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Abstract
In this paper, we compare the results of three studies. The first explored feature-conditioned distributions of referring
expression (RE) forms in the original corpus from which the contexts were taken. The second is a crowdsourcing
study in which we asked participants to express entities within a pre-existing context, given fully specified referents.
The third study replicates the crowdsourcing experiment using Large Language Models (LLMs). We evaluate how
well the corpus itself can model the variation found when multiple informants (either human participants or LLMs)
choose REs in the same contexts. We measure the similarity of the conditional distributions of form categories using
the Jensen-Shannon Divergence metric and Description Length metric. We find that the experimental methodology
introduces substantial noise, but by taking this noise into account, we can model the variation captured from the
corpus and RE form choices made during experiments. Furthermore, we compared the three conditional distributions
over the corpus, the human experimental results, and the GPT models. Against our expectations, the divergence is
greatest between the corpus and the GPT model.
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1. Introduction

Linguistic communication conveys meanings with a
range of different referring expressions (REs). The
choice of RE depends on the discourse context in
which they are realised, and how accessible they
are to the speaker and addressee. The following
examples refer to an imaginary character - Simon
Brown, a famous portrait painter. 1. Simon Brown,
the famous portrait painter, will attend the cere-
mony, 2. Simon Brown will attend the ceremony,
and 3. He will attend the ceremony. In sentence 1,
the speaker supplies additional information about
the referent’s identity, i.e., that he is a famous por-
trait painter. Such expressions are used when the
speaker presumes that the listener does not know
the referent and would benefit from additional infor-
mation, either to identify the referent or to add to
their world knowledge. In contrast, sentence 2 uses
a proper name without additional information. This
RE type is appropriate when the speaker assumes
that the listener needs only enough information to
distinguish the referent from other potential refer-
ents. Finally, in sentence 3, the speaker uses a
pronoun (“he”) as an RE. This use occurs when the
referent is established and salient in the context,
and thus the addressee will know who is most likely
to be referred to. These examples demonstrate the
complexity of RE choice.

Reference production studies have categorised
REs into various taxonomies of Referring Expres-
sion Forms (REFs) – including categories such as
pronoun, definite description and proper name –
and then sought to explain what conditions the
choice of form. According to Accessibility The-

ory (Ariel, 2001), the more accessible a referent
is, the more attenuated the corresponding REF.
Other theoretical approaches are similar, linking
the choice of REF to the salience, givenness, cen-
trality, and/or discourse prominence of a referent
(Gundel et al., 1993; Grosz et al., 1995; Chiarcos,
2011; von Heusinger and Schumacher, 2019). Lin-
guistic studies have identified several factors that
affect the choice of REF, including grammatical
role, competition, thematic role, animacy, recency
and coherence (Stevenson et al., 1994; Brennan,
1995; Arnold and Griffin, 2007; Kehler et al., 2008;
Kaiser and Trueswell, 2011; Fukumura and van
Gompel, 2011). For example, the recency factor
measures the distance between a referent and its
antecedent, with a recent antecedent usually facili-
tating a pronominal REF.

While some forms are found in some contexts
more than others, RE choice is ultimately non-
deterministic. Frequently, more than one form, and
more than one expression, are equally acceptable
to convey a reference. Castro Ferreira et al. (2016a)
showed the non-deterministic nature of referring in
an experiment in which multiple participants chose
REs for the same referent in the same context. Cas-
tro Ferreira et al. compiled the results of their ex-
periment as a corpus, known as VaREG (https:
//ilk.uvt.nl/~tcastrof/vareg/). The re-
searchers provided participants with texts where
references to the main topic had been replaced with
gaps. The participants were tasked with filling the
gaps with appropriate references. The experiment
was balanced so that each RE slot was seen and
filled by 20 participants.

Castro Ferreira et al. (2016a) classified the REs

https://ilk.uvt.nl/~tcastrof/vareg/
https://ilk.uvt.nl/~tcastrof/vareg/
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produced by humans into five classes of REF: pro-
noun, proper name, description, demonstrative and
empty reference. They measured the entropy of
the REF choices made by different participants
for the same referential slots. The entropy varied
considerably from one slot to another. They also
investigated the impact of various linguistic factors
such as recency, referential status and grammat-
ical role on the relative entropy of the REFs, in
order to assess their influence on REF variation.
As an example, they observed that greater varia-
tion occurred in expressing the object in a transitive
sentence than the subject.

