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Abstract
While Large Language Models (LLMs) excel at the Winograd Schema Challenge (WSC), a coreference resolution
task testing common-sense reasoning through pronoun disambiguation, they struggle with instances that feature
minor alterations or rewording. To address this, we introduce EvoGrad, an open-source platform that harnesses
a human-in-the-loop approach to create a dynamic dataset tailored to such altered WSC instances. Leveraging
ChatGPT’s capabilities, we expand our task instances from 182 to 3691, setting a new benchmark for diverse
common-sense reasoning datasets. Additionally, we introduce the error depth metric, assessing model stability in
dynamic tasks. Our results emphasize the challenge posed by EvoGrad: Even the best performing LLM, GPT-3.5,
achieves an accuracy of 65.0% with an average error depth of 7.2, a stark contrast to human performance of 92.8%
accuracy without perturbation errors. This highlights ongoing model limitations and the value of dynamic datasets in
uncovering them.
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1. Introduction

The Winograd Schema Challenge (WSC), a co-
reference resolution task, was developed to gauge
the common-sense reasoning of automated sys-
tems (Winograd, 1972; Levesque et al., 2011).
Given subtly varying sentence pairs, the task is
to correctly associate a pronoun with a noun, as
illustrated below:

(1) a. Tom told Ralph, “Check,” as he moved
his bishop. (Answer: Tom)

b. Tom told Ralph, “Check,” as he took his
bishop. (Answer: Ralph)

In these examples, chess knowledge informs our
interpretation of the pronoun his—either referring
to Tom or Ralph—based on the action performed,
either a move or take. While humans find such
tasks intuitive, they pose a challenge for statisti-
cal models, especially when lacking exposure to
basic rules or common knowledge. Yet, recent de-
velopments of extensive common-sense reasoning
datasets and benchmarks have allowed LLMs to
achieve near-human performance on WSC variants
(Brown et al., 2020; Sakaguchi et al., 2020). This
impressive accomplishment raises the question:
has the WSC, seen as a definitive alternative to the
Turing Test, been definitively “defeated” (Kocijan
et al., 2022)?

At the same time, evidence suggests that even
slight alterations to a WSC task can significantly
undermine a model’s performance (Jia and Liang,
2017; Trichelair et al., 2018, 2019; Balasubrama-
nian et al., 2020; Lin et al., 2020a; Elazar et al.,

2021a). This instability may reflect a discrepancy
between current supervision paradigms and the
dynamic nature of common sense acquisition. It
suggests the potential value of exploring various
approaches, including a human-and-model-in-the-
loop concept, as part of a broader strategy to ad-
dress these challenges (Nie et al., 2020; Kiela et al.,
2021; Lu et al., 2022).

Existing datasets, often curated by select sci-
entific communities or crowdsourcing platforms,
may also unintentionally bias models toward certain
knowledge instances or values, which may not be
universally shared. This consideration underscores
the need for diverse, dynamic, and inclusive bench-
marks in the journey towards systems equipped
with generalized common sense.

Consider the chess example mentioned earlier.
While the original WSC sentences test the model’s
understanding of the game’s basic rules, perturba-
tions can further probe deeper nuances and poten-
tial biases:

(2) a. Maria told Jane, “Your move,” as she
adjusted her queen. (Answer: Maria)

b. Maria told Jane, “Your move,” as she
glanced at her clock. (Answer: Jane)

In these variations, the emphasis shifts from
the action performed on a chess piece to the
broader context of a timed chess match. Slight
word changes can dramatically alter the correct
answer, exposing potential model biases or gaps
in understanding. Such perturbations, especially
when generated by diverse human contributors, en-
sure a broader and more comprehensive test of a
model’s common-sense reasoning capabilities.
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Figure 1: Interface of EvoGrad at https://evograd.com

In this paper, we propose a revisit to the WSC
within the framework of human-and-model-in-the-
loop. We introduce EvoGrad, an open-source,
user-centric platform dedicated to the active gener-
ation and expansion of nuanced examples for the
WSC through human-in-the-loop interactions. Our
work contributes three primary advancements:

A novel data construction mechanism: We
enhance the WSC with our unique approach to
human-adversarial perturbations, combining hu-
man creativity with the efficiency of ChatGPT. This
innovative union, along with our use of Wordnet for
synonym-based variation, led to a dataset expan-
sion from 182 to 3691 instances, setting a new
standard for dynamic, diverse, and high-quality
common-sense reasoning datasets. Notably, our
evaluations highlight the challenging nature of Evo-
Grad, revealing significant gaps in model abilities
when compared to human benchmarks.

A new metric for model stability: In response
to the instability of transformer-based models on
WSC-like tasks (Abdou et al., 2020), we introduce
a metric termed error depth. This measure, derived
from our data construction process, offers a quan-
tifiable assessment of model stability. We advo-
cate for its inclusion in evaluation reports alongside
accuracy-based metrics, which could discourage
the development of models that achieve high scores
due to incorrect reasoning.

