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Abstract
Rigorous evaluation of the causal effects of semantic features on language model predictions can be hard to
achieve for natural language reasoning problems. However, this is such a desirable form of analysis from both an
interpretability and model evaluation perspective, that it is valuable to investigate specific patterns of reasoning with
enough structure and regularity to identify and quantify systematic reasoning failures in widely-used models. In this
vein, we pick a portion of the NLI task for which an explicit causal diagram can be systematically constructed: the
case where across two sentences (the premise and hypothesis), two related words/terms occur in a shared context.
In this work, we apply causal effect estimation strategies to measure the effect of context interventions (whose effect
on the entailment label is mediated by the semantic monotonicity characteristic) and interventions on the inserted
word-pair (whose effect on the entailment label is mediated by the relation between these words). Extending related
work on causal analysis of NLP models in different settings, we perform an extensive interventional study on the
NLI task to investigate robustness to irrelevant changes and sensitivity to impactful changes of Transformers. The
results strongly bolster the fact that similar benchmark accuracy scores may be observed for models that exhibit very
different behaviour. Moreover, our methodology reinforces previously suspected biases from a causal perspective,
including biases in favour of upward-monotone contexts and ignoring the effects of negation markers.

1. Introduction

There is an abundance of reported cases where
high accuracies in NLP tasks can be attributed
to simple heuristics and dataset artifacts (McCoy
et al., 2019a). As such, when we expect a lan-
guage model to capture a specific reasoning strat-
egy or correctly use certain semantic features, it
has become good practice to perform evaluations
that provide a more granular and qualitative view
into model behaviour and efficacy. In particular,
there is a trend in recent work to incorporate causal
measures and interventional experimental setups
in order to better understand the captured features
and reasoning mechanisms of NLP models (Vig
et al., 2020; Finlayson et al., 2021; Stolfo et al.,
2023; Geiger et al., 2021; Rozanova et al., 2023;
Arakelyan et al., 2024).

In general, it can be hard to pinpoint all the in-
termediate features and critical representation el-
ements which are guiding the inference behind
an NLP task. However, in many cases there are
subtasks which have enough semantic/logical reg-
ularity to perform stronger analyses and diagnose
clear points of failure within larger tasks such as
NLI and QA (Question Answering). As soon as
we are able to draw a causal diagram which cap-
tures a portion of the model’s expected reasoning
capabillities, we may be guided in the design of
interventional experiments which allow us to es-
timate causal quantities of interest, giving insight

into how different aspects of the inputs are used by
models.

In this work, we investigate a structured subset
of the NLI task (Rozanova et al., 2022) to better
understand the use of two semantic inference fea-
tures by NLI models: concept relations and logi-
cal monotonicity. We use these intermediate ab-
stracted semantic feature labels to construct inter-
vention sets out of NLI examples which allow us to
measure certain causal effects. Building upon re-
cent work on causal analysis of NLP models Stolfo
et al. (2023), we use the intervention sets to sys-
tematically and quantitatively characterise models’
sensitivity to relevant changes in these semantic
features and robustness to irrelevant changes.

Our contributions may be summarised as fol-
lows:

• Extending previous work on causal analysis of
NLP models, we investigate a structured sub-
problem in NLI (in our case, a subtask based
on natural logic (MacCartney and Manning,
2007)) and present a causal diagram which
captures both desired and undesired potential
reasoning routes which may describe model
behaviour.

• We adapt the NLI-XY dataset of Rozanova
et al. (2022) to a meaningful collection of in-
tervention sets which enable the computation
of certain causal effects.

• We calculate estimates for undesired direct
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causal effects and desired total causal effects,
which also serve as a quantification of model
robustness and sensitivity to our intermediate
semantic features of interest.

• We compare a suite of BERT-like NLI models,
identifying behavioural weaknesses in high-
performing models and behavioural advan-
tages in some worse-performing ones.

To the best of our knowledge, we are the first
to complement previous observations of models’
brittleness with respect to context monotonicity with
the evidence of causal effect measures1, as well
as presenting new insights that over-reliance on
lexical relations is consequently also tempered by
the same improvement strategies.

2. Problem Formulation

2.1. A Structured NLI Subtask

As soon as we have a concrete description of how
a reasoning problem should be treated, we can
begin to evaluate how well a model emulates the
expected behaviour and whether it is capturing the
semantic abstractions at play.