Ellison and Same (2022) argue that although
Castro Ferreira et al. (2016a)’s approach to inves-
tigating variation in REF choice is appealing, it is
frequently prohibitive in terms of both time and cost.
Instead, they propose to “infer variation in human
behaviour through the variation found within a cor-
pus of texts, gaining the benefits of understand-
ing human variation without the substantial cost of
human-intensive studies” (Ellison and Same, 2022,
p. 2989). To capture in-corpus variation, they sug-
gest identifying distinct classes of linguistic contexts
made from the aggregation of various linguistically-
informed feature-value combinations (henceforth
called feature-value categories, context categories,
or just categories). A possible category might en-
compass REs that feature a human referent in sub-
ject position and one sentence away from its an-
tecedent (grammatical role: subject, animacy:
human, recency: one sentence away). Ellison
and Same (2022) adopted the working hypothesis
that the same set of feature values will condition
the same distribution over possible referring expres-
sion forms. Figure 1 provides an abstract scheme
of the creation of such feature-value categories.

Figure 1: The initial row shows various REs within
a corpus. The binary features Fa, Fb and Fc, char-
acterise linguistic contexts, with categories formed
from each distinct feature-value combination. For
instance, the REs highlighted in yellow share the
category defined by {+blue, -green, +pink}. From
the subcorpus of all REs in a category, i.e. sharing
the same feature-value combination, we can infer
a distribution over REFs for that category, namely
the relative frequency of forms in that category.

Since the VaREG corpus of Castro Ferreira et al.
(2016a) is small (563 REs), Ellison and Same

(2022) measured per-category distributions of
REFs in the much larger Wall Street Journal (WSJ)
portion of the OntoNotes corpus (Weischedel
et al., 2013). They then compared these distribu-
tions against the human variation found within the
VaREG corpus. Their comparison shows parallels
in the entropy of the distributions from the WSJ to
those of the human choices in VaREG.

However, this study has two significant draw-
backs. Firstly, the authors provide only provisional
similarities between the entropy patterns. Secondly,
they compare their WSJ-inferred distributions with
the human-made distributions derived from the
VaREG corpus. The question arises as to whether
similar entropy patterns would be observed if the
in-corpus WSJ distribution were compared with re-
sults from a VaREG-like experiment with stimuli
based on WSJ documents. The current study has
responded to this question with a crowdsourcing
experimental study of RE variation based on a sub-
set of the WSJ corpus. The results of this study
support an in-depth comparison of in-corpus varia-
tion and the variation obtained from parallel human
choices. For ease of reference, we will call these
experimental results Human, or our experimental
results. In contrast, we will refer to the distributions
of REF inferred from the WSJ as Corpus.

Since the advent of Large Language Models
(LLMs), several studies have considered whether
LLMs, e.g. GPT models, can simulate cognitive
and linguistic human behaviours (Aher et al., 2023;
Lampinen, 2022; Binz and Schulz, 2023; Dillion
et al., 2023). Binz and Schulz (2023) demonstrated
that systems can serve as accurate models of hu-
man cognitive behaviour in psychological exper-
iments, e.g. about decision-making. Aher et al.
(2023) introduced the term Turing Experiment for
the reproduction of an existing experiment in psy-
chology, economics or psycholinguistics, but using
LLMs in place of human participants Their work is
interesting as a way of understanding what human
behaviours are captured by LLMs. Following these
studies, we replicate our crowd-sourcing experi-
ment using an LLM (GPT-4) in order to compare
the REF choices made by human participants and
by these models. We will refer to our corpus of
machine responses Gpt.

