieval-augmented method on the
Chinese spelling check task, which can be used
in a plug-and-play manner without training and
allows more flexible expansion of the datastore.

2) We elaborately design the specific key and value
in the datastore with the fused multimodal in-
formation and reranking mechanism for more
robust retrieval, which are novel and effective.

3) The experiment results show that our method1

achieves superior performance on the SIGHAN
datasets compared with previous work.

2. Backgrounds

2.1. Nearest Neighbor Language Model
Given a context sequence ct−1 = (w1, · · · , wt−1),
the standard language model estimates the distri-
bution over the next target token as pLM (wt | ct−1).
Khandelwal et al. (2019) proposed KNN-LM to in-
volve augmenting the pretrained LM with the top-k
nearest neighbors retrieval mechanism.

Firstly, let f(·) be the function that maps the con-
text ci−1 to a fixed-length vector representation as
the key, and the target token wi serves as the value.
Therefore, the training set D can be used to build
the datastore for retrieval as:

(K,V) = {(f (ci−1) , wi) | (ci−1, wi) ∈ D} (1)

Then at step t during inference, given the context
ct−1, the model queries the datastore with f(ct−1)
to retrieve its k-nearest neighbors N using a dis-
tance function d(·, ·) and then obtains the additional
probability of target token wt over the vocabulary:

pKNN(wt | ct−1) ∝∑
(ki,vi)∈N

Iwt=vi exp (−d (ki, f(ct−1))) (2)

Finally, the distribution obtained by retrieval will
be interpolated to the standard LM distribution:

p(wt | ct−1) = λpKNN(wt | ct−1)

+ (1− λ)pLM(wt | ct−1) (3)

2.2. Chinese Spelling Check
The goal of the standard CSC model is to learn
the conditional probability pCSC (y | x) for correct-
ing a sentence x = {x1, · · · , xn} which may in-
clude spelling errors to the corresponding correct
one y = {y1, · · · , yn}. Correction is typically per-
formed on each position according to the probabil-
ity pCSC (yi | xi,x), which is based on the encoded
representation of token xi in the whole context x.

We represent the semantic representation of xi

encoded by the CSC model as si, which is tradi-
tionally used. Due to the characteristics of CSC,
spelling errors always arise from phonetic or mor-
phologic similarity and confusion. Therefore, cur-
rent CSC models also obtain representations of the
phonetic and morphologic information of xi, which
are denoted as pi and mi, respectively.

1https://github.com/Arvid-pku/RERIC

https://github.com/Arvid-pku/RERIC
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The final representation ri is obtained through
fusing these representations above with an appro-
priate approach, such as a gating mechanism g:

ri = g(si, pi,mi) (4)

Then, the CSC model will output probability dis-
tribution of each token over vocabulary V according
to the corresponding fused representation ri,

pCSC (yi | xi,x) = t(ri) (5)

where t is a classification module, such as a linear
transform followed by the softmax layer.

Since Chinese Spelling Check is usually per-
formed by predicting each token with the corre-
sponding representation, we can enhance the base
CSC model with a k-nearest neighbor retrieval
mechanism. Based on this idea, it is natural to
construct a datastore using such representation
vectors from the CSC model as dense indexes and
then employ retrieval to integrate with the traditional
CSC model. However, due to the characteristics
and complications of the CSC task, such as the
mix of correct and incorrect tokens in the input,
we need to make necessary adjustments for error
robustness, which will be described in Section 3.

3. Methodology

As shown in Figure 1, the core idea of our work
is to enhance the base CSC model with a novel
k-nearest neighbor retrieval and n-gram reranking
mechanism. The datastore built for retrieval is care-
fully designed according to the characteristics of
the CSC task to improve robustness against poten-
tial spelling errors in the input text and also make
better use of every token, no matter whether it is
correct or not. In Section 3.1, we introduce our de-
sign of key and value in the datastore construction.
In Section 3.2, we describe our reranking method
and how to utilize retrieved KNN candidates.

3.1. Datastore Construction
The structure of the datastore is a dictionary, in
which each element consists of the pair (key, value)
based on the CSC training data. The key is used
to retrieve the k-nearest neighbors for the target
token, and the corresponding value serves as the
probable candidates for further integration.

Key Design The goal of our key design is to al-
leviate the negative impact of mixing correct and
incorrect tokens in the input and provide sufficient
information for error correction. Each target token
needs to be represented more rationally and ro-
bustly in the same high-dimensional space.