In this work, we consider an NLI subtask which
comes from the broader setting of Natural Logic
(MacCartney and Manning, 2007; Hu and Moss,
2018; Sánchez, 1991). As it has a rigid and
well-understood structure, it is often used in in-
terpretability and explainability studies for NLI mod-
els (Geiger et al., 2021; Richardson et al., 2019a;
Geiger et al., 2022; Rozanova et al., 2022, 2021).
We begin with the format described in (Rozanova
et al., 2022) (we refer to this work for more detailed
description and full definitions).
Consider two terms/concepts with a known relation
label, such as one of the pairs:

Word/Term x Word/Term y Relation

brown sugar sugar x ⊑ y
mammal lion x ⊒ y
computer pomegranate x#y

Suppose the two terms occur in an identical context
(comprising of a natural language sentence, like a
template), for example:

Premise I do not have any sugar.
Hypothesis I do not have any brown sugar.

A semantic property of the natural language con-
text called monotonicity determines whether there

1Our code is available at https://github.com/julia
rozanova/counterfact_nli.

M
R ⊑ ⊒ #

↑ Entailment Non-Entailment Non-Entailment
↓ Non-Entailment Entailment Non-Entailment

Table 1: The entailment gold labels as a function
of two semantic features: the context montonicity
(M) and the relation (R) of the inserted word pair.

Variable Description

G Gold Label
C Context
M Context Monotonicity
W Inserted Word Pair
R Word-Pair Relation

C M

W R

G

Figure 1: Causal Diagram for the Natural Logic
Subtask

is an entailment relation between the sentences
generated upon substitution/insertion of given re-
lated terms (formally, this is monotonicity in the
sense of preserving the “order" between the in-
serted terms to an equally-directed entailment re-
lation between the sentences.) The context mono-
tonicity may either be upward (↑) or downward (↓,
as in the example above) or neither.

The effect of the context’s monotonicity in con-
junction with the relation between the inserted
words on the gold entailment label is summarised
in table 1. The authors of Rozanova et al. (2022)
provide a thus-formatted dataset called NLI-XY,
which we use as the basis for our causal effect
estimation experiments.

Throughout the remainder of this paper, we
will represent an NLI-XY example n as a tuple
n = (c,m,w, r, g) in which c is the shared natural
language context, m is its monotonicity label, w is
a pair (w1, w2) of nouns/noun phrases which will
be inserted into the context (we refer to these as
the inserted word pair for brevity), r is the concept
inclusion relation label for w and g is the entailment
gold label arising from m and r as per table 1. We
denote by P (Y | C = c,W = w) the probabilistic
output of a trained NLI model with the example
n as the NLI input (in particular, the input is the
premise–hypothesis pair (c(w1), c(w2))).

As we have chosen a coarse segmentation of the
monotonicity reasoning problem, we can present
a simple causal diagram which illustrates our ex-
pectations for the correct reasoning scheme for a

https://github.com/juliarozanova/counterfact_nli
https://github.com/juliarozanova/counterfact_nli
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fixed class of NLI problems. The diagram in fig-
ure 1 shows the features on which the gold label
is dependent on in the NLI-XY dataset: only the
context monotonicity M and the concept pair rela-
tion R, which are respectively dependent on the
content of the natural language context C and the
concept pair / word pair W which is substituted into
it. The exact values of the gold label with respect
to these features may be referenced in table 1.

Naturally, it is always likely that models may fail
to follow the described reasoning scheme for these
NLI problems. In the next section (2.2), we pro-
pose a causal diagram which also captures the
reasoning possibilities an NLI model may follow,
accounting for possible confounding heuristics via
unwanted direct effects.

2.2. The Causal Structure of Model
Decision-Making

In an ideal situation, a strong NLI model would iden-
tify the word-pair relation and the context mono-
tonicity as the abstract variables relevant to the
final entailment label. In this case, these features
would causally affect the model prediction in the
same way they affect the gold label. Realistically,
as shown in illuminating studies such as McCoy
et al. (2019b), models identify unexpected biases
in the dataset and may end up using accidental
correlations output labels, such as the frequency
of certain words in a corpus. For example, Richard
T. McCoy (2019) demonstrate how models can suc-
cessfully exploit the presence of negation markers
to anticipate non-entailment, even when it is not
semantically relevant to the output label.