Online platform for user contributions: Avail-
able at https://evograd.com1, our platform

1All aspects of the website remain anonymous during
the submission and review process to maintain the in-
tegrity of the user-contributed data and ensure unbiased
evaluation.

encourages public participation in the continuous
expansion of the dataset. Users can modify exist-
ing task instances and observe the predictions of
a chosen LLM, fostering a more participatory and
immersive data construction process (Figure 1).

2. Related Work

2.1. WSC-based Datasets

The Winograd Schema Challenge (WSC)
(Levesque et al., 2011) inspired various datasets
for pronominal coreference resolution, each
tackling specific challenges in the WSC or model
evaluations. Datasets like Winogrande (Sakaguchi
et al., 2020) and KnowRef (Emami et al., 2019)
address the WSC’s size constraints. WinoGender
(Rudinger et al., 2018), WinoBias (Zhao et al.,
2018), and KnowRef-60k (Emami et al., 2020)
focus on model biases, while WinoWhy (Zhang
et al., 2020) and WinoLogic (He et al., 2021) target
common sense deficiencies in models. Some
research efforts enhanced the original WSC task
(Wang et al., 2018; Trichelair et al., 2018; Kocijan
et al., 2019; Elazar et al., 2021a; Zahraei and
Emami, 2024) and utilized crowd-sourcing for task
development (Isaak and Michael, 2019; Sakaguchi
et al., 2020). While these static datasets each offer
distinct strengths, they often introduce challenges
that necessitate prolonged research and iterations.
EvoGrad, on the other hand, adopts a dynamic
framework, allowing for swift adjustments and
refinements in response to emerging challenges.

https://evograd.com
https://evograd.com
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s0: Kevin yelled at Jim
because he was so upset.

s1(9): Kevin yelled at Jim be-
cause he was so annoying.

s2(7,9): Kevin yelled at
Jim because he be-
came so annoying.

per7(s1(9), became)

s1(2): Kevin screamed at Jim
because he was so upset.

s2(2,5): Kevin screamed
at Jim although

he was so upset.

s2(2,4): Kevin screamed
at Melissa because

he/she was so upset.

per4(s1(2),Melissa) per5(s1(2), although)

per2(s0, screamed) per9(s0, annoying)

Figure 2: Evolution figure of the sentence “Kevin yelled at Jim because he was so upset.” up to depth
level 2.

2.2. Dynamic Datasets
Dynamic datasets, updated over time to present
new challenges, have been developed for various
tasks (Zellers et al., 2019; Lin et al., 2020b). Adver-
sarial frameworks, as seen in Adversarial SQuAD,
SWAG, HellaSWAG, CODAH and ANLI, exemplify
this approach (Jia and Liang, 2017; Zellers et al.,
2018, 2019; Chen et al., 2019; Nie et al., 2020).
Techniques such as AFLite address biases through
adversarial filtering (Le Bras et al., 2020), while
other methods use continuous learning or a human-
model collaborative process (Lan et al., 2017; Yang
et al., 2018; Wallace et al., 2019; Dinan et al., 2019;
Nie et al., 2020; Xu et al., 2021; Kiela et al., 2021).
ANLI and Dynabench are notable for their multi-
round adversarial data collection (Nie et al., 2020;
Kiela et al., 2021). EvoGrad, while aligning with
the dynamic dataset philosophy, specifically targets
WSC-based tasks. It merges human-and-model
collaboration, continuous learning, and domain-
specific insights for evolutionary data creation, am-
plifying the depth and relevance of WSC challenges
to shed light on common-sense reasoning.

2.3. Data Augmentation Methods in NLP
Data augmentation techniques in NLP create new
examples from existing ones, obviating the need
for novel data collection (Shi et al., 2021; Feng
et al., 2021). These methods include token-level
manipulation, text generation restricted, soft data
enhancement, and structure-aware data augmenta-
tion (Wang and Yang, 2015; Bergmanis et al., 2017;
Zhang et al., 2018; Xu et al., 2016). Our approach,
mainly a token-level manipulation technique, ex-
tends beyond the substitution of words to include
the addition and removal of tokens, allowing more
significant sentence transformations (Zmigrod et al.,
2019; Lu et al., 2020; Shi et al., 2018). We also
measure the depth of changes (Section 3.6) rela-
tive to the original sentence, providing insights into

model stability as a function of perturbations.

