@inproceedings{negi-etal-2024-hybrid,
title = "A Hybrid Approach to Aspect Based Sentiment Analysis Using Transfer Learning",
author = "Negi, Gaurav and
Sarkar, Rajdeep and
Zayed, Omnia and
Buitelaar, Paul",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.56",
pages = "647--658",
abstract = "Aspect-Based Sentiment Analysis ( ABSA) aims to identify terms or multiword expressions (MWEs) on which sentiments are expressed and the sentiment polarities associated with them. The development of supervised models has been at the forefront of research in this area. However, training these models requires the availability of manually annotated datasets which is both expensive and time-consuming. Furthermore, the available annotated datasets are tailored to a specific domain, language, and text type. In this work, we address this notable challenge in current state-of-the-art ABSA research. We propose a hybrid approach for Aspect Based Sentiment Analysis using transfer learning. The approach focuses on generating weakly-supervised annotations by exploiting the strengths of both large language models (LLM) and traditional syntactic dependencies. We utilise syntactic dependency structures of sentences to complement the annotations generated by LLMs, as they may overlook domain-specific aspect terms. Extensive experimentation on multiple datasets is performed to demonstrate the efficacy of our hybrid method for the tasks of aspect term extraction and aspect sentiment classification.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="negi-etal-2024-hybrid">
<titleInfo>
<title>A Hybrid Approach to Aspect Based Sentiment Analysis Using Transfer Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gaurav</namePart>
<namePart type="family">Negi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajdeep</namePart>
<namePart type="family">Sarkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Omnia</namePart>
<namePart type="family">Zayed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Buitelaar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Aspect-Based Sentiment Analysis ( ABSA) aims to identify terms or multiword expressions (MWEs) on which sentiments are expressed and the sentiment polarities associated with them. The development of supervised models has been at the forefront of research in this area. However, training these models requires the availability of manually annotated datasets which is both expensive and time-consuming. Furthermore, the available annotated datasets are tailored to a specific domain, language, and text type. In this work, we address this notable challenge in current state-of-the-art ABSA research. We propose a hybrid approach for Aspect Based Sentiment Analysis using transfer learning. The approach focuses on generating weakly-supervised annotations by exploiting the strengths of both large language models (LLM) and traditional syntactic dependencies. We utilise syntactic dependency structures of sentences to complement the annotations generated by LLMs, as they may overlook domain-specific aspect terms. Extensive experimentation on multiple datasets is performed to demonstrate the efficacy of our hybrid method for the tasks of aspect term extraction and aspect sentiment classification.</abstract>
<identifier type="citekey">negi-etal-2024-hybrid</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.56</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>647</start>
<end>658</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Hybrid Approach to Aspect Based Sentiment Analysis Using Transfer Learning
%A Negi, Gaurav
%A Sarkar, Rajdeep
%A Zayed, Omnia
%A Buitelaar, Paul
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F negi-etal-2024-hybrid
%X Aspect-Based Sentiment Analysis ( ABSA) aims to identify terms or multiword expressions (MWEs) on which sentiments are expressed and the sentiment polarities associated with them. The development of supervised models has been at the forefront of research in this area. However, training these models requires the availability of manually annotated datasets which is both expensive and time-consuming. Furthermore, the available annotated datasets are tailored to a specific domain, language, and text type. In this work, we address this notable challenge in current state-of-the-art ABSA research. We propose a hybrid approach for Aspect Based Sentiment Analysis using transfer learning. The approach focuses on generating weakly-supervised annotations by exploiting the strengths of both large language models (LLM) and traditional syntactic dependencies. We utilise syntactic dependency structures of sentences to complement the annotations generated by LLMs, as they may overlook domain-specific aspect terms. Extensive experimentation on multiple datasets is performed to demonstrate the efficacy of our hybrid method for the tasks of aspect term extraction and aspect sentiment classification.
%U https://aclanthology.org/2024.lrec-main.56
%P 647-658
Markdown (Informal)
[A Hybrid Approach to Aspect Based Sentiment Analysis Using Transfer Learning](https://aclanthology.org/2024.lrec-main.56) (Negi et al., LREC-COLING 2024)
ACL