To ensure that the semantic features themselves
are taken account into the model’s output and
not other surface-level confounding variables, one
would like to perform interventional studies which
alter the value of the target feature but not other
confounding variables. This is, in many cases, not
feasible (although attempts are sometimes made
to at least perform interventions that only make
minimal changes to the textual surface form, as
in Kaushik et al. (2020).)

Stolfo et al. (2023) argue that it is useful to
quantify instead the direct impact of irrelevant sur-
face changes (controlling for values of semantic
variables of interest) and compare them to total
causal effects of input-level changes: doing so, we
may posit deductions about the flow of information
via the semantic variables (or lack thereof). For
analyses where there is an attempt to align inter-
mediate variables with explicit internals, see Vig
et al. (2020) and Finlayson et al. (2021) for a medi-
ation analysis approach, or Geiger et al. (2021) for
an alignment strategy based on causal abstraction
theory.

Variable Description

Y Model Prediction
G Gold Label
C Context
M Context Monotonicity
S Context Textual Surface Form
W Inserted Word Pair
R Word-Pair Relation
T Word-Pair Textual Surface Form

C

S

M

W

T

R

G Y

Figure 2: Specification of the causal diagram for
possible routes of model reasoning for NLI-XY
problems. Green edges indicate desired causal in-
fluence, while red edges indicate undesired paths
of causal influence via surface-level heuristics.

Diagram Specification We follow Stolfo et al.
(2023) in the strategy of explicitly modeling the “ir-
relevant surface form" of the input text portions as
variables in the causal diagram. Their setting of
math word problems is decomposed into two com-
positional inputs: a question template and two inte-
ger arguments. Our setting follows much the same
structure: our natural language “context” plays the
same role as their “template”, but our arguments
(an inserted word pair) have an additional layer of
complexity as we also model the relation between
the arguments as an intermediate reasoning vari-
able rather than the values themselves (as such,
the structure of their template modeling in their
causal diagram is more applicable than the direct
way they treat their numerical arguments.)

We present our own causal diagram in figure 2.
We introduce the textual context C as an input vari-
able, which is further decomposed into more ab-
stract variables: its monotonicity M (which directly
affects the gold truth G) and the textual surface
form S of the context . The other input variable is
the word-pair insertion which we will summarise as
a single variable W . Once again, W has a poten-
tial effect on the model decision through its textual
surface form T and via the relation R between the
words. The gold truth G is dependent on M and
R only. Finally, the outcome variable is the model



6322

prediction Y . The paths for which we would like to
observe the highest causal effect are the paths to
Y from the inputs via M,R and through the gold
truth variable G. However, each of S, T,M and
R have direct links to the model output Y as well
(indicated in red): these are potential direct effects
which are unwanted. For example, we would not
want a model to learn a prediction heuristic based
directly on the variable M , such as consistently
predicting non-entailment any time a downward
monotone context is recognised. Similarly, a direct
effect of S or T would look like a heuristic which
predicts the entailment label purely based on the
presence of words which happened to co-occur
with that label in the training data. The key goal of
this study is to compare the extent to which mod-
els exhibit the high causal effects for the desired
diagram routes and lower causal effects for the
undesired routes.

3. Estimating the Causal Effects

Given a fixed set N of NLI-XY examples, we de-
fine an intervention I on N as a set of pairs (n, n′)
of NLI-XY examples for (one for each n ∈ N ),
where n′ = (c′,m′, w′, r′, g′) is a second NLI-XY
example which represents a modified version of n
(in practice, a modification of either c or w). We de-
note by N ′ the set of modified NLI-XY examples,
so that I ⊆ N ×N ′.

For any pair (n, n′) ∈ I , we define the change-
of-prediction indicator

CP (n, n′) =

{
1 if y ̸= y′

0 if y = y′
,

where

y = arg max
i∈{0,1}

P (Y = i | C = c,W = w)

(namely, the model prediction which assigns the
entailment label with the highest predicted proba-
bility) and

y′ = arg max
i∈{0,1}

P (Y = i | C = c′,W = w′).