2.4. Large Language Models in Data
Augmentation and Annotation

Large language models have emerged as effec-
tive tools for NLP data augmentation and anno-
tation, often exceeding the performance of crowd-
workers in terms of efficiency and cost (Gilardi et al.,
2023). These models are effective in tasks such
as zero-shot gender identification and providing ex-
planations for implicit hate speech (Kuzman et al.,
2023; Huang et al., 2023). AugGPT, for instance,
outperforms traditional text augmentation methods
in few-shot learning scenarios by rephrasing sen-
tences (Dai et al., 2023). Similarly, ChatGPT has
shown the potential to simplify social computing
tasks by replicating human-like annotations (Zhu
et al., 2023). Building on these insights, we intro-
duce an enhanced data augmentation method that
encompasses token substitutions, additions, and
removals, aiming to address common-sense rea-
soning deficiencies in the WSC and related tasks.

3. EvoGrad

3.1. Dataset Evolution by Perturbation
We adopt an evolutionary approach to dataset
expansion, initiating the process with randomly
selected instances from the original Winograd
Schema Challenge (WSC273) (Levesque et al.,
2011) and Winogrande (Sakaguchi et al., 2020),
which are correctly resolved by all evaluated
models.

Our method introduces a one-word perturbation
to each sentence, effectively mutating it via substi-
tution. We define a perturbation function perj(s, w)
that replaces the token at index j in sentence s with
the token w. Though primarily substitution-based,
this function can also facilitate the addition or re-
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moval of words, denoted as perj(s, wj + w) and
perj(s, ϵ) respectively, with ϵ symbolizing an empty
string.

The function is generalized as follows:

perj(sk(i1,...,ik), w) = s(k+1)(i1,...,ij ,...,ik+1)

j ̸∈ {i1, ..., ik} & i1 < ... < ik+1 (1)

In this equation, sk(i1,...,ik) signifies the kth pertur-
bation on the base sentence s0, wherein tokens at
indices i1, ..., ik have been modified from s0 (Equa-
tion 1). The term k denotes the ‘depth’ or generation
of the sentence.

The conditions set for j and indices i1, ..., ik+1

ensure that a depth increment corresponds solely
to the perturbation of a token distinct from those
previously perturbed (i.e.,i1, ..., ik). Although re-
peated modifications at the same token position
are not prohibited, such sentences maintain their
original depths. This approach follows our depth
interpretation, emphasizing model stability against
sentences that are increasingly divergent from the
original. This methodological choice facilitates the
systematic generation of progressively varied sen-
tences, thereby enriching the dataset.

The perturbation function is applied iteratively,
generating a cascade of output instances from each
input instance. This process is illustrated in Figure
2 by the sentence ‘Kevin yelled at Jim because
he was so upset.’ Through several iterations of the
perturbation function, we generate a wide spectrum
of sentences, each incrementally divergent from
the original.

3.2. Scaling with ChatGPT
Beyond user contributions, we strategically em-
ployed ChatGPT2 to vastly expand our dataset.
We initialized the process with 14 seed sentences
(7 from WSC273 and 7 from Winogrande-valid)
and expanded them to 182 instances via human
annotation via our website. Then, we designed
an elaborate prompt that enabled ChatGPT to act
as an ‘expert human annotator’. This step was
not only intended to emulate human expertise but
also to demonstrate the potential scalability of our
dataset. By guiding ChatGPT through a structured
decision-making process, similar to that of a hu-
man annotator, we aimed to show how LLMs can
be used to augment and accelerate data genera-
tion and assessment. The prompts were meticu-
lously crafted to guide the model generation pro-
cess via demonstrative examples and called for
frequent self-reflection to ensure the quality of the
output. One unique aspect of these prompts was
the incorporation of a segmented generation pro-
cess, interspersed with feedback to ensure quality

2https://chat.openai.com/

control and continuous self-assessment. For each
instance, we verified semantic coherence and im-
plemented a validation step to ensure pronouns
and co-references matched commonly accepted
or typical human readings. An illustrative dialogue
sample can be found in the Appendix in section
A.1.

This rigorous approach to prompt engineering
culminated in the generation of approximately 100
new instances per seed sentence. We further di-
versified these generated sentences by modifying
words, altering the correct antecedent, and vary-
ing the total perturbation depth from the original
sentences. This strategy effectively harnessed the
power of human creativity and the scalability of
the model to significantly expand our dataset. As
a result, we managed to augment our initial 182-
instance dataset to a much more extensive collec-
tion of 1,414 sentences, thereby facilitating a more
comprehensive evaluation of model performance
on dynamic WSC tasks.

3.3. Scaling with Wordnet

To increase the diversity of our dataset, we utilized
Wordnet (Fellbaum, 2010), a lexical database, to
augment the 1,414 sentences obtained from our
ChatGPT Scaling stage. This process enabled us
to nearly triple our dataset size to a final count of
3,691 sentences.

