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Abstract

Cross-domain knowledge transfer, which has received growing research attention in natural language processing
(NLP), is a promising approach for various NLP tasks such as evidence-aware inference. However, the presence of
biased language in well-known benchmarks notably misleads predictive models due to the hidden false correlations
in the linguistic corpus. In this paper, we propose Neutralized Knowledge Transfer framework (NKT) to equip
pre-trained language models with neutralized transferability. Specifically, we construct debiased multi-source corpora
(CV and EL) for two exemplary knowledge transfer tasks: claim verification and evidence learning, respectively. To
counteract biased language, we design a neutralization mechanism in the presence of label skewness. We also
design a label adaptation mechanism in light of the mixed label systems in the multi-source corpora. In extensive
experiments, the proposed NKT framework shows effective transferability contrarily to the disability of dominant
baselines, particularly in the zero-shot cross-domain transfer setting.
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1. Introduction
Motivations. The recent success of natural lan-
guage processing (NLP) is attributed not only to
advances in learning models and computational
resources but also to the availability of massive,
richly-labeled datasets. However, some real-world
NLP tasks, due to the absence of annotated data,
may rely on knowledge transfer from some richly-
labeled datasets. A knowledge transfer to some
unseen domain is referred to as cross-domain trans-
fer (Feng et al., 2021), while a knowledge transfer
to the seen domain is referred to as in-domain trans-
fer. Under the settings of cross-domain transfer, the
most challenging one is to transfer knowledge to a
target domain without fine-tuning, which is referred
to as zero-shot transfer.
Most prior work on NLP tasks is formulated as
an isolated learning process, where the predictive
model is narrowly tailored for a single task trained
on a single dataset. For instance, some datasets
of claim verification, which aim to determine the
relationship between a claim and evidence, come
without supporting evidence (Onoe et al., 2021;
Sepúlveda-Torres et al., 2021) as shown in Figure
1(a). To accurately verify a claim, retrieving pre-
cise evidence that can truly support the claim is
crucial. Although DPR (Karpukhin et al., 2020) sup-
ports efficient evidence retrieval under in-domain
transfer (e.g., Wikipedia to Wikipedia), the learned
knowledge transfer models cannot be applied to
facilitate evidence retrieval for claims from different
domains. This is because many richly-labeled train-
ing examples from the target domain are required
for cross-domain transfer to an unseen dataset (i.e.,
zero-shot transfer). However, relying on human
annotation to prepare labeled training data is labor-
intensive. To enable cross-domain transfer, espe-
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Figure 1: Motivations. (a) Supporting gold evi-
dence is missing in the CREAK dataset, which
needs automatic evidence retrieval. (b) The
phrase “does not” strongly correlates with the la-
bel “CONTRADICTION” in the MNLI dataset. (c) A
multi-source corpus contains two-label and three-
label systems.

cially in the zero-shot setting, we propose to follow
the pre-finetuning framework (Aghajanyan et al.,
2021) by leveraging multi-source learning as an in-
termediate step between the standard pre-training
and fine-tuning framework.
An issue arising in the multi-source learning for
NLP is that language sources are usually biased,
notably due to their varied degrees of linguistic id-
iosyncrasy (Baldwin et al., 2021; Schuster et al.,
2019a; Liu et al., 2019a). The ramification of a
biased language is significant when a predictive
model performs incredibly well, not because of the
model capability but due to the hidden false (mis-
leading) correlations in the linguistic corpus. Figure
1(b) illustrates the false correlations between the
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biased phrases and claim labels. To tackle the
language bias, (Schuster et al., 2019a) formalizes
a debiasing mechanism to break the false linguis-
tic correlations with a particular label. However,
the debiasing mechanism fails to deal with biased
phrases under various degrees of label skewness.
Therefore, a robust approach must consider label
skewness when tackling hidden false correlations.
Multi-source dataset brings the complexity of mixed
label systems, which may cause label predic-
tion muddle. Even similar datasets may dif-
fer in label systems, e.g., a two-way task on
CREAK (Onoe et al., 2021) with the label inven-
tory {TRUE, FALSE} versus a three-way task on
FEVER (Thorne et al., 2018) with the label inven-
tory {SUP, REF, NEI}. Figure 1(c) illustrates a
mixture of two label systems in the source and
target domains. Prior work (Mithun et al., 2021a)
usually constrains a source dataset with the same
number of label types as the target task to nat-
urally transfer developed knowledge in the pre-
training phase. These approaches limit the choice
of source datasets to a small extent. Other ap-
proaches (Feng et al., 2021; Wang et al., 2021)
simply ignore the label adaptation problem, result-
ing in the disability of zero-shot transfer. To alleviate
the prediction muddle, label adaptation is needed
to acquire transferable knowledge for cross-domain
knowledge transfer in multiple label systems, espe-
cially when the zero-shot transfer is demanded.
Research Objective. To enable label adaptation
and neutralized knowledge transfer across differ-
ent domains, we propose a Neutralized Knowledge
Transfer framework (NKT). NTK is further tailored
for two exemplary neutralized knowledge transfers:
claim verification and evidence learning, resulting
in two variant models, NKT+CV and NKT+EL. Note
that the NKT framework is task-agnostic. They can
be applied to gain transferability through the pre-
finetuning phase on a source corpus for diverse
target tasks. Specifically, we equip a sequence-
to-sequence Vanilla T5 (Raffel et al., 2020) with
the neutralized knowledge transferability upon the
NKT framework. Note that Vanilla T5 is designed
for multi-task learning compared to other language
models (Devlin et al., 2018; Liu et al., 2019b), which
are designed for single-task learning. Moreover, T5
is a natural choice as a transfer learning backbone,
facilitating our approach to label adaptation. To
expand knowledge, we construct two multi-source
corpora with richly blended benchmarks from vari-
ous domains: a claim verification pre-finetuning cor-
pus (CV), and an evidence learning pre-finetuning
corpus (EL). To counteract the effect of hidden
false correlations, we design a neutralization learn-
ing mechanism to adjust dependency for biased
phrases as well as the instance-wise contribution
toward each corpus. Afterwards, we pre-finetune