We take the last sentence "世委组织指出...(The
World Commission states that...)" in the training

data in Figure 1 as an example. It should be cor-
rected to "世卫组织指出...(WHO states that...)",
where the token "委" is incorrect and has a simi-
lar pronunciation ("wei") to the correct token "卫".
We believe that the pure semantic information of
the incorrect token is misleading and unreliable
for retrieval. In contrast, the phonetic or morpho-
logic information is usually approximately correct
in such cases, according to the study of Liu et al.
(2011). Therefore, it is more reasonable to utilize
multimodal information about pronunciation and
morphology in the design of keys.

Furthermore, we extend the semantic informa-
tion of the target token itself to the whole contextual
information, which is included in the key calcula-
tion and is more robust and essential in CSC. In
the example mentioned above, we indeed require
the context of "委" that involves "世(world)" and "组
织(organization)" to infer the correct expression "世
卫组织(WHO)". Although the traditional semantic
representation from language models has usually
integrated contextual information to some extent,
we suppose it is not robust enough because it is still
mainly influenced by the target token. To further
improve error-robustness, we propose a careful ap-
proach to obtaining the contextual representation.

Specifically, although the context contains more
words so as to be possibly insensitive to individual
potential incorrect tokens, such semantic errors still
have negative impacts. So we fuse the phonetic
and morphologic representations with the semantic
ones when dealing with tokens in context. More-
over, we suppose that the nearer context content
to the target token may play more important roles.
Hence, we use a Gaussian distribution to calculate
the weighted average of the fused representations
of tokens around the current token to obtain our
specific contextual representation.

Formally, we use unified definitions the same as
in Section 2.2, where (x,y) is denoted as a sample
in the training data D. And st, pt,mt represent the
semantic, phonetic, and morphologic representa-
tions of the target token xt at step t, respectively.
In the calculation of contextual representation ct,
these representations of each token xi in the con-
text are fused with the fusion function g, which is
usually a gate mechanism. Then ct is obtained
by weighting and averaging the representations of
the neighboring tokens according to the Gaussian
distribution fn and token distance |i− t|:

ct =
∑

1≤i≤L

fn(i; t, σ)g(si, pi,mi) (6)

fn(i; t, σ) =
1√
2πσ

exp(− (i− t)2

2σ2
) (7)

where L is the length of input sequence x.
In the end, we use concatenation to combine and

store three parts of information and obtain the key
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Training Data

这一个月以来 …

研究人员所现 …

三兴堆遗址中 …

…

世委组织指出 …

Test Data

这以个重大发 …

…

Keys

…

…

Queries

…

Values
(<bos>,这,一)

(这,一,个)

…

(<bos>,世,卫)

(世,卫,组)

…

Nearest k Neighbors

(这,以,后) 0.93

(这,一,个) 0.89

(这,几,个) 0.84

… …

Distribution

一 0.63

几 0.21

以 0.14

… …

Phonetic

Robust Fusion

Semantic

Query / Key

Inference Mode
Datastore Construction

Inference Process Error-robust information

Retrieval

Datastore

Reranking

Base CSC Model

Contextual

morphologic

Figure 1: An illustration of our RERIC method with the datastore construction and the inference process
including the KNN retrieval and reranking. The key contains the phonetic, morphologic, and contextual
information of the token obtained from the base CSC model, and the value is in the form of 3-gram here.
There are both correct (the majority) and incorrect tokens (marked in red) in the training and test data.
Moreover, the target token and corresponding positions in n-gram values are underlined. And the test
sample shows the correction process for the token "以(to)" , which should be corrected to "一(one)".

that is consistent with our motivation, representing
the error-robust information (ERI).

kt = [pt;mt; ct] (8)

Value Design As mentioned in Section 2.1, the
standard KNN-LM only uses the corrected target
token yt as the value if directly applied to the CSC
task, which is relatively simple and improvable.
Considering another sample "这以个(this to)..." in
the test data in Figure 1, we can find that the can-
didate "这以后(after this)..." ranks the highest. But
the corresponding target token "以" is the same as
that of the input and incorrect, which will lead to
the wrong correction. In such cases, the influence
of continuous contextual representations is insuf-
ficient since several candidates all contain similar
contexts. And the same phonetic and morphologic
representations as the input query indeed result in
misleading advantages in ranking.