Our strategy was to introduce variability while
preserving the context of the sentence and gram-
matical accuracy. We achieved this by iterat-
ing over each sentence and randomly selecting
a word—excluding stop words and named enti-
ties—for replacement. Once a word was selected,
a random synonym from Wordnet was chosen as
its substitute. In cases where the chosen word was
a verb, we ensured that the replacement synonym
matched the tense of the original verb.

This approach allowed us to maintain the integrity
of our original dataset while significantly enhancing
its size and complexity. The resulting sentences
provided a rich basis for model testing, aiding in
the generation of a more diverse and nuanced set
of pronoun disambiguation scenarios.

3.4. The Dataset

Table 1 outlines the construction and allocation pro-
cess for our datasets, specifically EvoGrad-small
(S), EvoGrad-medium (M) and EvoGrad-large
(L). The initial dataset, EvoGrad-S, comprised 182
instances, all of which were adaptations induced
by humans from an original set of 14 sentences.

Subsequently, we generated the EvoGrad-M
dataset, which was divided into three distinct sub-
sets: ‘train’, ‘val’, and ‘test’. These subsets were



6705

Dataset Sub Size Method
EvoGrad-S - 182 Human (14 orig.)
EvoGrad-M Train 1010 ChatGPT (1-10)

Val 202 ChatGPT (11-12)
Test 202 ChatGPT (13-14)

EvoGrad-L Train 2963 WordNet (M Train)
Val 526 WordNet (M Val)
Test 202 ChatGPT (13-14)

Table 1: Summary of EvoGrad Allocation

created by perturbing the original sentences using
ChatGPT, resulting in a total of 1,414 instances.

Finally, our most extensive dataset, EvoGrad-
L, was constructed by augmenting both the ‘train’
and ‘val’ subsets of EvoGrad-M using Wordnet,
leading to an overall count of 3,691 instances. The
‘test’ subset was retained from the EvoGrad-M
‘test’ dataset and was generated through further
perturbation of EvoGrad-S sentences via Chat-
GPT. To illustrate the range of perturbations and
their sources, we provide sample instances in Table
2 derived from an original WSC sentence.

3.5. The Platform

To foster collaborative development of EvoGrad,
we have developed an interactive platform, acces-
sible at https://evograd.com. Here, global
users can actively contribute to the dataset’s
evolution by modifying existing sentences.

In the Build dataset page, users can select an
original or perturbed sentence from a drop-down
menu labeled Original Sentence. They are then
guided to input a modified version of this sentence,
replacing the target pronoun with an underscore, in
the New Sentence field. Following the Winogrande
format (Sakaguchi et al., 2020), users also provide
the two potential noun antecedents in the Option 1
and Option 2 fields, specifying the correct answer.

To enhance user engagement, our platform of-
fers immediate feedback. Users can choose an
LLM from a list - including BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and Albert (Lan
et al., 2020)—and observe the model’s live predic-
tion. By clicking Submit, this prediction is gener-
ated, and the newly provided data is incorporated
into the dataset.

We prioritize transparency by allowing the
dataset, stored as a CSV file, to be downloaded and
inspected directly from the platform. To ensure the
quality and appropriateness of the submissions, we
manually validate all entries. Users are further sup-
ported with examples and guidelines. A glimpse of
the platform’s interface is depicted in Figure 1.

3.6. Error Depth
Given our dataset construction methodology, we
propose the error depth (ED) metric to evaluate
model stability. While accuracy is a widely used
metric to gauge model performance on prediction
tasks such as the WSC, it might not effectively cap-
ture a model’s resilience against instances that pro-
gressively deviate from the original.

There are scenarios where models predict cor-
rectly but possibly for the wrong reasons. Sole
reliance on accuracy can obscure these nuances.
Ideally, a model should demonstrate stability
against token substitutions. Although, in the context
of the WSC, a token change can alter the answer
label, a truly robust model should not be overly
sensitive to such modifications.

The error depth metric quantifies a model’s per-
formance on sentences that increasingly diverge
from a correctly understood original. Specifically,
the error depth denotes the number of perturbations
made to the original sentence before the model pro-
duces its first incorrect prediction. In other words,
it represents the number of modifications a sen-
tence can undergo before the model fails to predict
correctly on it.

For clarity, let’s define the symbols:

• s0: The original seed sentence.

• label(s): The true label of sentence s.

• pred(s): The model’s predicted label for sen-
tence s.

• nwrong: The number of incorrect predictions
made by the model on perturbed versions of
the original sentence.