Vanilla T5 on neutralized CV and EL corpus to de-
rive respective transferable models: (i) NKT+CV
with a novel label adaptation mechanism for claim
verification; and (ii) NKT+EL for evidence learning.
To summarize, the main contributions of this study
are as follows.

• We propose a Neutralized Knowledge Transfer
framework (NKT) to learn neutralized knowl-
edge from multi-source corpora, CV, and EL.

• We design a neutralization mechanism to coun-
teract the effect of the hidden false correlations
under various degrees of label skewness.

• We equip T5 Vanilla with evidence-aware infer-
ence capability by pre-finetuning NKT+CV and
NKT+EL for evidence-aware claim verification
and automatic evidence retrieval, respectively.

• We demonstrate the effective transferability of
the NKT framework over representative base-
lines in extensive experiments, particularly un-
der zero-shot cross-domain transfer settings.

2. Related Works
Claim Verification. Several studies have been
conducted on claim verification to verify the authen-
ticity of a given claim. FEVER (Thorne et al., 2018)
is a widely adopted benchmark for claim verification
with supporting evidence from Wikipedia. FEVER-
OUS (Aly et al., 2021) is constructed based on
FEVER, containing not only textual sources but also
tabular information. CREAK (Onoe et al., 2021) is
a benchmark that requires models to have the abil-
ities of fact retrieval and commonsense reasoning.
MultiFC (Augenstein et al., 2019) is an evidence-
aware multi-source benchmark collected from multi-
ple websites such as Politifact and Snopes. COVID-
FACT (Saakyan et al., 2021) and PUBHEALTH
(Kotonya and Toni, 2020) are healthcare domain
datasets about COVID-19.
Evidence Learning. Evidence learning perfor-
mance may influence the prediction accuracy of
claim verification task with fake evidence. DPR
(Karpukhin et al., 2020) trains the dense represen-
tation to encode questions and their positive pas-
sages with high similarity in representations via
the in-batch negative strategy. RAG (Lewis et al.,
2020b) is pre-trained with a dense vector index
of Wikipedia combining a sequence-to-sequence
model BART (Lewis et al., 2020a) to perform the
evidence retrieval and question-answering tasks.
Transfer Learning. Some efforts have been de-
voted to tackle the absence of labeled data. (Mithun
et al., 2021b,a) focus on data and model distillation
by group learning and teacher-student architecture.
Instead, (Feng et al., 2021) focus on data selec-
tion with a reinforced selector to select samples
from source domain similar to the target domain.
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(Hardalov et al., 2021) focus on adapting labels of
cross-domain stance detection with label embed-
dings. (Wang et al., 2021) apply meta-learning for
tasks adapting and labels adapting. (Aribandi et al.,
2021) pre-train a T5 model on a large-scale corpus
via diverse tasks to improve the transferability.
Debiasing Methods. There exist several works
on reducing the bias in a linguistic corpus. They
can be divided into two classes. The first class
is post-processing methods (Doherty et al., 2012;
Jiang et al., 2020). After pretraining a classification
model, these works consider the fairness by adjust-
ing its output. Since the process handles correct-
ness and fairness independently, it is hard to bal-
ance them simultaneously. Methods in the second
class reduce the bias during the training process
by adjusting the learning objectives (Schuster et al.,
2019a; Karimi Mahabadi et al., 2020; Sanh et al.,
2021). Usually, they re-weight the biased cases
to reduce their influence, which may sometimes
result in complicated calculations. These methods
all consider the corrections between n-grams and
labels. Therefore, some independent n-gram quan-
tification methods, e.g., TD-IDF, cannot achieve the
objectives (Robertson, 2004). Here we follow the
method adopted for the FEVER dataset (Schuster
et al., 2019a), which belongs to the second class
and is model-agnostic. It re-weights the instances
to adjust the new learning objective.