In view of this, we propose to extend the single
target token to the n-gram around it as the value
for further matching and reranking. They are per-
formed through the discrete comparison of tokens
in the n-gram value with the corresponding ones in
the input. And we can reduce the role of the target
token in matching, namely the central token of the
n-gram, to deal with the cases mentioned above.
For example, "这一个(this one)..." should be more
likely to be correct than "这以后(after this)...“ for
the input "这以个(this to)..." with more overlapping
context except "以". More details will be described
in Section 3.2.

To be specific, we store the n-gram with a win-
dow of size n centered on the corresponding target

token yt in the output for explicitly matching the
contextual information, as follows:

vt = [yt−⌊n/2⌋, · · · , yt, · · · , yt+⌊n/2⌋] (9)

In these ways, the datastore for retrieval is finally
built from the whole training dataset:

(K,V) =
⋃

(x,y)∈D

{(kt, vt),∀(xt, yt) ∈ (x,y)} (10)

3.2. Retrieval and Reranking
Retrieval During the process of correction, for
each token xt in the input sentence, our RERIC
method aims to predict the corresponding yt. Con-
sidering the intention of our retrieval augmentation,
we obtain the specific query qt = [pt;mt; ct] in the
same way as the calculation of the key described
in Section 3.1.

Then the query is used to retrieve the k-nearest
neighbors in the datastore we constructed before
based on the measure of similarity. We utilize the
common l2 distance, which will continue to partic-
ipate in subsequent weighting. Formally, the ob-
tained k-nearest neighbors are denoted as Nt =
{(ki, vi), i ∈ {1, 2, · · · k}} and their corresponding
distance as Dt = {d(qt, ki), i ∈ {1, 2, · · · k}}, where
d(qt, k

i) means l2 distance between qt and ki.

Reranking In the preceding sections, we have
introduced our novel n-gram value for further rerank-
ing to improve the utilization of retrieved candi-
dates. Specifically, the n-gram of input target to-
ken xt for overlap matching is obtained similarly as
gt = [xt−⌊n/2⌋, · · · , xt, · · · , xt+⌊n/2⌋] with a window
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of size n centered on xt. We calculate the modified
distance djt of the retrieved j-th neighbor for xt as:

αj
t =

∑
1≤i≤n I(vj(i), gt(i))wi

n
,

djt = (1− αj
t )d(qt, k

j),

(11)

where wi is the customized weight if the two tokens
at position i of vj and gt are the same. Particularly,
the weight of the central position of the n-gram is
diminished in order to address cases where the tar-
get tokens in vj and gt are the same and incorrect,
like "这以后(after this)..." mentioned in Section 3.1.
And αj

t represents how much the retrieved n-gram
overlaps with the input, which can measure their
similarity. The larger the overlap is, the smaller the
modified distance djt becomes, and then the higher
the corresponding candidate will rerank.

Utilization With the above designs, the proba-
bility distribution over the vocabulary of the target
output token yt based on the retrieved neighbors
and reranking is computed as:

pRERIC(yt | xt,x) ∝∑
(ki,vi)∈Nt

I(yt = vi(⌊n/2⌋))exp(−dit
T

), (12)

where T is the softmax temperature and vi(⌊n/2⌋)
is the central word of n-gram vi. The final probability
when predicting yt is calculated as the interpolation
of two distributions with a hyperparameter λ:

p(yt | xt,x) = λpRERIC(yt | xt,x)

+ (1− λ)pCSC(yt | xt,x)
(13)

where pCSC indicates the vanilla distribution from a
base CSC model.

4. Experiments

In this section, we introduce the details of our ex-
periments, including the datasets, metrics for evalu-
ation, baselines, and the main results we obtained.
Then, in the next section, we conduct further anal-
yses and discussions to verify the effectiveness of
our method.

4.1. Datasets
Training Data We follow previous works on CSC
(Zhang et al., 2020; Liu et al., 2021; Xu et al., 2021;
Li et al., 2022b) and use the same training data,
including the training samples from SIGHAN13
(Wu et al., 2013), SIGHAN14 (Yu et al., 2014),
SIGHAN15 (Tseng et al., 2015) and the pseudo
training data, denoted as Wang271K (Wang et al.,
2018). In addition, we randomly select 10% of the
training data during training as our verification set
to select the best hyperparameters.

