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Abstract

The application of self-supervision to speech representation learning has garnered significant interest in recent years,
due to its scalability to large amounts of unlabeled data. However, much progress, both in terms of pre-training and
downstream evaluation, has remained concentrated in monolingual models that only consider English. Few models
consider other languages, and even fewer consider indigenous ones. In this work, benchmark the efficacy of large
SSL models on 6 indigenous America languages: Quechua, Guarani , Bribri, Kotiria, Wa’ikhana, and Totonac on
low-resource ASR. Our results show surprisingly strong performance by state-of-the-art SSL models, showing the
potential generalizability of large-scale models to real-world data.
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1. Introduction

In recent years, the fields of Natural Language
Processing (NLP) and speech processing has wit-
nessed remarkable advancements, with applica-
tions ranging from machine translation and sen-
timent analysis to voice assistants and chatbots.
These developments have predominantly focused
on widely spoken languages such as English and
Mandarin. However, the vast linguistic diversity
represented by indigenous languages across the
globe remains largely unexplored in the context of
language processing.

Indigenous languages are the ancestral tongues
of diverse communities with rich cultural heritage
and profound connections to the environment in
which they are spoken. These languages often
exhibit distinct linguistic characteristics, deviating
from the structures and conventions of widely stud-
ied languages. By expanding the scope of lan-
guage processing to include indigenous languages,
we can foster linguistic inclusivity and empower in-
digenous communities to participate in the digital
era while preserving their linguistic and cultural
identities.

One compelling reason to focus on indigenous
languages in language processing is the potential
for social impact. Many Indigenous communities
face challenges related to limited access to infor-
mation and technology, which further exacerbate
social and economic disparities. By developing
NLP models and applications tailored to indigenous
languages, we can bridge the digital divide and en-
able these communities to leverage technology for
communication, education, and cultural preserva-
tion. Such efforts have the potential to enhance lan-
guage revitalization efforts, foster inter-generational
transmission of knowledge, and promote cultural

preservation within indigenous communities.
We evaluate the effectiveness of different multi-

lingual self-supervised learning (SSL) models on
Automatic Speech Recognition (ASR) for several
indigenous American languages: Quechua, Bribri,
Guarani, Kotiria, Wa’ikhana, and Totonac. We first
introduce general characteristics of American in-
digenous languages and discuss the challenges in
modeling them due to their unique linguistic natures.
We then provide a brief overview of each language
to this study, highlighting some key linguistic prop-
erties. As our other core contribution, we discuss
research in American indigenous languages in both
the fields of NLP and speech processing, hoping
to create a bridge in the literature for communities.

2. American Indigenous Languages

American Indigenous Languages encompass a
diverse range of language families and isolates,
each with its own linguistic features. The lan-
guages of this region exhibit a remarkable variety
of phonological, morphological, syntactic, and se-
mantic structures, reflecting the rich linguistic di-
versity of the continent. A persistent challenge in
modelling these languages, similar to many indige-
nous languages, is the frequency of code-switching.
Coupled with the lack of both linguistic and elec-
tronic resources for these languages, creating lan-
guage technologies for indigenous languages re-
mains a significant challenge despite the exponen-
tial progress in NLP and speech processing.

Broadly speaking, the indigenous languages of
the Americas are morphologically-rich, often ex-
hibiting agglutinative or polysynthetic structures.
These languages tend to have extensive systems of
affixation, where morphemes are added to roots to
convey meaning and grammatical information. For
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example, in Quechua or Guarani, complex words
can be formed through the addition of numerous
affixes to a single root. This makes them particu-
larly challenging for NLP and language modelling
tasks, due to the higher frequency of rare words.

2.1. Quechua
Quechua is a family of closely related languages
spoken by around 10 million people across South
America. While primarily spoken in the Andean
regions. Quechua is considered one of the most
widely spoken indigenous language families in the
Americas. While there are regional variations,
Quechua languages share many common linguistic
characteristics. These variations are broadly sepa-
rated into two distinct categories: Quechua I and
Quechua II. The former refers to the varieties of
Quechua spoken in the central parts of Peru, while
the latter is spoken in Southern Peru, Bolivia, and
Colombia.