3. Preliminaries
3.1. Generative Language Models
The complete encoder-decoder Transformer archi-
tecture (Vaswani et al., 2017) is widely adopted to
build sequence-to-sequence models (Lewis et al.,
2020a; Raffel et al., 2020). Amongst them, T5 (Raf-
fel et al., 2020) has been explored for transfer learn-
ing, where a Vanilla T5 is first pre-trained on a large-
scale unlabeled dataset “Colossal Clean Crawled
Corpus” (C4), with a maximum likelihood objective.
It is then fine-tuned on a family of learning tasks
(e.g., translation, question answering, and text clas-
sification), where each task is distinguished by a
task-specific prefix as part of the input. Inspired
by these successes, we adopt the Vanilla T5 as
the backbone of this work. We aim to enhance
its evidence-aware inference capability for claim
verification and evidence retrieval via benchmark
corpus in which various degrees of language bias
and mixed label systems exist.

3.2. Linguistic Idiosyncrasy
To identify bias, (Schuster et al., 2019a) propose to
use local mutual information (LMI), where some n-
grams in a sentence appear to be falsely correlated
with a particular label (e.g., REFUTE), compared

n-gram (#SUP) LMI n-gram (#REF) LMI
higher longitudinal 573 has no 1,373
has higher 573 no known 1,030
can be 453 solely by 944
requires hypothalamic 420 obesity determined 944
balance requires 420 determined solely 944

Table 1: Top-5 biased n-grams ranked by LMI
(×10−6) on SCIFACT dataset.

with other labels (e.g., SUPPORT).

LMI(w, l) = p(w, l) · log
(
p(l|w)
p(l)

)
(1)

where p(w, l) is the joint probability of the n-gram
w and the label l in the corpus D, and p(l) is the
probability of l in D. Table 1 shows examples of
biased n-grams ranked by LMI metric. To tackle
these biases, the authors propose to lower the im-
portance of instances containing biased n-grams in
the dataset with a learnable instance weight. Con-
sequently, the impact of biased n-grams, initially
high in LMI, is reduced. Specifically, the authors es-
timate the impact of an n-gram (wj) biased toward
label l as follows.

b(l)wj
=

∑N
i=1 I[ci, wj ](1 + αi)I[yi = l]∑N

i=1 I[ci, wj ](1 + αi)
, (2)

where αi is a learnable instance weight associated
with the claim ci. I[ci, wj ] is an indicator function
with value 1 if the claim ci contains the n-gram wj ,
and the value of the indicator function I[yi = l] is 1
if the label class yi of the instance is l. The higher
the bias b

(l)
wj of wj toward a label l, the instance

weight αi for the claim ci, which contains the wj ,
should be lowered to decrease the numerator in Eq.
(2). To further decrease the bias b

(l)
wj by increasing

the denominator in Eq. 2, the weights αi toward
other labels should be increased.
To learn the best αi for each claim instance ci
∀1 ≤ i ≤ N , the authors formulate an adversarial
learning objective function to minimize the overall
impact of notable biased n-grams as follows.

min

 |V |∑
j=1

max
l

(b(l)wj
) + λ ∥α⃗i∥2

 , (3)

where |V | is the total number of biased n-grams
which are determined based on the LMI values.
The adversarial objective function searches for the
maximum bias across all classes while minimiz-
ing the overall bias by adjusting α values. The L2
norm is a regularization term to penalize drastic
instance weights with λ controlling their respective
importance.