With these definitions, the error depth (ED) is
formulated as:

ED
def
=

1

nwrong

nwrong∑
k

k

if label(s0) = pred(s0) and
label(sk(i1,...,ik)) ̸= pred(sk(i1,...,ik))

(2)

Refer to Table 3 for an application of the metric
to perturbations of a sentence. In this demonstra-
tion, the model mispredicts three sentences: two
after five perturbations and one after six. Thus,
ED = (5 + 5 + 6)/3 = 5.333, which means that on
average, the model will fail on instances 5.333 modi-
fications away from the original sentence. The error
depth functions as an instance-level metric, assess-
ing a model’s stability for individual sentences. Av-
eraging over all instances yields ED, which, when
paired with accuracy, offers a comprehensive as-
sessment of a model’s performance on tasks like
the WSC.

https://evograd.com


6706

Source Sentence Answer Depth
Original (WSC) I poured water from the bottle into the cup until _ was

full.
cup 0

Human-
perturbed

I poured water from the bottle into the cup because _
was empty.

cup 2

ChatGPT-
scaled

I poured water from the bottle, filling the cup until _
was empty.

bottle 4

Wordnet-scaled I decanted water from the feeding bottle into the cup
until _ was empty.

feeding bottle 4

Table 2: Sample instances of EvoGrad derived from an original WSC sentence, showcasing the different
methods of sentence generation and perturbation.

Original sentence: Although she was being prosecuted, Monica was welcomed into the sanctuary of the
church by Samantha because _ was a sinful criminal.

Perturbed Sentence Prediction True Label Depth
Although she was being prosecuted, Monica was welcomed into the
sanctuary of the church by Samantha because _ was a guilty criminal. Monica Monica 1 ✓

Although she was being prosecuted, Monica was welcomed into the
sanctuary of the church by Samantha because _ was a compassionate
person.

Samantha Samantha 2 ✓

Even though she was being prosecuted, Monica was guided into the safe
haven of the church by Samantha because _ was a virtuous person. Monica Samantha 5 ✗

While under prosecution, Monica was brought into the spiritual refuge of
the church by Samantha because _ was a good-natured woman. Monica Samantha 6 ✗

While being prosecuted, Monica was welcomed into the church’s refuge
by Samantha because _ was a law-abiding person. Monica Samantha 5 ✗

Table 3: Sample of perturbations constructed from Eq.1 on a Winogrande example, with predictions
corresponding to RoBERTa fine-tuned on Winogrande-XL. The model’s incorrect predictions occur at
depths 5,6 and 5, respectively, corresponding to the number of modified tokens from the original. Therefore,
this sample of 5 perturbed instances has an average error depth (ED) of 5.333.

3.7. Human Performance
Three English-proficient annotators reviewed Evo-
Grad-M Val and EvoGrad-L Val, achieving mean
accuracies of 95.2% and 92.8%, respectively. Im-
portantly, they did not exhibit an average error
depth, effectively handling perturbations to the
full depth of the dataset. A high inter-annotator
agreement was recorded with a Fleiss’ Kappa of
κ = 0.914.

4. Experiments and Results

4.1. Model Setup
We evaluated three primary transformer-based
models that are masked language models: BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
and ALBERT (Lan et al., 2020). These models have
been recognized for their strong performance on
the WSC and have led the benchmark results. Each

of the models was fine-tuned on the Winogrande-
XL dataset (Sakaguchi et al., 2020), which con-
tains approximately 40,000 task instances and is
designed to reduce potential annotation biases.

Additionally, we evaluated two left-to-right lan-
guage models, specifically GPT-3 (text-davinci-
003) (Brown et al., 2020) and GPT-3.5 (gpt-3.5-
turbo-0613), on the Winogrande-XL and EvoGrad
datasets.

For BERT and RoBERTa, we first aimed to repli-
cate top-performing models from existing literature.
Using Huggingface’s package (Wolf et al., 2020),
we achieved validation accuracies of 62.75% for
BERT-large-uncased and 76.09% for RoBERTa-
large. Although slightly below the reported accura-
cies in (Sakaguchi et al., 2020), variations in hyper-
parameter tuning may account for the differences.
A similar approach was taken for ALBERT-large-v2,
with a resulting accuracy of 64.64%.

Hyperparameters for BERT, RoBERTa, and AL-
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Model Tuning Wino-valid EvoGrad-M-val EvoGrad-L-val

BERT

EvoGrad-M - 60.4 (6.913) -
EvoGrad-L - - 54.9 (6.867)
Wino 62.75 —– (7.302) —– (7.258)
Wino + EvoGrad-M 63.06 —– (7.308) -
Wino + EvoGrad-L 62.98 - —– (7.232)

RoBERTa

EvoGrad-M - 58.4 (6.762) -
EvoGrad-L - - 60.3 (6.727)
Wino 76.09 —– (6.286) 6.393
Wino + EvoGrad-M 76.09 —– (6.286) -
Wino + EvoGrad-L 76.64 - 6.652

ALBERT

EvoGrad-M - 55.4 (6.989) -
EvoGrad-L - - 57.2 (6.853)
Wino 64.64 —– (7.971) —– (7.670)
Wino + EvoGrad-M 64.48 —– (8.000) -
Wino + EvoGrad-L 64.64 - —– (7.694)