2.2. Bribri
Bribri, also known as the Bribri-Poró language, is
spoken by the Bribri people of Costa Rica. It be-
longs to the Chibchan language family, which is
primarily found in Central America. The Bribri lan-
guage specifically falls under the Guaymí subgroup
of the Chibchan family. Geographically, the Bribri
language is primarily spoken in the Talamanca re-
gion of Costa Rica, specifically in the southern
parts of Limón and northern parts of Puntarenas
provinces. It is a tonal language, meaning that pitch
variations can distinguish between different words
or meanings.

2.3. Guarani
The Guarani language is an indigenous language
spoken by the Guarani people in South America.
It is a member of the Tupi-Guarani language fam-
ily, which encompasses several languages across
Brazil, Paraguay, Argentina, and Bolivia. Guarani
is one of the most widely spoken indigenous lan-
guages in the Americas, with 4-6 million speakers.
Guarani is mainly distributed in Paraguay, where
it has official status alongside Spanish. It is also
spoken in parts of northeastern Argentina, south-
eastern Bolivia, and southern Brazil. Like many
other American languages, Guarani is agglutina-
tive.

2.4. Kotiria
Kotiria, also known as Wanano, is an indigenous
language spoken by the Kotiria people who reside
in the Vaupés region of Colombia and Brazil. Kotiria
is part of the larger Eastern Tukanoan language

family, which includes several other indigenous lan-
guages spoken in the northwest Amazon region.
Kotiria language is primarily spoken in the upper
and middle basins of the Vaupés River, which runs
through the Amazon rainforest. The language is
concentrated in remote areas of the Colombian
Vaupés Department and the Brazilian state of Ama-
zonas. Like Bribri, it is both agglutinative and tonal.

2.5. Wa’ikhana
Also known as Cubeo, Wa’ikhana is spoken by the
Cubeo people in the northwest Amazon region, pri-
marily in Colombia and Brazil. Wa’ikhana belongs
to the Tucanoan language family, which encom-
passes several indigenous languages spoken in
the northwest Amazon. Wa’ikhana is also both
agglutinative and tonal.

2.6. Totonac
The Totonac language is an indigenous language
spoken by the Totonac people in Mexico. It be-
longs to the Totonacan language family, which is
primarily found in the states of Veracruz, Puebla,
and parts of Hidalgo in eastern Mexico. Totonac is
both agglutinative and tonal.

3. Indigenous Languages in
Language Processing

3.1. Community Efforts
In the field of NLP, several initiatives have been
started to encourage further research in indige-
nous languages. While the majority are workshops
for general low-resource NLP (Ortega et al., 2021,
2022), newer efforts have also targeted indige-
nous languages (Mager et al., 2021b, 2023; Orife
et al., 2020; Nekoto et al., 2020). For American
indigenous languages specifically, the Americas-
NLP (Mager et al., 2021b, 2023) community has
helped driven research by improving the visibility
of authors from indigenous communities. Ameri-
casNLP also hosts an annual shared task, simi-
lar to those found in machine and speech transla-
tion workshops (Ebrahimi et al., 2023; Mager et al.,
2021a), to further integrate state-of-the-art meth-
ods with indigenous languages.

In speech processing, research for indigenous
languages is more ad hoc, with numerous decen-
tralized efforts from a variety of research groups.
Contrary to NLP, indigenous languages play a more
common role in SOTA models (Chen et al., 2023;
Babu et al., 2021; Radford et al., 2022; Pratap et al.,
2020; Zhang et al., 2023) and benchmarks (Con-
neau et al., 2023; Shi et al., 2023b; Gales et al.,
2014). Annual challenges, primarily for speech



6446

translation, also help bring SOTA methods to these
languages (Agarwal et al., 2023).