Stolfo et al. (2023) refer to the average change-of-
prediction quantity for a given intervention I as a
causal effect. This causal effect quantity is named
and interpreted differently depending on the con-
ditions of the intervention: in particular, which vari-
ables are changed and which are kept constant
throughout the intervention set over which we will
take the average.

3.1. Interventions for Calculating TCE
and DCE

The quantities of interest in Stolfo et al. (2023) are
the total causal effect (TCE) of interventions on

the variables which we would like to see having an
effect on the prediction (in our case, C and W ) and
the direct causal effect (DCE) of interventions on
the variables which we do not wish to unnecessar-
ily impact the model prediction (in our case, T and
S).

For a given source variable and target variable,
whether we are measuring a DCE or TCE differs
only in the design of the intervention set, which in
turn depends on the structure of the causal dia-
gram. For the design of the relevant intervention
sets, we follow the strategy in Stolfo et al. (2023),
as the upper portion of their causal diagram (con-
cerning the natural language question template, its
textual surface form and the implicit math opera-
tion) is equivalent to both the upper and lower half
of our diagram in figure 2.

In this work, we provide four intervention sets:
I0, I1, I2, I3, each corresponding to the quantities
TCE (C on Y ),TCE (W on Y ),DCE (T → Y ) and
DCE (S → Y ) respectively. 2 We stick to their
nomenclature of total causal effect (TCE) and di-
rect causal effect (DCE), but define the quantities
in the way that they are concretely calculated (in
both our experiments and in Stolfo et al. (2023)):
as an estimate of the causal effect quantity, which
they present as an expected value of the change-
of-prediction indicator.

(Desired) Total Causal Effects We estimate the
total causal effect of the context C on the model
prediction Y by constructing an intervention set
I0 as follows: starting with a randomly sampled
set N of NLI-XY examples, we intervene on each
n ∈ N by sampling a different context c′ from the
NLI-XY dataset which should result in a changed
prediction, while keeping the inserted word pair w
constant. In summary, every (n, n′) ∈ I0 satisfies

(c ̸= c′,m ̸= m′, w = w′, r = r′, g ̸= g′).

We then calculate:

TCE(C on Y ) =
1

|I0|
∑

(n,n′)∈I0

CP (n, n′)

Secondly, we estimate the total causal effect of
the inserted word pair W on the model prediction
Y by constructing an intervention set I1 as follows:
starting with a randomly sampled set N of NLI-
XY examples, we intervene on each n ∈ N by
sampling a different inserted word pair w′ from the
NLI-XY dataset which should result in a changed

2To be consistent with the notation in
Stolfo et al. (2023), we will stylize these quantities
as (for example) TCE(C on Y ) and DCE(S → Y ), where
the arrow emphasizes that the quantity is specific to a
direct path in the causal diagram (passing through no
intermediate variables).
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prediction, while keeping the shared context c con-
stant. In summary, every (n, n′) ∈ I1 satisfies

(c = c′,m = m′, w ̸= w′, r ̸= r′, g ̸= g′).

We then calculate:

TCE(W on Y ) =
1

|I1|
∑

(n,n′)∈I1

CP (n, n′)

Following Stolfo et al. (2023), we interpret this
quantity as a measure of model sensitivity to rel-
evant context (respectively, inserted word pair)
changes. As it quantifies how often the predic-
tion changes when it should, we would like to see
this value being as close to 1 as possible.

(Undesired) Direct Causal Effects The total
causal effect does not distinguish whether this ef-
fect is mediated through the preferred causal route
(for example, via context’s monotonicity) or through
a model heuristic based on the textual surface form:
it is taking into account all possible routes of influ-
ence. The key suggestion in Stolfo et al. (2023) is
that even though we have no feasible intervention
strategies which allow us to calculate the causal
effect of the intermediate variables M and R on Y
as mediated through the gold label G (the effect
of greatest interest to us), we may yield some in-
sight into their causal influence by comparing the
relevant TCE to the unwanted direct causal effect
DCE (S → Y ) ( respectively, DCE (T → Y )).