6674

(a). Neutralization (b). Pre- inetuning

CVCV

EL

(c). Neutralized Knowledge Transfer

Claim Veri ication

two-label data

three-label data

SUP, REF

SUP, REF, NEU

Evidence Learning
ranking score ground-truth

evidence1

evidence2

0.75

0.15

(d). Label adaptation

“two way”＋ two-label data

“three way”＋ three-label data

Figure 2: An overview of the NKT framework. (a) NKT neutralizes biased multi-source domains Ds
c (Ds

e)
into unbiased corpora N s

c (N s
e ). (b) NKT pre-finetunes the pre-trained language model (f t

θ,f t
ω) on both

corpora to develop NKT+CV model (fθ) via the claim verification task and NKT+EL model (fω) via the
evidence learning task. (c) NKT transfers neutralized knowledge with fθ and fω as the initial models for
target domains. NKT fine-tunes or leverages fθ (fω) immediately (i.e., zero-shot) for the claim verification
task in target domains with varied label systems (for automatic evidence retrieval as a ranking problem).
(d) A label adaptation mechanism with proposed prefix descriptors.

After debiasing, most of the high LMI values of bi-
ased n-grams are decreased, indicating that the
biased dataset has been neutralized across labels
to some degree. However, Eq. (2) can not deal
with n-grams under extremely unbalanced label
distribution (i.e., p(l|wj) = 1). To solve the prob-
lem, we propose a robust method in Section 4.1 to
neutralize the biased corpus.

3.3. Zero-shot Knowledge Transfer
In-domain or cross-domain transfer can be
achieved to some extent by a two-stage learning
process, where the pre-training stage learns pa-
rameterized knowledge θs from the source domain
corpus, and the fine-tuning stage refines θs with
the target domain corpus.
We hypothesize that the transferability of neu-
tralized knowledge can be achieved via a pre-
finetuning phase, an intermediate step between
the pre-training and fine-tuning stages. In particu-
lar, the cross-domain transfer can be further distin-
guished into fine-tuning and zero-shot transfer set-
tings, depending on whether the final model learns
from any training samples in the target corpus. The
zero-shot transferability is harder yet vital, espe-
cially when computational resources are too limited
to afford entire fine-tuning stage in the target do-
main.

3.4. Problem Statement
Given a source corpus Ds, the goal is to enhance
the transferability of neutralized knowledge for in-
domain and cross-domain transfer in the target cor-

pus Dt in both fine-tuning and zero-shot settings.

4. Proposed Model
In this paper, we present the Neutralized
Knowledge Transfer framework (NKT) built upon
T5 for neutralized knowledge transfer on two
evidence-aware inference tasks: claim verification
and evidence learning. The NKT framework con-
sists of four modules: a) Neutralization, b) Pre-
finetuning, c) Neutralized Knowledge Transfer, and
d) Label adaptation. The neutralization module de-
biases the constructed corpora for inference tasks.
The pre-finetuning module learns evidence-aware
claim verification knowledge (evidence learning
knowledge) upon pre-trained T5 Vanilla on neutral-
ized claim verification source corpus (neutralized
evidence learning source corpus). The neutralized
knowledge transfer module transfers the learned
models for evidence learning and claim verification.
The label adaptation module enables claim verifi-
cation for mixed label systems in the target domain.
Figure 2 gives an overview of the NKT framework.

4.1. Neutralization Learning
Motivation. As discussed earlier, the debias ap-
proach (Schuster et al., 2019b) performs poorly
when the label distribution is highly unbalanced. In
other words, when wj biases toward class l with a
conditional probability of 1 (i.e., wj never appears
in other classes), Eq. (2) fails to reduce the impact
of biased wj . Consequently, it also fails to minimize
the importance of those instances containing wj .
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n-gram Bias Estimation. To amend the weakness,
we introduce a global bias to reinforce weight adjust-
ment for instances containing the biased n-gram
wj even if the n-gram has a conditional probability
1 toward class l as follows.

g(l)wj
=

∑N
i=1 I[ci, wj ](1 + αi)I[yi = l]∑N

i=1(1 + αi)
, (4)

where the global bias of wj is the conditional proba-
bility toward class l normalized over the summation
of all instance weights in the corpus. When the
global bias of wj is encouraged to decrease, the
weight αi of the instance containing the biased n-
gram wj is encouraged to reduce the numerator
in Eq. (4). To further decrease the global bias by
increasing the denominator in Eq. (4), the weights
α of all instances are encouraged to be increased.
We then define the overall bias of wj by considering
the global bias to tackle arbitrary label skewness
as follows.

bias(l)wj
= b(l)wj

+ (b(l)wj
− 1

|L|
)× g(l)wj

, (5)

where |L| is the number of classes in the corpus.
If the estimated bias is unbalanced (i.e., b