3.2. Research for Quechua
Quechua has received substantial attention in NLP,
driven by its larger population and resources com-
pared to other American languages. Early work fo-
cused on morphological analysis using finite state
transducers (Rios Gonzales and Castro Mamani,
2014; Rios; Rios Gonzales and Göhring, 2013)
and toolkits development (Rios, 2015; Rios et al.,
2008; Rios, 2011). Neural methods were later ap-
plied, initially in machine translation (Ortega and
Pillaipakkamnatt, 2018; Ortega et al., 2020; Chen
and Fazio, 2021), and more recently in masked
language models (Zevallos et al., 2022b).

However, Quechua speech processing has seen
fewer studies due to limited available data. Sim-
inchik (Cardenas et al., 2018) was the first Quechua
speech corpus, although full data release didn’t
occur. Huqariq (Zevallos et al., 2022a), a multilin-
gual collection of Peruvian languages, including
Quechua, remains unreleased. Quechua was fea-
tured in speech processing challenges like Amer-
icasNLP 2022 and IWSLT 2023 (Agarwal et al.,
2023), with the latter marking the first evaluation
using Transformer-based methods (Vaswani et al.,
2017). Participants mostly relied on pre-trained
SSL models (E. Ortega et al., 2023), but the poten-
tial of other SSL approaches for Quechua remains
unexplored, as participants mainly used XLSR 53
(Conneau et al., 2020) or XLS-R 128 (Babu et al.,
2021).

4. Experimental Setup

4.1. Data
We experimented with six indigenous American
languages: Quechua , Bribri, Guarani, Kotiria,
Wa’ikhana, and Totonac . The Quechua is based
on the Siminchik corpus (Cardenas et al., 2018),
which contains recordings of two Quechua II di-
alects: Chanca Quechua (spoken mainly in Ay-
acucho and surroundings) and Collao Quechua
(spoken in Cusco and Puno). Siminchik (Carde-
nas et al., 2018) consists of crowd-sourced tran-
scriptions of radio recordings from these regions,
totaling 97 hours of audio. The audio clips were
segmented to a maximum of 30 seconds, and the
transcripts underwent punctuation removal, cas-
ing normalization, and interjection standardization
due to dialectal differences. Additionally, the ASR
transcripts were normalized using a finite state
transducer-based toolkit (Rios Gonzales and Cas-
tro Mamani, 2014) adhering to the Chanca dialect’s
spelling. The data for Bribri, Guarani, Kotiria and
Wa’ikhana were obtained from the 2022 edition

of AmericasNLP challenge (Mager et al., 2021b,
2023). Since the official test splits remain hid-
den, we created our own by dividing the provided
validation sets. The Totonac data was obtained
from a prior study on efficiently fusing SSL mod-
els with spectral featrures(Berrebbi et al., 2022) All
datasets adhere to the ML-SUPERB format (Shi
et al., 2023a), with 1-hour and 10-minute training
sets, a 10-minute validation set, and a 10-minute
testing set, obtained by randomly sampling from
the appropriate split in the original dataset. This
assesses semi-supervised model performance for
indigenous languages in real-world scenarios due
to limited labeled and unlabeled data.

4.2. Self-Supervised Models

We evaluate three SSL models on each language,
along with log-Mel filterbank features (FBANK). The
models are described as follows:

4.2.1. XLSR 53

XLSR 53 (Conneau et al., 2020) is trained on 56k
hours of multilingual data for 53 languages, which
are pre-dominantly European. It uses the 317M
parameter wav2vec architecture (Schneider et al.,
2019), which consists of a convolutional feature
extractor and Transformer encoder (Vaswani et al.,
2017) trained with contrastive loss.

4.2.2. XLS-R 128

XLS-R 128 (Babu et al., 2021) is the large-scale
extension of XLSR 53, trained on 436k hours of mul-
tilingual data across 128 languages. It instead uses
the wav2vec 2.0 (Baevski et al., 2020) architecture,
which also includes a convolutional feature extrac-
tor and Transformer encoder, but is trained with
both contrastive and codebook prediction losss.