This paper is organised as follows: section 2
states our research questions and hypotheses. In
section 3, we present an overview of both the WSJ
corpus and the corpus of variation collected in our
crowdsourcing experiment. In addition, it describes
our adaptation of the experiment to LLMs. The
results are discussed in section 4, while section 5
offers an analysis of these findings and points to
possible future extensions of this work.
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2. Research Questions and
Hypotheses

As mentioned, this paper presents a corpus of hu-
man variation, Human, based on the WSJ corpus.
The parallel choice of REs by human participants
lets us compare inter-personal variation in REF
choice with in-corpus variation found in the WSJ
itself (captured in Corpus), as well as variation in
multiple runs of the same experiment in an LLM.
In what follows, we give a detailed overview of the
hypotheses that we test with this data.
Feature-value combinations. Ellison and Same
(2022), drawing on substantial previous literature
(Greenbacker and McCoy, 2009; Kibrik et al., 2016;
von Heusinger and Schumacher, 2019), introduce
a set of optimal features for predicting REFs over
the WSJ corpus (Same and van Deemter, 2020).
We use the same feature set to build the context
categories, as depicted in figure 1. Because these
features were selected as predictors of referring ex-
pression classes in human-generated text corpora,
having the same values for these features results
in the same distribution over REFs. We therefore
hypothesise (H1) that human variation in REFs is
lower for REs belonging to the same category, i.e.
REs having the same values for all five features,
rather than arbitrary pairs of REs. If confirmed, this
hypothesis will imply that the features indeed cap-
ture (at least partially) the variation found in human
REFs.
In-corpus and human experimental variation.
One motivation for this research is to validate the
use of category-conditioned, corpus-inferred distri-
butions as models of variation in human RE choices.
Such validation would require us to find similarity in
the REF distributions in Corpus and those found
in the experimental results, i.e. in Human. If the
feature-defined categories and the corresponding
inferred distributions truly reflect human variation,
then for matching (as opposed to non-matching)
categories, we should see the same distributions
in all kinds of human-constructed REs. Thus our
second hypothesis (H2) is that the linguistic context-
conditioned in-corpus variation and human exper-
imental variation are more similar when the cate-
gories are matched than when they are not.
Experimental effects. Creating REs to fill a slot
in an online experiment is a radically different task
to producing REs in a naturalistic setting, such as
talking or writing an article. Consequently, we antic-
ipate mismatches between the referential strategies
employed in such experiments and those employed
by authors, such as those writing the WSJ articles.
One reason for these mismatches is that the exper-
imental participants have much less context back-
ing their selections than the authors of the articles.
As a result, the participants in the experimental

paradigm received special priming for one referent
only, desensitising them to other referents in the
text, and potential competition between them. With
less sensitivity to potential competition, they are
more likely to use pronouns, where a richer RE
would be more suitable. Furthermore, as the exper-
imental participants were not domain experts, pro-
ducing informative definite descriptions would be
more difficult for them as they lack in-depth knowl-
edge of the referent. We hypothesise that if we
see a difference between the experimental and in-
corpus distributions, then the experiment will show
greater use of pronouns than the original corpus
(H3), and there will be fewer definite descriptions
in the REs produced by the participants than the
original authors (H4).

In addition to the inherent disparity between writ-
ing and gap filling employed in this study, a signifi-
cant amount of noise (random selection of RE) will
occur in the experiment, due to individual variation,
the absence of an error-correcting editor, language
skill level, etc. This noise may detrimentally affect
the similarity between corpus-derived and experi-
mental distributions over forms. We hypothesise
that human experimental data will show greater
randomness than corpus data for the same context
categories (H5).

Large Language Models. We are also interested
in finding out how well Large Language Models per-
form on the same task. For this reason, we repli-
cated the human experiment using GPT-4 in place
of actual humans. GPT-4 and other LLMs, owing to
their vast training input, are able to bring more con-
text to stimuli texts than non-expert experimental
participants. Thus we expect the LLMs to behave
more like the domain experts who wrote the original
articles. Therefore, we hypothesise that the LLM-
generated distributions will more closely align with
the corpus distributions than with those produced
by humans in experiments (H6). Continuing from
(H4), a second expected consequence of greater
domain knowledge is that the number of descrip-
tions produced by the GPT-4 models will exceed
those produced by human participants (H7). We
would expect to see more descriptions in Corpus
than Human (H4), and so expect Gpt to also follow
this pattern (H7). In section 4 we explore the extent
to which these hypotheses are confirmed by our
data.