Dataset #Sent #Error #Error-pair
SIGHAN Training 6126 8470 3318

Wang271K 271329 381962 22409
SIGHAN13 Test 1000 1217 748
SIGHAN14 Test 1062 769 461
SIGHAN15 Test 1100 703 460

Table 2: Statistics of the SIGHAN and Wang271K
used in our experiments. We report the number of
sentences in the datasets (#Sent), the number of
misspellings contained (#Error) and the number of
different kinds of errors (#Error-pair).

Test Data To guarantee fairness, we use the
same test data as previous work, which are from the
SIGHAN13/14/15 test datasets. It is noted that the
text of the original SIGHAN dataset is in Traditional
Chinese, so we use OpenCC to pre-process these
original datasets into Simplified Chinese, which has
been commonly applied in previous work (Wang
et al., 2019; Cheng et al., 2020; Zhang et al., 2020).
Detailed statistics of the training and test data we
used in our experiments are shown in Table 2.

4.2. Evaluation Methods
We evaluate the performance of our RERIC method
with the sentence-level metrics that are commonly
used in the existing work of CSC. The results are re-
ported at both the detection level and the correction
level. At the detection level, a sentence is consid-
ered correct if all spelling errors in the sentence
are successfully detected. At the correction level,
the spelling errors not only need to be detected
but also need to be corrected. We report accuracy,
precision, recall, and F1 scores at both levels, the
same as in previous studies.

4.3. Baseline Models
For better comparison of our method, we selected
several advanced baseline methods with the same
experimental settings as ours: FASpell designed
by Hong et al. (2019) is a model that consists of a
denoising autoencoder and a decoder. SpellGCN
(Cheng et al., 2020) integrates the confusion set
to the correction model through GCNs to improve
CSC performance. PLOME (Liu et al., 2021) is a
task-specific pretrained language model to correct
spelling errors. REALISE (Xu et al., 2021) is a
multimodal CSC model which captures and mixes
the semantic, phonetic and morphologic informa-
tion. ECOPO (Li et al., 2022b) is an error-driven
contrastive probability optimization framework and
can be combined with other CSC models. In addi-
tion, popular large language models like ChatGPT 2

2https://chat.openai.com/

https://chat.openai.com/
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Parameter Value Parameter Value
k 12 T 50

n-gram 3 w (1.68, 0.68, 1.68)
λ 0.4 σ 1

Table 3: The hyperparameters of our method.

have recently made great progress and performed
well on various tasks and domains. Therefore, we
also conduct experiments with ChatGPT on CSC,
which will be discussed in Section 5.3.

4.4. Implementation Details

To get the error-robust information proposed to con-
struct our datastore, we consider using a pretrained
model on the CSC task, which is similar to the
retrieval-related works in other domains. And we
choose REALISE, a strong multimodal model that
captures semantic, phonetic, and morphologic in-
formation, which meets our requirements.

More specifically, a pretrained GRU encodes the
pronunciation (pinyin) sequence of input to obtain
the phonetic information pt of each token xt, while a
pretrained ResNet encodes the character graphics
to obtain the morphologic information mt. Given
the trade-off between storage space and model
performance, we store 3-grams centered on the
position of the current token as the value of the
datastore. We implement the grid search on the
validation set to determine the hyperparameters
of our experiments, and more details are shown
in Table 3. Since we do not need to retrain the
CSC model, we only focus on the hyperparameters
during our retrieval-augmented inference.

4.5. Experimental Results

The main results on sentence-level metrics of our
RERIC method and all baseline models are shown
in Table 4. It can be observed that our method has
obtained substantial improvements on SIGHAN14
and SIGHAN15 while achieving comparable results
on SIGHAN13, compared to the previous state-of-
the-art performance. When turning to the REALISE,
on which our method is based, the improvement
is more remarkable, with an average increase of
about 2.0% on three SIGHAN test datasets.

On the other hand, it is notable that both the ac-
curacy and precision scores of our method have
improved remarkably, while the recall score has not
shown much change. It demonstrates that RERIC
becomes less prone to wrong corrections, which
may be due to the fact that the related correct sam-
ples in training data are better utilized. More de-
tailed analyses are provided in Section 5.

5. Analyses and Discussions

5.1. Ablation Experiments
We conduct ablation experiments to analyze and
verify the effects of different components of RERIC,
involving error-robust information (ERI), n-gram
value reranking (NVR), and specific contextual rep-
resentation. The results are shown in Table 5.