To estimate the direct causal effect of the textual
surface form S of the context C which is irrelevant
to the context monotonicity M , we construct an
intervention set I2 as follows: starting with a ran-
domly sampled set N of NLI-XY examples, we
intervene on each n ∈ N by sampling a different
context c′ from the NLI-XY dataset while condition-
ing on the monotonicity (specifically, c′ is chosen
so that its monotonicity attribute m′ is the same
as that of c). The word pair w′ (and therefore its
relation r′) are kept the same as in n, so the predic-
tion is expected not to change. In summary, every
(n, n′) ∈ I2 satisfies

(c ̸= c′,m = m′, w = w′, r = r′, g = g′).

We then calculate:

DCE(S → Y ) =
1

|I2|
∑

(n,n′)∈I2

CP (n, n′)

To estimate the direct causal effect of the textual
surface form T of the inserted word pair W which
is irrelevant to the word pair relation R, we con-
struct an intervention set I3 as follows: starting
with a randomly sampled set N of NLI-XY exam-
ples, we intervene on each n ∈ N by sampling a
different inserted word pair w′ from the NLI-XY

dataset while conditioning on the word pair rela-
tion (specifically, w′ is chosen so that its relation
attribute r′ is the same as that of w). The context
c′ (and therefore its monotonicity m′) are kept the
same as in n, so the prediction is expected not to
change. In summary, every (n, n′) ∈ I3 satisfies

(c = c′,m = m′, w ̸= w′, r = r′, g = g′).

We then calculate:

DCE(T → Y ) =
1

|I3|
∑

(n,n′)∈I3

CP (n, n′)

Once again following Stolfo et al. (2023), we in-
terpret this quantity as a measure of model robust-
ness to irrelevant context (respectively, inserted
word pair) changes. As it quantifies how often the
prediction changes in cases when it shouldn’t, we
would like to see this value being as close to 0
as possible. We present examples and dataset
statistics for the intervention sets in the next sec-
tion, along with the summary of the intervention
schema in table 4.

4. Experimental Setup

4.1. Data and Interventions

We use the NLI-XY evaluation dataset to con-
struct intervention pairs (n, n′) by using a sam-
pling/filtering strategy as in (Stolfo et al., 2023)
according to the intervention schema in ta-
ble 4. In particular, for constructing context in-
terventions, we sample a seed set of 400 NLI-
XY premise/hypothesis pairs. This is the pre-
intervention NLI example. For each, we fix the
insertion pair and filter through the NLI-XY dataset
for all examples with the shared insertion pair but
different context, conditioned as necessary on the
properties of the other variables as in the inter-
vention schema. For insertion pairs, we do the
opposite. The number of interventions we produce
in this way for our experiments are reflected in the
last column of table 4. In summary, the changes
are context replacements and related word-pair
replacements; we provide text-level examples in
tables 2 and 3 .

4.2. Model Choice and Benchmark
Comparison

We include the following models 3 in our study:
firstly, the models evaluated in NLI-XY pa-

3All pretrained models are from the Huggingface
transformers library (Wolf et al., 2020), except for in-
fobert and the pretrained model counterparts fine-tuned
on HELP: their sources are linked in the README of the
accompanying code.
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Intervention
Set

Target Quantity Intervention
Step

Premise Hypothesis M R G

I1 TCE(W on Y ) Before There’s a cat on the pc. There’s a cat on the machine. ↑ ⊑ Entailment
After There’s a cat on the tree. There’s a cat on the fruit tree. ↑ ⊒ Non-Entailment

I3 DCE(T → Y ) Before There are no students yet. There are no first-year students
yet.

↓ ⊒ Entailment

After There are no people yet. There are no women yet. ↓ ⊒ Entailment

Table 2: Example word-pair insertion interventions for determining the total causal effect of label-relevant
word-pair changes and the direct causal effect of label-irrelevant word-pair changes.

Intervention
Set

Target Quantity Intervention
Step

Premise Hypothesis M R G

I0 TCE(C on Y ) Before You can’t live without fruit . You can’t live without strawber-
ries .

↑ ⊒ Non-Entailment

After All fruit study English. All strawberries study English. ↓ ⊒ Entailment

I2 DCE(S → Y ) Before He has no interest in seafood . He has no interest in oysters . ↓ ⊒ Entailment
After I don’t want to argue about this

in front of seafood .
I don’t want to argue about this
in front of oysters .