(l)
wj ∈

( 1
|L| , 1]), the importance toward class l for instances

containing wj is encouraged to decrease. Comple-
mentarily, the importance toward other classes for
instances containing wj is encouraged to increase
before increasing the importance of all instances.
If the estimated bias is balanced (i.e., b(l)wj = 1

|L| ),
the global bias makes no difference.
Instance Re-weighting. Given the amended bias
estimation, we calibrate the adversarial learning
objective function in Eq. (3) to search for the opti-
mal weight αi for each instance ci in the corpus as
follows.

min

 |V |∑
j=1

max
l

(bias
(l)
j ) + λ ∥α⃗i∥2

 , αi ∈ (−1, 1],

(6)
where the overall bias defined by the set of the max-
imum bias estimations across all classes is mini-
mized. Note that the regularized instance weight
αi ∈ (−1, 1] differs from αi ∈ [0,∞] in Eq. (3).
λ is to control the degree of neutralization when
p(l|wj) = 1 by penalizing the value of α in the global
bias g

(l)
wj . Finally, we obtain a neutralized corpus,

denoted as N s, for a given source corpus Ds.

4.2. Claim Verification Transfer
Given a claim and the associated evidence, we aim
to equip our model with claim verification capabil-
ity and transfer the capability to the target domain.
For this purpose, we first enrich the knowledge of
our source domain corpus with both general knowl-
edge and specific expertise and then develop claim

verification capability for the target domains via pre-
finetuning framework.
CV Corpus Construction. Specifically, we in-
tegrate representative datasets into a benchmark
corpus (CV) as the source domain, including gen-
eral knowledge (FEVER (Thorne et al., 2018) and
MNLI (Williams et al., 2018)) and specific exper-
tise in science and healthcare domains (SCIFACT
(Wadden et al., 2020) and PUBHEALTH (Kotonya
and Toni, 2020)). The CV source corpus is pre-
pared to learn claim verification knowledge.
Pre-finetuning to Transfer. Given the neutralized
source corpus N s

c = {(ci, ei, li, αi)|∀1 ≤ i ≤ |N s
c |},

where each sample consists of a claim ci, an evi-
dence ei associated with the claim ci, a class label
li ∈ {Ls

1, L
s
2, ...} and an instance weight αi, ob-

tained via neutralization learning on CV corpus.
Our goal is to pre-finetune a parameterized model
fθ on N s

c to accurately predict the claim label li for
a given claim ci. An example of a target task is to
leverage fθ as the initial model to further fine-tune
or straightforwardly perform on the target corpus
Dt

c (zero-shot) to determine the claim label lj ∈
{Lt

1, L
t
2, ...} for a given claim cj ∈ Dt

c.
Label Adaptation Prefix. A model trained on a
source corpus with an m-way label system, com-
prising in total m label classes, can not directly
transfer to a target dataset with an n-way label sys-
tem containing totally n label classes. To address
the issue, we modify the T5 model by introducing a
new prefix descriptor to enable cross-domain label
adaptation. Specifically, we introduce an additional
label adaptation prefix to the original input sentence
before forwarding the data for the pre-finetuning
stage. For each dataset in our corpus, a label
adaptation prefix is provided as part of the input
to indicate the label system the dataset belongs
to. The input format for “m-way” instances, indi-
cating the dataset has m unique label classes, is
described as follows.

m-way: [claim] + [evidence]

For example, the prefix “three-way” is added to
each instance in FEVER, indicating it is a three-
label dataset. As such, the label adaptation prefix
informs the NKT+CV model, which label system
to adapt to during the pre-finetuning and inference
stages. Note that for those cases where the label
classes of the target dataset are more than that of
the source dataset, we use the source label classes
to ensure complete transfer.

4.3. Evidence Learning Transfer
To address the issue of missing evidence anno-
tations, we aim to equip our model with evidence
retrieval capability to supplement claims with gold
evidence in target domains. This is referred to as
the transferability of evidence learning.
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EL Corpus Construction. Specifically, we con-
struct a multi-source corpus for evidence learning
(EL), including the same sources as the CV (i.e.,
FEVER, MNLI, PUBHEALTH, and SCIFACT). To
enhance the learning process, we also augment
EL with negative samples.
Negative Sample Augmentation. Given a claim
and the associated evidence in EL, we first collect
samples with labels in {SUP, REF}. Then, we ran-
domly selected ten pieces of evidence from other
claims for each claim to pair with the claim as nega-
tive samples. After the augmentation process, the
number of negative samples is exactly ten times
that of positive samples.
Pre-finetuning to Transfer. Given the neutralized
EL source corpus N s