They indicate that all three types of represen-
tations in ERI are critical, especially the phonetic
information. It may be due to the fact that the lar
gest proportion of errors in the SIGHAN test set
are caused by phonetic similarity. And there is a
relatively small decrease when contextual informa-
tion is removed, probably because the design of
NVR also introduces contextual information into
the model. We also show the results of the tra-
ditional usage of semantic representation, which
perform much worse and prove the importance of
our contextual representation.

Moreover, when ERI or NVR are removed, the
performance of the model drops significantly at
both detection and correction levels. The absence
of reranking by the n-gram value may make the
model unable to more robustly deal with the re-
trieved neighbors. Besides, using only the standard
hidden representation of each token, like traditional
retrieval methods, the model will be confused about
whether the input token is reliable and almost fail to
benefit from the retrieval augmentation. It proves
that these components are crucial to our method
and the improvement of the CSC task.

Moreover, in the case study, we find that the
presence of similar samples in the training data
and datastore successfully improves the model to
avoid incorrect modifications. It is also consistent
with the great increase in precision score of our
RERIC method. Due to space limitations, we do
not show detailed examples and illustrations here.

5.2. Effects of Key Hyperparameters
Despite the advantage of our method not requiring
additional training, several key hyperparameters
during inference and retrieval are crucial and should
be determined carefully. Therefore, we show the
effects of different hyperparameter settings in our
method, together with the baseline scores from
REALISE for convenient comparison.
Number of Neighbors k As shown in Figure 2,
initially, the performance improves with the increase
in the number of neighbors used in the retrieval. But
it starts to decrease when k reaches about 16. It
may be because more noise will be introduced if
too many neighbors are utilized.
Softmax Temperature T As shown in Figure 2,
the performance is relatively robust to softmax tem-
perature T and achieves good results over a wide
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Test Set Model Detection Level Correction Level
Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

SIGHAN13

FASpell (Hong et al., 2019) 63.1 76.2 63.2 69.1 60.5 73.1 60.5 66.2
SpellGCN (Cheng et al., 2020) - 80.1 74.4 77.2 - 78.3 72.7 75.4

ECOPO† (Li et al., 2022b) 83.3 89.3 83.2 86.2 82.1 88.5 82.0 85.1
REALISE† (Xu et al., 2021) 82.7 88.6 82.5 85.4 81.4 87.2 81.2 84.1

RERIC† (Ours) 83.0 89.7 82.8 86.1 82.1 88.7 81.9 85.2

SIGHAN14

FASpell (Hong et al., 2019) 70.0 61.0 53.5 57.0 69.3 59.4 52.0 55.4
SpellGCN (Cheng et al., 2020) - 65.1 69.5 67.2 - 63.1 67.2 65.3

ECOPO (Li et al., 2022b) 79.0 68.8 72.1 70.4 78.5 67.5 71.0 69.2
REALISE (Xu et al., 2021) 78.4 67.8 71.5 69.6 77.7 66.3 70.0 68.1

RERIC (Ours) 79.9 72.1 70.6 71.3 79.6 71.3 69.8 70.6

SIGHAN15

FASpell (Hong et al., 2019) 74.2 67.6 60.0 63.5 73.7 66.6 59.1 62.6
SpellGCN (Cheng et al., 2020) - 74.8 80.7 77.7 - 72.1 77.7 75.9

PLOME (Liu et al., 2021) - 77.4 81.5 79.4 - 75.3 79.3 77.2
ECOPO (Li et al., 2022b) 85.0 77.5 82.6 80.0 84.2 76.1 81.2 78.5
REALISE (Xu et al., 2021) 84.7 77.3 81.3 79.3 84.0 75.9 79.9 77.8

RERIC (Ours) 86.1 81.1 81.3 81.2 85.6 79.9 80.1 80.0

Table 4: Sentence-level performance of our RERIC method and baseline models. REALISE is the
backbone and base CSC model for RERIC to build the datastore. Results marked with "†" on SIGHAN
2013 are post-processed with removing all "的", "地", "得" from the model output, due to the low annotation
quality about them, which is to follow the previous work (Xu et al., 2021) for convenient comparison.