↓ ⊒ Entailment

Table 3: Example context interventions for determining the total causal effect of label-relevant context
changes and the direct causal effect of label-irrelevant context changes.

Intervention
Set

Target Measure C W M R G Interventions in
Dataset

I0 TCE (C → Y ) ̸= = ̸= = ̸= 14270
I1 TCE (W → Y ) = ̸= = ̸= ̸= 22640
I2 DCE (S → Y ) ̸= = = = = 20910
I3 DCE (T → Y ) = ̸= = = = 25960

Table 4: Intervention schema and dataset statistics:
which variables are held constant and which are
changed in the construction of intervention sets for
the calculation of the indicated effects.

per (Rozanova et al., 2022), namely roberta-large-
mnli, facebook/bart-large-mnli, bert-base-uncased-
snli and their counterparts fine-tuned on the HELP
dataset (Yanaka et al., 2019b) Next, the infobert
model, which is trained on three benchmark train-
ing sets of interest: MNLI (Williams et al., 2018),
SNLI (Bowman et al., 2015) and ANLI (Nie et al.,
2020) (currently at the top of the leaderboard
for the adversarial ANLI test set, as of January
2023) Lastly, another roberta-large checkpoint,
also trained on all three benchmark NLI training
training sets (as well as FEVER-NLI (Nie et al.,
2019)). We report their scores on the mentioned
benchmark datasets alongside the relevant total
and direct causal effects we are interested in.

Note that as the HELP dataset is a two-class
entailment dataset (as opposed to datasets like
MNLI, which are three-class), we cannot directly
compare existing reported scores. As such, we
adapt the three-class scores to a two-class score
by grouping two of the three-class labels (“contra-
diction" and “neutral") into the two-class umbrella
label "non-entailment".

5. Results and Discussion

We examine and compare the results for the mod-
els listed in 4.2. We first observe the word-pair
insertion intervention experiments in 5.1, then the
context intervention experiments in 5.2 and finally
present a categorical overview of these results in
section 5.3, contextualised by benchmark scores.

5.1. Causal Effect of Inserted Word Pairs

The results for the substituted word-pair interven-
tion experiment are reported in figure 3. The most
desireable outcome is a DCE(T → Y ) which is as
low as possible in combination with a TCE(W on Y )
which is as high as possible. The lower this DCE,
the higher the model robustness to irrelevant word
pair surface form changes. On the other hand, the
higher the specified TCE, the greater the model’s
sensitivity to word pair insertion changes affecting
the gold label.

The largest delta between these two quantities
can be seen in the roberta-large-mnli-help and
facebook-bart-large-mnli-help models. This is im-
portant to note: the HELP dataset (Yanaka et al.,
2019b) is explicitly designed to bolster model suc-
cess on natural logic problems, but until now there
has been little to no evidence that it improves the
treatment of word-pair relations. In particular, the
internal probing results in Rozanova et al. (2022)
show that probing performance for the interme-
diate word-pair relation label decreases slightly
for roberta-large-mnli after fine-tuning on HELP;
as such, it was thought that the HELP improve-
ments on natural logic could solely be attributed
to improved context monotonicity treatment. Now,
however, we observe distinct improvements in ro-
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DCE (T → Y)
TCE (W on Y)

Model DCE(T → Y ) TCE(W on Y ) TCE/DCE Ratio Delta

bert-base-uncased-snli 0.341 0.350 1.027 0.009
bert-base-uncased-snli-help 0.332 0.361 1.087 0.029
roberta-large-mnli 0.343 0.613 1.785 0.269
roberta-large-mnli-help 0.276 0.754 2.730 0.478
facebook/bart-large-mnli 0.342 0.618 1.805 0.275
facebook/bart-large-mnli-help 0.268 0.766 2.863 0.499
roberta-large-
snli_mnli_fever_anli_R1_R2_R3

0.294 0.682 2.321 0.388

infobert 0.291 0.674 2.320 0.384

Figure 3: Results for Insertion Interventions

bustness to irrelevant word-pair insertion changes
and sensitivity to relevant ones.

More generally, the work in Rozanova et al.
(2022) does indicate that the large MNLI-based
models are already very successful in distinguish-
ing the relation between substituted words. The
word-pair relation label has a high probing result
for all of these models, as well as strong signs of
systematicity in their error analysis. This is in line
with our observations of relatively large deltas be-
tween the DCE and TCE here, compared to the
smaller BERT-based models.