e = {(ci, pi, li, αi)|∀1 ≤ i ≤
|N s

e |}, where each sample consists of a claim ci,
an explainable passage pi, a gold entailment label
li ∈ {POS,NEG} indicating if pi truthfully (li=POS)
or falsely (li=NEG) entails the claim ci, and an
importance weight αi, obtained via neutralization
learning on EL corpus. Our goal is to pre-finetune
a parameterized model fω on N s

e to accurately pre-
dict the entailment label li for the claim-evidence
pair (ci,pi). An example of a target task is to auto-
matically retrieve evidence for a given claim in the
target corpus Dt

e. This can be cast as an evidence
ranking problem for a claim cj ∈ Dt

e by leveraging
fω as the initial model for different transfer settings.

4.4. Re-weighted Learning Objective
To factor in the instance importance (αi), we define
a re-weighted cross entropy loss to pre-finetune
NTK+CV and NTK+EL as follows.

Lw = −
N∑
i=1

(1 + αi)

|L|∑
l=1

y
(l)
i log(p

(l)
i ) (7)

where L(ci, yi) is the cross entropy loss, p
(l)
i is

the softmax probability for the l-th class, and y
(l)
i

is the actual class label. NKT+CV (fθ) is opti-
mized via class verification task by minimizing Lw

on N s
c = {(ci, ei, y(l)i , αi)}, where y

(l)
i ∈ {Ls

1, L
s
2, ...}.

NKT+EL (fω) is optimized via evidence learning
task by minimizing Lw on N s

e = {(ci, pi, y(l)i , αi)},
where y

(l)
i ∈ {POS,NEG}.

5. Experiments
In this section, we conduct experiments to qualita-
tively and quantitatively study the effectiveness of
NKT via claim verification and evidence learning
tasks. The knowledge transferability (RQ1) veri-
fies the transferability of NKT. The ablution study
(RQ2) addresses the contribution of label adapta-
tion and neutralization learning without instance re-
weighting. The neutralization study (RQ3) explores
whether words with bias are responsibly adjusted

CV Domain #SUP #REF #NEI
FEVER Wikipedia 80,035 29,775 35,639
MNLI Inference 130,899 130,903 130,900
PUBHEALTH Healthcare 5,078 3,001 0
SCIFACT Science 832 463 0
EL Domain #POS #NEG
FEVER Wikipedia 90,528 905,280
MNLI Inference 261,802 2,618,020
PUBHEALTH Healthcare 8,079 80,790
SCIFACT Science 1,295 12,950

Table 2: Data statistics of the source corpora.

Transfer Settings In-Domain Cross-Domain (Zero-shot)
Target Corpus FEV CREAK COVID-FACT

Fe
w

-s
ho

t

KGAT .8033 - -
GEAR .7782 - -
BERT .8543 .496 .6782
RoBERTa .5 .496 .6782
T5 (Vanilla) .8591 .7162 .6806
NKT+CV + L .8663 .7987 .7946

Ze
ro

-s
ho

t BERT - - -
RoBERTa - - -
T5 (Vanilla) - - -
NKT+CV + L .891 .7549 .5099

Table 3: Claim verification task.

by the proposed neutralization module at both the
word and instance levels.

5.1. Datasets
Claim Verification. For claim verification pre-
finetuning corpus (CV), we collect the training set
of FEVER, MNLI, PUBHEALTH, and SCIFACT. For
label alignment, we collect samples from PUB-
HEALTH with labels in { FALSE, TRUE}, and sam-
ples from SCIFACT (Wadden et al., 2020) with la-
bels in {SUP, REF}. To evaluate the claim verifi-
cation transferability, we collect (i) a validation set
of FEVER for the in-domain transfer settings and
(ii) a validation set of the CREAK and a test set of
COVID-FACT for cross-domain transfer settings.
Evidence Learning. For evidence learning pre-
finetuning corpus (EL), we collect the training sets
of FEVER, MNLI, PUBHEALTH, and COVID-FACT.
To evaluate the evidence learning transferability,
we collect (i) validation sets from MNLI-matched,
FEVER, and test sets from PUBHEALTH for in-
domain transfer settings and (ii) validation sets from
MNLI-mismatched and test sets from COVID-FACT
for cross-domain transfer setting. Note that the
MNLI-mismatched validation set is considered a
cross-domain transfer setting, as some genres do
not appear in the MNLI training set. Table 2 summa-
rizes the detailed statistics of CV and EL corpora.
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Transfer Settings In-Domain Cross-Domain (Zero-shot)
Target Corpus MNLI-matched FEVER PUBH MNLI-mismatched COVID-FACT
Metric P@1 R@1 F1@1 P@1 R@1 F1@1 P@1 R@1 F1@1 P@1 R@1 F1@1 P@1 R@1 F1@1
Random .002 .002 .002 .0 .0 .0 .001 .001 .001 .0 .0 .0 .0074 .0074 .0074
DPR .375 .375 .375 .553 .553 .553 .3171 .3171 .3171 .357 .357 .357 .1733 .1733 .1733
BERT + EL .928 .928 .928 .843 .843 .843 .8267 .8267 .8267 .9 .9 .9 .7351 .7351 .7351
RoBERTa + EL .921 .921 .921 .821 .821 .821 .8379 .8379 .8379 .908 .908 .908 .6733 .6733 .6733
T5 (Vanilla) - - - - - - - - - - - - - - -
NKT+EL - N .928 .928 .928 .841 .841 .841 .8349 .8349 .8349 .918 .918 .918 .7871 .7871 .7871
NKT+EL .914 .914 .914 .885 .885 .885 .8328 .8328 .8328 .904 .904 .904 .8119 .8119 .8119