GPT-3*
EvoGrad-M - 59.41 (7.122) -
EvoGrad-L - - 56.08 (6.753)

GPT-3.5*
EvoGrad-M - 67.33 (7.061) -
EvoGrad-L - - 65.02 (7.245)

Table 4: Accuracy (and error depth) results of models on Winogrande-valid and EvoGrad-val sets
after training on Winogrande-XL and/or EvoGrad-train. Bold values represent the highest accuracy and
underlined values represent the highest error depth for each model in each dataset. A single dash (-)
denotes that the model was not tuned on that specific dataset variant, hence was not tested. Dashed
(—–) values indicate that accuracy was not tested due to potential contamination from EvoGrad’s seed
examples being taken from Winogrande, though error depth was still evaluated. Models marked with an
asterisk (*) were evaluated using few-shot learning rather than fine-tuning.

BERT were selected from:

• Learning rates: 1e− 5, 3e− 5, 5e− 5

• Epochs: 3, 4, 5, 8

• Batch sizes: 8, 16

For training on EvoGrad-train (both medium and
large versions), given its resemblance but smaller
size to Winogrande, we experimented with:

• Learning rates: 1e− 5, 3e− 5, 5e− 5

• Epochs: 1, 2, 4, 8

• Batch sizes: 8, 16, 32, 64

For evaluations using GPT-based models, we
adopted a few-shot learning approach. Each in-
stance was evaluated using an instruction-based
prompt consisting of 30 random instances from the
respective training set.

4.2. Results
Our evaluation results, as shown in Tables 4 and
Figure 3, offer insight into model performance un-
der different training conditions. We trained mod-
els exclusively on EvoGrad-train, on Winogrande-
XL (denoted as Wino), or sequentially on both

Winogrande and EvoGrad-train (denoted as Wino
+ EvoGrad). This approach allowed us to un-
derstand how different training datasets influence
model robustness and stability.

Table 4 displays the models’ accuracies on the
Winogrande-valid dataset alongside their average
error depth on the EvoGrad datasets. The error
depth indicates the perturbative distance at which a
model starts to fail, providing insights into model sta-
bility. While accuracy is the main metric, error depth
(shown in parentheses) gives a complementary
view of model performance. Due to the potential
overlap between EvoGrad and Winogrande, we
have omitted the accuracy scores for Winogrande-
trained models in EvoGrad. GPT-based models
were only evaluated on EvoGrad instances as they
are evaluated through few-shot learning.

Figure 3 visualizes the three most frequent per-
turbation types that lead to incorrect predictions by
the models. Each perturbation is categorized by its
effect on parts of speech. For instance, “+NN (150)”
indicates a noun was added in 150 of the incorrect
predictions. A comprehensive breakdown of the
perturbation counts and their types, spanning all
parts of speech observed, is provided in Table 5.
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Figure 3: Distribution of the top three perturbations for models trained on Winogrande + Evograd-L.
From left to right: BERT, RoBERTa, and ALBERT.The segments represent the relative frequency of each
perturbation type: ‘–NN’ (noun removal), ‘+NN’ (noun addition), and either ‘–JJ’ (adjective removal) or
‘–IN’ (preposition removal).

Model Trained on EvoGrad-M-val EvoGrad-L-val
BERT EvoGrad-M +NN (150), –NN (148), –JJ (105) -

EvoGrad-L - –NN (578), +NN (471), –JJ (342)
Wino –NN (92), –JJ (62), +NN (61) –NN (365), +NN (294), –JJ (228)
Wino + EvoGrad-M –NN (108), +NN (90), –JJ (78) -
Wino + EvoGrad-L - –NN (373), +NN (303), –JJ (233)

RoBERTa EvoGrad-M –NN (170), +NN (146), –JJ (120) -
EvoGrad-L - –NN (494), +NN (416), –JJ (283)
Wino –NN (17), +NN (12), –JJ (11) –NN (76), +NN (54), –JJ (41)
Wino + EvoGrad-M –NN (17), +NN (12), –JJ (11) -
Wino + EvoGrad-L - –NN (61), +NN (43), –IN (32)

ALBERT EvoGrad-M –NN (189), +NN (161), –JJ (131) -
EvoGrad-L - –NN (542), +NN (479), –JJ (316)
Wino –NN (92), –JJ (62), +NN (61) –NN (272), +NN (208), –JJ (169)
Wino + EvoGrad-M –NN (92), –JJ (62), +NN (61) -
Wino + EvoGrad-L - –NN (294), +NN (220), –JJ (183)

GPT-3 EvoGrad-M –NN (173), +NN (144), –JJ (118) -
EvoGrad-L - –NN (505), +NN (448), –JJ (306)

GPT-3.5 EvoGrad-M –NN (161), –JJ (115), +NN(111) -
EvoGrad-L - –NN (464), +NN (364), –JJ (290)

Table 5: Top 3 perturbations and their count on incorrect predictions on EvoGrad-val sets after fine-tuning
on Winogrande-XL and EvoGrad-train.