Method Detection Level Correction Level
Pre Rec F1 Pre Rec F1

RERIC 81.1 81.3 81.2 79.9 80.1 80.0
w/o ERI-P 79.3 80.9 80.1 78.3 79.4 78.9
w/o ERI-M 79.5 81.0 80.2 78.7 79.5 79.1
w/o ERI-C 80.4 81.1 80.7 79.2 80.2 79.7
w/ ERI-S 74.6 78.4 76.5 72.0 75.7 73.8
w/o ERI 77.7 81.3 79.5 76.5 80.0 78.2
w/o NVR 79.7 81.2 80.4 78.4 79.9 79.1
w/o Retrieval 77.3 81.3 79.3 75.9 79.9 77.8

Table 5: Ablation results of our RERIC method
on SIGHAN2015 test set. We apply the following
changes: 1) removing each component of ERI (w/o
ERI-P, w/o ERI-M, and w/o ERI-C denote the re-
duction of phonetic, morphologic, and contextual
information, respectively); 2) using traditional se-
mantic representation as the component of ERI (w/
ERI-S); 3) using the standard hidden representa-
tion of the token as the key (w/o ERI); 4) removing
the reranking process and only using the single
token as the value (w/o NVR).

range compared to the base model.
Interpolation Parameter λ As shown in Figure
3, our method performs best when λ ≈ 0.4, which
shows the optimal proportion for the interpolation of
the base CSC model and predictions from retrieval.

5.3. Discussions with ChatGPT
To compare the currently popular and powerful
large language models, we also conduct experi-
ments on the CSC task and the SIGHAN15 test set
with ChatGPT. We have attempted different input
prompts for ChatGPT, such as instructions in En-
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Figure 2: Effect of the number of retrieved neigh-
bors k and the softmax temperature T on the
SIGHAN 2015 test set. The performance of the
baseline REALISE is represented as a dashed line.

Method Detection Level Correction Level
Pre Rec F1 Pre Rec F1

ChatGPT 36.8 79.4 50.3 26.5 57.2 36.2
RERIC 81.1 81.3 81.2 79.9 80.1 80.0

Table 6: Results of ChatGPT on the SIGHAN15
test set with the few-shot setting.

glish, multiple examples, explanations and reasons
for error correction in the examples, etc. The best
results we have obtained are shown in Table 6, us-
ing the setting of few-shot. However, we find that
the results are, in fact, worse than many baselines,
let alone our RERIC method. This is probably be-
cause ChatGPT is not adept at performing tasks
like CSC that strictly restrict the output format, and
thus there are many over-correction problems.
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Figure 3: Effect of the interpolation parameter λ on
the SIGHAN 2013, 2014 and 2015 test set. The
performance of the REALISE in three test sets is
represented as the dashed line in the same color.

Method SIGHAN 2013 SIGHAN 2014 SIGHAN 2015
D-level C-level D-level C-level D-level C-level

RERIC 86.3 85.6 71.3 70.6 81.2 80.0
+ DA 86.5 85.6 71.7 70.7 81.5 80.9

Table 7: The results of our RERIC method after
performing data augmentation (DA). D-level and
C-level denote the detection-level F1 score and
correction-level F1 score, respectively.

5.4. Data Augmentation

In addition, we introduce specific data augmenta-
tion to expand our retrieval datastore, aiming to
further improve the performance of our method.
Notably, previous CSC studies often performed
data augmentation by adding noise to raw texts
with the confusion set obtained by rule-based ap-
proaches. However, such patterns cannot guar-
antee the quality of the synthetic data, which may
consequently impair the performance. Moreover,
they necessitate retraining the model, which con-
sumes additional time and resources. In contrast,
our method is more straightforward, allowing for
the direct incorporation of raw and correct texts into
the datastore without retraining or synthetic data
construction. Specifically, we utilize the wiki2019zh
dataset (Xu, 2019), which comprises about one
million articles from the Chinese Wikipedia with-
out spelling errors. As demonstrated in Table 7,
after performing data augmentation, our method
achieves an overall improvement, proving the effi-
cacy of this simple strategy.

5.5. Case Study

It can be seen that the presence of similar contexts
in the training set causes the model to prefer to keep
the current token and therefore avoid incorrectly
modifying it. That’s why in Table 4 the precision
score of the model has increased a lot.