Table 4: Evidence learning task with ablation on neutralization learning without instance re-weighting (-N).

5.2. Experimental Settings
Baselines. To evaluate NKT+CV, we compare with
(i) transformer-based models (Vanilla T5, BERT,
and RoBERTa), and (ii) graph-based models on
evidence-aware claim verification (KGAT, GEAR)
on FEVER dataset. To evaluate NKT+EL, we com-
pare with DPR and a random retriever (Random) by
randomly selecting top-k sentences from the cor-
pus.To ensure a fair comparison with all baselines,
original test sets of the datasets are adopted, which
helps to examine the model’s ability to withstand
biased language within the corpus.
Metrics. For claim verification evaluation, we
adopt the classification accuracy. For evidence
learning evaluation, we adopt precision (P@k), re-
call (R@k), and F1-score (F1@k), where k is the
number of retrieved items. Note that P@1 is the
proportion of relevant recommended items in the
top-1 set. If P@1=1/1, the evidence is considered
valid. Conversely, if P@1=0/1, it implies that the
evidence is incorrect. This relationship also ap-
plies to recall, given that each claim in our dataset
corresponds to one piece of evidence, resulting
in a common denominator of 1 for both recall and
precision.

5.3. Knowledge Transferability (RQ1)
Claim Verification. As shown in Table 3,
NKT+CV+L (with label adaptation) outperforms all
baselines in both few-shot and zero-shot settings:
(i) T5 Vanilla, BERT, and RoBERTa on all target
datasets; and (ii) KGAT and GEAR on FEVER with
fine-tuning. The NA in Table 3 indicates the inabil-
ity of BERT, RoBERTa, and T5 Vanilla to perform
transfer learning directly.
Evidence Learning. We conduct experiments
to verify if NKT+EL enhances the transferability
for evidence learning. Table 4 shows that our
NKT+EL model performs best across the target cor-
pus against Random and DPR. Besides, we find
that evidence learning transferability works well
for transformer-based models. In the in-domain
transfer setting, NKT+EL achieves 0.8328 in F1@1,
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Figure 3: Cross-domain evidence learning task.

Transfer Settings In-Domain Cross-Domain (Zero-shot)
Target Corpus FEV CREAK COVID-FACT

Fe
w

-s
ho

t NKT+CV - N .8762 .8118 .7847
NKT+CV .8686 .7834 .7946
NKT+CV + L - N .881 .822 .807
NKT+CV + L .8663 .7987 .7946

Ze
ro

-s
ho

t NKT+CV - N .8947 .5711 .4802
NKT+CV .8915 .5828 .453
NKT+CV + L - N .8765 .7338 .547
NKT+CV + L .891 .7549 .5099

Table 5: Claim verification task with ablations on
label adaptation (+L) and neutralization learning
without instance re-weighting (-N).

whereas DPR only achieves 0.3171 in F1@1 on
PUBHEALTH. In the cross-domain transfer setting,
NKT+EL achieves 0.8119 in F1@1, while DPR only
achieves 0.1733 in F1@1 on COVID-FACT.
Figure 3 gives a closer look at cross-domain perfor-
mance, where NKT+EL consistently outperforms
the DPR with a significant margin across varying
k on MNLI-mismatched and COVID-FACT. For in-
stance, when 5 ≤ k, NKT+EL achieves over 0.9
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CV: Claim with #REF α CV: Claim with #SUP α

Molyvos is a run down town in the center of the
region, not popular at all with tourists.