5. Discussion

Influence of EvoGrad on Language Model Per-
formance Table 4 illustrates the varied impacts
of EvoGrad on Transformer models, leading to
several key insights:

• BERT’s improved performance post-EvoGrad
training underscores its ability to integrate
the dataset’s specific perturbations effectively.
This adaptability implies that BERT may be
particularly effective for tasks requiring deeper
linguistic insight or sensitivity to subtle contex-
tual changes.

• RoBERTa consistently performs well both be-
fore and after training EvoGrad, showcasing
its robustness. However, its lower error depth

compared to its accuracy points to a potential
trade-off between performance and stability.
This observation underscores the need to bal-
ance generalization with stability to perturba-
tions.

• The negligible change in ALBERT’s perfor-
mance across various training regimes raises
questions regarding the model’s saturation
point and its alignment with the dataset. This
warrants further investigation of the limits of
adaptability for certain models.

• While GPT-based models, especially GPT-3.5,
demonstrate competitive performance, their er-
ror depths highlight challenges related to sta-
bility. This trend suggests that some of the
newer models might prioritize adaptability at
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the expense of robustness.

Figure 3 sheds light on the areas where language
models are most vulnerable, particularly in han-
dling noun and adjective modifications. Addressing
these specific challenges is imperative for the en-
hancement of common-sense reasoning in future
model iterations.

Robustness and Adaptability to New Tasks
One of the challenges in deep learning is ensur-
ing that the models remain adaptable and robust
when exposed to new tasks or datasets. Whether
through fine-tuning or few-shot learning, a model’s
ability to incorporate new information without sig-
nificant detriment to its original capabilities is vi-
tal. In our experiments, the transformer models
exhibited this adaptability, particularly when intro-
duced to EvoGrad. For instance, when models
were fine-tuned on EvoGrad, their performance on
the Winogrande validation set generally improved
or remained consistent (Table 4), indicating that
they did not lose their grasp of previously acquired
knowledge. However, GPT-based models, through
few-shot learning, demonstrated their versatility in
quickly adapting to new tasks without the need
for extensive retraining. These observations un-
derscore the potential of current architectures in
handling evolving datasets and tasks, highlighting
their robustness in diverse learning scenarios.

Evolution and Community Involvement with
EvoGrad The current rendition of EvoGrad rep-
resents only the first phase in a series of envisioned
enhancements. As the platform matures, our goal
is to achieve multiple cycles of data augmentation,
model training, and fine-tuning, striving to foster a
greater social impact in the AI domain. In making
EvoGrad accessible to a diverse audience, includ-
ing those new to WSC-style challenges, we have
incorporated clear prompts and guidelines, draw-
ing inspiration from our initial work with the 182
instances in EvoGrad-small.

Looking ahead, we are also planning to ex-
pand the platform to incorporate other founda-
tional NLP tasks by integrating datasets such as
OntoNotes 5.0 for Named Entity Recognition (NER)
(Weischedel et al., 2012), Natural Questions (NQ)
(Kwiatkowski et al., 2019) for Question Answering
(QA), and the SemEval tasks for Sentiment Anal-
ysis, thereby broadening the scope and utility of
EvoGrad.

Recognizing the scale at which EvoGrad could
grow, we understand the crucial role of user-driven
validation. While our dedicated team of in-house
researchers currently curates the dataset to en-
sure its quality, we’re eager to transition this role
to our users in the near future. This strategy
not only offloads the validation responsibility but

also promises a more dynamic, participatory, and
community-centric approach to refining LLMs.

6. Conclusion

In this work, we introduced EvoGrad, a dynamic
platform that extends the Winograd Schema Chal-
lenge with a human-and-model-in-the-loop method-
ology. The dataset, enriched through our platform,
incorporates contributions from human experts, lan-
guage model expansions, and lexical resource uti-
lization. We also introduced the “error depth" metric
as a novel means to assess model stability in evolv-
ing tasks. While our evaluations showed potential
benefits of using the augmented data from Evo-
Grad across different training regimes, the dispar-
ity between human and machine performance on
this task underlines its complexity and the ongoing
challenges in enhancing common-sense reasoning
in LLMs.

Ethics Statement

We are presenting our publicly-accessible platform
to those outside the scientific and crowd-sourcing
communities. However, our platform is still limited
to those in society who have access to a mobile
device/personal computer and internet access; a
large but underrepresented group of people in the
world do not. We therefore use our platform as only
a first step towards more inclusiveness, which we
open to people outside the small community of sci-
ence and crowd-sourcing, but wish to be involved in
efforts that will include the underrepresented men-
tioned.