5.2. Causal Effect of Contexts

The results for the context intervention experiments
are reported in figure 4. The most desireable out-
come is a DCE(S → Y ) which is as low as possible
in combination with a TCE(C on Y ) which is as high
as possible. For context interventions, we start to
see major distinctions in the sensitivity of models to
important context changes - especially the effect of
the HELP fine-tuning dataset in increasing model
reasoning with respect to context structure. In line
with previous behavioural findings in Richardson
et al. (2019a); Yanaka et al. (2019b,a); Geiger et al.
(2020); Rozanova et al. (2022) and all the way
back to Wang et al. (2018), which observe system-
atic failure of large language models in downward
monotone contexts, we notice that all of the models
trained only on the large benchmarks sets fail to
correctly change their prediction when a context
change requires it to do so (as indicated by the low
TCE score). In Yanaka et al. (2019b), Rozanova
et al. (2022) and Rozanova et al. (2021), the posi-

DCE (S → Y)
TCE (C on Y)

Model DCE(S → Y ) TCE(C on Y ) TCE/DCE Ratio Delta

bert-base-uncased-snli 0.412 0.468 1.136 0.0563
bert-base-uncased-snli-help 0.406 0.485 1.194 0.079
roberta-large-mnli 0.107 0.081 0.751 -0.027
roberta-large-mnli-help 0.163 0.828 5.070 0.665
facebook/bart-large-mnli 0.136 0.130 0.954 -0.006
facebook/bart-large-mnli-help 0.189 0.791 4.167 0.601
roberta-large-
snli_mnli_fever_anli_R1_R2_R3

0.093 0.093 1.008 0.001

infobert 0.127 0.176 1.385 0.049

Figure 4: Results for Context Interventions

tive effect of the HELP dataset is already evident,
but here we may also compare it to roberta-large-
mnli tuned on many additional training sets, pre-
cluding the possibility that its helpfulness can be
attributed only to a larger amount of training data.

We note that although the situation of the
TCE/DCE ratio for roberta-large-mnli being less
than one may seem peculiar, it is important to keep
in mind that the intervention sets used for estimat-
ing these quantities are sampled independently
so some margin of error is warranted. As in Stolfo
et al. (2023), we interpret this result to simply mean
that the causal influence is comparable whether
we are affecting the ground truth result (as in the
TCE(C on Y ) case) or not (as in the DCE(S → Y )
case).

5.3. Benchmark Scores and Causal
Effects

A summary of the performance of all models on
popular benchmarks alongside a categorical break-
down of robustness and sensitivity is presented in
table 5. The robustness/sensitivity categories are a
qualitative assessment, identifying the lowest and
highest scores within a category, and categorising
other models correspondingly as low, mid or high
performers for the given categories. The sensitivity
property is tied to the desired total causal effect,
while the robustness property is tied to the unde-
sired direct causal effect (note in particular that the
latter is judged as inversely proportional: the model
with the lowest given DCE is judged the “highest"
in terms of robustness).

The key observation is that the models which
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Model NLI Benchmark Evaluation (2 Class Accuracy) Context Changes Inserted Word-Pair Changes

SNLI MNLI-M MNLI-MM ANLI-R1 ANLI-R2 ANLI-R3 Robustness Sensitivity Robustness Sensitivity

bert-base-uncased-snli 0.766 0.620 0.623 0.567 0.596 0.580 Mid Mid Mid Low
bert-base-uncased-snli-help 0.757 0.627 0.626 0.505 0.508 0.546 Mid Mid Mid Low
facebook/bart-large-mnli 0.935 0.940 0.939 0.596 0.563 0.593 High Low Mid Mid
facebook/bart-large-mnli-help 0.727 0.802 0.795 0.538 0.489 0.528 Mid/High Highest Highest Highest
roberta-large-mnli 0.931 0.941 0.940 0.614 0.529 0.5325 Highest Lowest Mid Mid
roberta-large-mnli-help 0.738 0.668 0.656 0.565 0.554 0.574 High Highest Highest Highest
roberta-large-snli_mnli_fever_anli 0.949 0.936 0.939 0.810 0.659 0.666 Highest Lowest Mid Mid/High
infobert 0.950 0.943 0.941 0.837 0.682 0.683 High Low Mid Mid/High