As shown in Table 8, given an input, "老师就进

Input: 老师进教师来了。
Correct: 老师就进教室来了。
Translation: The teacher came into the classroom。
CSC Output: 老师就请教室来了。
RERIC Output: 老师就进教室来了。
Traing Sample: 当老师的第一个脚步踏进教室时...
Input: 我带上运动鞋出门。
Correct: 我带上运动鞋出门。
Translation: I take my sneakers and go out。
CSC Output: 我戴上运动鞋出门。
RERIC Output: 我带上运动鞋出门。

Traing Sample: ...带上半亿珠宝现身北京。
...被老师带上街头。

Table 8: Some examples from SIGHAN 2015. The
word in red means an error, and the word in green
means correct. "CSC Output" means the prediction
from standard REALISE model.

教师来了", which means "The teacher entered the
teacher", the standard CSC model REALISE not
only changes "师(teacher)" to "室(room)" but incor-
rectly changes "进(entered)" to "请(invite)". Mean-
while the model argumented by the kNN avoids
incorrect modifications successfully, benefit from a
number of similar usages of "进" in the training set,
such as ”当老师的第一个脚步踏进教室时" which
means "When the teacher’s first footsteps entered
the classroom".

Another example is "我带上运动鞋出门(.I take
my sneakers and go out.)", which is correct, but
REALISE incorrectly changed the "带(take)" in it to
"戴(wear)" which is usually used in Chinese to refer
to putting on a hat, glasses, etc. And RERIC does
not make this mistake, because there are many
similar uses of "带(take)" in the training set.

More similar examples can be found by compar-
ing outputs of REALISE with our model.

5.6. Inference Time
We also investigate the influence of our RERIC
method on the inference time of CSC through a
comparison with the base CSC model REALISE.
The results show that our retrieval method only
causes a slight increase in inference time of only
about 6% with our hyperparameters and batch size
of 32. Moreover, the storage increase is also small
given the 1.3G size of the datastore. These is-
sues are common problems with retrieval-related
methods and have little impact on the actual imple-
mentation of the CSC task.

6. Related Works

Chinese Spelling Check CSC has received wide
attention over the past decades. Early work (Mangu
and Brill, 1997; Jiang et al., 2012) used manually
designed rules to correct the errors. After that,
methods based on statistical language models also
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made some progress (Yu and Li, 2014). Deep learn-
ing and pretrained language model has achieved
great improvements in recent years. FASpell (Hong
et al., 2019) applied BERT as a denoising autoen-
coder for CSC. Soft-Masked BERT (Zhang et al.,
2020) chose to combine a Bi-GRU based detection
network and a BERT based correction network.

In recent times, many studies have attempted
to introduce phonetic and morphologic information
into CSC models. SpellGCN was proposed to em-
ploy graph convolutional network on pronunciation
and shape similarity graphs. Nguyen et al. (2020)
employed TreeLSTM to get hierarchical character
embeddings as morphologic information. REALISE
(Xu et al., 2021) used Transformer (Vaswani et al.,
2017) and ResNet5 (He et al., 2016) to capture
phonetic and morphologic information separately.
In this respect，PLOME (Liu et al., 2021) chose to
apply the GRU (Bahdanau et al., 2014) to encode
pinyin and strokes sequence. PHMOSpell (Huang
et al., 2021) derived phonetic and morphologic in-
formation from multimodal pretrained models.

Retrieval Augmentation Retrieval-augmented
text generation have been applied to many tasks
including language modeling (Guu et al., 2020),
dialogue (Weston et al., 2018), machine transla-
tion (Gu et al., 2018) and others. Li et al. (2022a)
provide an overview of this paradigm.

Of these retrieval-augmented methods, the stud-
ies that are most relevant to our work are KNN-LM
(Khandelwal et al., 2019), which extends a pre-
trained language model by linearly interpolating
it with a k-nearest neighbors model; KNN-NMT
(Khandelwal et al., 2020), which combines the KNN
algorithm closely with NMT models to improve per-
formance; and BERT-KNN (Kassner and Schütze,
2020), which integrates the prediction from BERT
for question with the KNN-based search.

7. Conclusion

In this paper, we propose RERIC to improve the
current CSC model with our retrieval and rerank-
ing method. The key and value in the datastore
for retrieval are elaborately designed according to
the characteristics of CSC to effectively make use
of the training data. More importantly, we employ
multimodal representation that fuses phonetic, mor-
phologic, and contextual information, together with
n-gram matching and reranking, to improve error
robustness during retrieval. The experimental re-
sults and relevant analyses prove the effectiveness
of our method and its improvement over previous
studies. Furthermore, our method can be simply ap-
plied in a plug-and-play manner without additional
training, which shows superiority.
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