4.2.3. mHuBERT

mHuBERT (Lee et al., 2022) builds off of the
HuBERT (Hsu et al., 2021) architecture, which
uses an iterative approach to SSL. HuBERT mod-
els are trained to predict discrete representations
of masked speech. After each iteration of pre-
training, hidden representations are extracted from
the model and clustered using k-means, creat-
ing the discrete targets for the next round of pre-
training. mHuBERT was trained multilingually on 3
languages: Spanish, French, and Italian, each 4.5k
hours of data. It uses the 95M parameter HuBERT
Base architecture, which modifies the wav2vec 2.0
design for pure codebook prediction.
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Table 1: Evaluation of SSL models on each indigenous language on the 10-minute set, measured in
character error rate (CER ↓).

Model Hours Quechua Bribri Guarani Kotiria Wa’ikhana Totonac Average
XLSR 53 56k 47.8 54.6 37.6 64.2 83.3 29.6 52.9
XLS-R 128 436k 42.5 49.5 27.5 51.2 62.2 27.7 43.4
mHuBERT 13.5k 47.7 54.3 35.2 64.8 84.8 30.1 52.8

Table 2: Evaluation of SSL models on each indigenous language on the 1 hour set, measured in character
error rate (CER ↓).

Model Hours Quechua Bribri Guarani Kotiria Wa’ikhana Totonac Average
XLSR 53 56k 37.5 49.5 31.5 49.9 62.4 26.0 42.8
XLS-R 128 436k 34.0 44.1 24.0 43.4 55.1 20.6 36.8
mHuBERT 13.5k 37.1 49.2 32.0 50.6 62.3 26.1 42.8

4.3. Training Settings

We conduct all experiments using the ESPnet
(Watanabe et al., 2018) toolkit with the official set-
tings of the ML-SUPERB competition (Shi et al.,
2023a). The SSL model is used as a frozen feature
extractor, such that the hidden representation of
each layer is obtained. The layer-wise outputs of
combined via a weighted sum, where the weight
is learned during training. These outputs are then
down projected to a hidden size of 80 and then aug-
mented with SpecAug (Park et al., 2019), before
being used as the model inputs of a Transformer
encoder (Vaswani et al., 2017). The Transformer
consists of 2 layers, each with a hidden size of 256,
8 attention heads, and a feed-forward size of 1024.
Models are trained with CTC loss (Graves et al.,
2006) and the Adam optimizer (Kingma and Ba,
2015), with a constant learning rate of 0.0001. Mod-
els are trained for a maximum of 15,000 steps and
the 5 best checkpoints are averaged for inference,
which is performed with CTC greedy decoding.

5. Results

Our experimental results are presented in Tables
1 and 2 for the 10-minute and 1-hour settings re-
spectively. Models are evaluated in character error
rate (CER).

Similar to the results on the complete ML-
SUPERB benchmark, XLS-R 128 (Babu et al.,
2021) obtains the highest overall scores in both
data settings. The results presented here are even
more distinct: XLS-R 128 outperforms all other
models every single task. This suggests the power-
ful generalizability of large-scale multilingual SSL:
all evaluated languages (aside from Guarani) were
unseen during pre-training. The distance between

the other two models, XLSR 53 and mHuBERT, is
much smaller, with only a difference of 0.1 average
CER on the 10-minute track and no significant differ-
ence on the 1-hour track. A strong future research
question would be to isolate the cause for the lack of
difference, as one would expect the model trained
on more languages to generalize better.

Overall, we find the results of our evaluation sur-
prisingly strong. The average CER of XLS-R 128
on the 10-minute / 1 hour set is 43.4 / 36.8, only
3.7 / 6.2 CER higher than its average monolingual
score on ML-SUPERB (39.7 / 30.6 CER) (Shi et al.,
2023a). Our results suggest that multilingual pre-
training generalizes well to unseen languages dur-
ing fine-tuning, allowing them to receive the bene-
fits of pre-training large-scale unlabeled data from
high-resource languages

6. Conclusion

While the recent progress of deep learning in NLP
and speech processing has significantly acceler-
ated the development of language technologies,
the progress has been unequally distributed. We
are the first benchmark the effectiveness of large-
scale speech SSL models on ASR for indigenous
American languages such as Quechua, which are
known to be among the most difficult for NLP. We
find surprisingly positive results, showing the im-
pressive generalization ability of large-scale multi-
lingual SSL models on new languages.
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