-0.813 They were not pleased that Russia spear-headed
the peace talks at all.

0.945

State size does not affect the rate of unfiled re-
turns.

-0.592 The Dept. of Defense does not have the criteria,
...

0.832

EL: Evidence with #POS α EL: Evidence with #NEG α

Increased risk of breast cancer was noted with
increased birthweight (relative risk [RR] 1.15 [95%
CI 1.09-1.21]), ...

-0.956
Protective hazard ratios (HRs) were detected for
bariatric surgery for incident T2DM, 0.68 (95% CI
0.55-0.83), ...

0.965

The relative risk estimate , ... for breast cancer
was 1.23 (95% confidence interval 1.13-1.34). -0.838 Nine studies investigated the association between,

... 95% confidence interval 1.31 to 2.29). 1

Table 6: Re-weighting for claim verification and evidence learning tasks after neutralization learning.

in Recall, while DPR only reaches ≈ 0.7 in Re-
call at k = 50 on MNLI-mismatched. Note that T5
Vanilla pre-trained on unlabeled text corpus can
not directly perform the entailment ranking task.
Contrarily, pre-finetuning on EL enables NKT+EL
to direct transfer to the target entailment ranking
task with an outstanding performance against DPR.
Besides, we pre-finetune BERT and RoBERTa on
EL, which results in BERT+EL and RoBERTa+EL
models, respectively. Their performance is close
to NKT+EL on some target corpus, suggesting the
effectiveness of the pre-finetuning framework in
enhancing versatile transferability.

5.4. Ablation Study (RQ2)
Claim Verification. In the zero-shot cross-domain
transfer setting, Table 5 shows that the accuracy
of NKT+CV on COVID-FACT has decreased to a
large extent due to the exclusion of neutralization.
In contrast, the accuracy of NKT+CV on CREAK
increases by 0.2. In fine-tuning settings, excluding
neutralization brings little gains in accuracy (i.e.,
0.2 increase in CREAK and 0.1 increase in COVID-
FACT). The reason why the neutralization mecha-
nism can not always have a positive impact on a
target corpus may be that the target dataset is also
biased. For example, the bi-gram “can be” biases
toward “SUP” in MNLI, and the bi-gram “does not”
biases toward “REF” in MNLI and FEVER. Contrar-
ily, COVID-FACT is not biased, leading to improved
prediction accuracy in a zero-shot setting. In Table
5, we notice that neutralization (N) may not con-
sistently improve classification accuracy. This is
attributed to the nature of neutralization, which in-
volves breaking down spurious correlations to make
predictions based on semantic relevance rather
than relying on biased language cues.
In the zero-shot cross-domain transfer setting, Ta-
ble 3 shows that the accuracy for both CREAK
and COVID-FACT has marginally decreased due
to the exclusion of label adaptation. According
to our analysis, ≈ 2.5% predictions (NKT+CV) on
COVID-FACT and ≈ 21.88% predictions (NKT+CV)

on CREAK are not in respective label systems. All
predictions (NKT+CV+L) on each benchmark are
in the label systems, suggesting the effectiveness
of our label adaption mechanism.
Evidence learning. Table 4 shows that excluding
the neutralization mechanism causes ≈ 0.2 decline
in Recall on COVID-FACT.

5.5. Debiased Learning (RQ3)
Claim Verification. Table 6 gives examples of re-
weighted instances with the biased bi-grams high-
lighted in blue, e.g., “at all” and “does not” are bi-
ased toward “REF” in MNLI. Thus, the instances
containing any of them with “REF” receive lower
weights. Contrarily, the weights for instances con-
taining any of them with the label “SUP” are in-
creased.
Evidence Learning. Likewise, “95 CI” and “95
confidence” are biased toward “POS” in SCIFACT.
Thus, instances containing any labeled with “POS”
receive lower weights ≈ −1, while their weights
toward “NEG” increase ≈ 1.

6. Conclusion
We propose a novel NKT framework to tackle the
scarcely labeled data and the biased data, particu-
larly in zero-shot cross-domain transfer setting. We
equip a Vanilla T5 with neutralized knowledge via
robust neutralization mechanism by pre-finetuning
NKT+CV (NKT+EL) on neutralized CV (EL) corpus
with proposed label adaptation prefix. The results
show that the NKT framework effectively enhances
the transferability for both tasks.

7. Limitations
The inefficiency of NKT+EL model needs attention
despite its effectiveness. Diversifying the target
domains is another agenda as we primarily focus
on scientific domains. A robust neutralization is a
must if adversarial samples exist.
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