We also cannot assume that everyone’s fore-
most priorities involve contributing towards such
endeavours as ours – many members of society
are currently in turmoils of war, famine, or even
indifference or aversion towards AI, which all may
amount to their non-involvement in projects related
to ours. Accordingly, the direction towards progress
is best achieved outside the laboratory; after all,
if diversity and community involvement in the de-
velopment of tasks such as ours is as correlated
to positive results in AI, our efforts as researchers
should also extend towards the education, well be-
ing, and thriving of members in society, without
which our goal of a global task is never truly real-
ized.
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A. Appendix

A.1. ChatGPT Dialogue During Scaling Process
Author: You are an expert linguist, human annotator and are familiar with the Winograd Schema Chal-

lenge. Consider the sentence: Although they ran at about the same speed, Sue beat Sally because _
had such a good start. This sentence is in the format of a Winograd schema, where two antecedents,
in this case "Sue" and "Sally" are competing for reference in the position, _. Common sense allows
us to conclude that one of the two antecedents is most likely, in this case, Sue.
I am intending on building a dataset composed of modifications to the above sentence. Based on
this original sentence, I need you to generate 100 new sentences that are modified by either adding,
replacing, or substituting words in the original sentence. They should be organized in of the following
format, copied from a csv file :
index sentence option1 option2 answer distance
where the original sentence has the following form: 0 Although they ran at about the same speed,
Sue beat Sally because _ had such a good start. Sue Sally 1 0
Here, index refers to the index number for the sentence, sentence refers to the sentence itself (notice
the necessity of the _ as the position for one of the two antecedents), option1 refers to one antecedent,
option2 refers to the other, answer refers to the correct antecedent that belongs in _ – "1" corresponds
to option1, and "2" corresponds to option2. Notice, for this original sentence, the answer is "1"
because having a good start is a likely explanation for someone (i.e., Sue) beating another in a race.
Finally, "distance" corresponds to the number of modifications made on the original sentence (whose
distance is, by definition, 0). It is equivalent to the "token edit distance".
I want you to create a diverse range of new entries, that vary in terms of the modifications, the total
distance, as well as the correct answer.
For example, the sentence "Although they sprinted at about the same speed, Sue beat Sally because
_ had such a good start." would have an answer of 1 and distance of 1 (because ran was changed to
sprinted, but the correct answer still remains option1, which in this case is Sue), and the sentence
"Although they sprinted at about the same speed, Sue beat Sally although _ had such a good start."
would have the answer of 2 and distance of 2, because the correct answer is now "Sally", and there
were two word modifications – the second one here was "although" instead of "because", which flips
the answer. Notice that with the right change in words, the answer can flip – I want to encourage you
to find such minimal number of changes when you’re creating new entries. You are also allowed to
change the words in the options too (e.g., Sue and Sally). I would like the dataset to have a similar
number of answer=1 entries than answer=2 entries.
Please generate the first 10, formatted as a table here. First, you may ask any clarification questions
to make sure you understand the task.

ChatGPT: Thank you for the instructions. Here are the first 10 entries: [...]

Author: Excellent work. Please generate 30 more, but try to keep the distance lower. Don’t forget you
can change the names too!

ChatGPT: Sure! Here are the next 30 entries with smaller distances and changes in names: [...]

Author: These sentences didn’t actually have the distances you claimed they had. These should corre-
spond to token edit distances. Please be careful when generating sentences to actually correspond
to distances – it’s okay if the distance is a bit higher. I just want you to be accurate. You also forgot to
change the names (as possible modifications) at one point. Please generate 10 for me to see if it’s
okay.

ChatGPT: I apologize for the inaccuracies in the distances and missing name changes in the previous
examples. [...] Here are the next 10 sentences: [...]

Author: These were much better. Please generate 30 more. Pay attention to not miscalculate the
distance.

ChatGPT: I appreciate your feedback. Here are the next 30 sentences, with the correct token edit
distances and a careful attention to detail: [...]
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Author: Great job. Please generate 30 more. Again, the token distance should be correctly calculated.
For example, in your sentence:
Even though they raced at the same speed, Sue beat Sally although _ had a powerful start.
You said the distance is 3. It’s actually 5 here, because Although was dropped and replaced with
Even (1), then "though" was added (2), then raced was replaced by ran (3), then about was dropped
(4), then good was replaced by powerful (5).

ChatGPT: I understand your concern and I apologize for the mistake. I’ll ensure more accuracy in
calculating the token edit distance. Here are the next 30 sentences: [...]

Author: Great job. Please generate 20 more. Remember that changing the names is valid but counts as
a modification (increments distance).

ChatGPT: Thank you for your feedback. Here are the next 20 sentences, this time including changes in
names: [...]
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