Table 5: Overall 2 class accuracy on original NLI benchmarks and qualitative comparison against the
performed causal intervention analysis. The accuracy is not necessarily predictive of the performances
achieved using a systematic causal inspection.

achieve the highest performance on benchmarks
may be far from the best performers with respect
to our quantitative markers of strong reliance of im-
portant causal features. In particular, models such
as infobert are outperformed in our behavioural
causal effect analyses by weaker models that are
fine-tuned on a relatively small helper dataset such
as HELP. It is important to note that such changes
coincide with drops in benchmarks performance
too, but any model interventions that discourage
the exploitation of heuristics (evident from a lower
DCE for surface form features) may have that ef-
fect.

6. Related Work

Natural Logic Handling in NLI Models It has
been known for some time that large NLI models
are frequently tripped up by downward-monotone
reasoning (Richardson et al., 2019b; Wang et al.,
2018; Yanaka et al., 2019b; Rozanova et al.,
2022; Geiger et al., 2020). Various datasets have
been created to evaluate and improve this be-
haviour, such as HELP (Yanaka et al., 2019b),
MoNLI (Geiger et al., 2020), MQNLI (Geiger et al.,
2019), MED (Yanaka et al., 2019a). Rozanova
et al. (2022) introduced NLI-XY, secondary compo-
sitional dataset built from portions of MED, where
the intermediate features of context monotonicity
and concept relations are explicitly labelled: this
is the dataset we use in this work. Non-causal
structural analyses of model internals with respect
to natural logic features include Rozanova et al.
(2022) (a probing study), but we leave to the next
section some existing works where natural logic
intersects with the world of causal approaches to
NLP.

Causal Analysis in NLP Causal modelling has
appeared in NLP works in various forms, such
as the investigations of the causal influence of
data statistics (Elazar et al., 2022) and mediation
analyses (Vig et al., 2020; Finlayson et al., 2021)
which link intermediate linguistic/semantic features
to model internals. Stolfo et al. (2023), our core
reference, appears to be the first to use explicitly

causal effect measures as indicators of sensitivity
and robustness (for some non-causal approaches
to measuring model robustness in NLP, we point
to Jin et al. (2019) and Ribeiro et al. (2020)). For
a fuller summary of the use of causality in NLP,
please see the survey by Feder et al. (2022). Spe-
cific to natural logic, works with causal approaches
include Geiger et al. (2020) (which perform inter-
change interventions at a token representation
level), Geiger et al. (2021) (where an ambitious
causal abstraction experiment attempts to align
model internals with candidate causal models) and
the works of Geiger et al. (2020) and Wu et al.
(2022), (where attempts are made to build a pre-
scribed causal structure into models themselves).
In particular, Wu et al. (2022) create a “causal
proxy model" which becomes the basis for a new
explainable predictor designed to replace the origi-
nal neural network.

7. Conclusion

The results strongly bolster the fact that similar
benchmark accuracy scores may be observed for
models that exhibit very different behaviour, es-
pecially concerning specific semantic reasoning
patterns and higher-level properties such as ro-
bustness/sensitivity to target features. In this work,
we have been able to causally investigate previ-
ously suspected biases in NLI models. For exam-
ple, previous observations (Rozanova et al., 2022;
Yanaka et al., 2019a) that roberta-large-mnli is bi-
ased in favour of assuming upward-monotone con-
texts, ignoring the effects of things like negation
markers, agrees with our observations that it ex-
hibits poor context sensitivity. Furthermore, the
causal flavour of the study adds a complimentary
narrative to works that investigate model internals
via probing (Rozanova et al., 2022) and observe
the presence/absence of intermediate semantic
features in the models’ representation. Instead of
merely suggesting that these features are captured,
we can gain insight into their causal influence via
connected causal effect estimates. The causal
measures presented here show us that even the
highest-performing models can systematically fail
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to adapt their predictions to changing context struc-
ture, suggesting an over-reliance on word rela-
tions across the premise and hypothesis. Finally,
we have also added the observation that existing
strategies to improve responsiveness to context
changes also increase the robustness word-pair
insertion changes.
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