3. Experiment and Analysis

This section begins with the corpus and the set of
features used in the study (3.1). We then outline
the experiments (Human and Gpt) using stimuli
constructed from the corpus (3.2).
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3.1. The corpus
The WSJ corpus consists primarily of financial news
articles. We used a total of 30,439 REs extracted
from the WSJ to explore the distribution of REFs.
This study focusses on three forms: pronouns,
proper names and descriptions. The global distribu-
tion of these forms in the corpus is: 12 005 (39.44%)
descriptions, 11 153 (36.64%) proper names, and
7 281 (23.92%) pronouns.

We use the five features described in Ellison and
Same (2022) to construct feature-value categories.
The distributions for each category are constructed,
and these together form the model Corpus. The
features and their possible values are: Gram-
matical Role (subject, object, possessive de-
terminer), Form of the antecedent (pronoun,
proper name, description, or first-mention of the
referent in the text), Animacy (human, other), Sen-
tence recency, i.e., the recency of the referen-
tial antecedent measured in sentences (same sen-
tence, different sentence, first-mention), and Para-
graph recency (same paragraph, different para-
graph, first-mention).

3.2. The crowd-sourcing experiment:
data collection

Material. To ensure that we have a representative
sample of RE uses, we defined four categories of
referents as follows: human, city or country, organi-
sation, other (including concrete objects or abstract
concepts). We only used documents in which the
topic has at least seven mentions and chose texts
with the following distributions:

Referent type Documents (n)
Human 20
Organization 10
City & country 10
Other 10

Table 1: Number of texts selected according to the
referent type.

Participants. 100 Participants were recruited
through Amazon Mechanical Turk (MTurk). To en-
sure consistency, we restricted MTurk workers to
those located in the United States, with an approval
rating of ≥ 95% and 1000 or more HITs approved.
Among the participants, 56 were male, 39 were
female, and 1 identified as other. The average
age of the participants was 38.6 years old (ranging
from 24 to 73). A majority of the participants (83
individuals) were native English speakers.

Experiment design and procedure. The experi-
ment consisted of 50 texts divided into 5 lists. Each
list contained four documents with a main human

referent, two documents with a city or country, two
documents with an organisation, and two docu-
ments categorised as “other”.

Prior to the experiment, participants received an
introduction outlining the procedure and request-
ing their consent to participate. At this point, they
were asked to provide information about their age,
gender and proficiency in English.

Participants were presented with one of the lists
containing ten documents. Mentions of the article
topic were replaced with gaps. Participants were
instructed to fill in each gap with an RE referring
to the given referent. To familiarise participants
with the referents, a full RE representing the ref-
erent was selected as the subject of the text and
pronominal forms were given in parenthesis. To
assist participants in generating more informed and
descriptive REs, where they might choose to do
so, a helper sentence was provided, offering back-
ground information about the referent. One of the
experimental items is shown in figure 2.

Annotation. The experiment involved 414 refer-
ential gaps, comprising 31.3% pronouns, 42.1%
proper names and 26.6% descriptions. The par-
ticipants produced a total of 8 280 REs. We an-
notated the REFs of these REs with three cate-
gories, namely pronoun (e.g., he), proper name
(e.g., Kenneth Roman) and description (e.g., the
country). Of these REs, 3 022 (36.5%) were anno-
tated as proper names, 3 484 (42.1%) as pronouns,
1 063 (12.8%) as descriptions, and the remain-
ing 710 (8.6%) cases were classified as unaccept-
able. These were cases where the participants’
responses could not be categorised as belonging
to either of the three REFs. The majority of these
cases were those that did not refer at all or did not
refer to the target entity.

3.3. The Gpt Experiment
To conduct the LLM experiment, constructing Gpt,
we used OpenAI’s GPT-4 (model=gpt-4). The
prompt included the same instructions that were
given to human participants, with only minor modi-
fications to adapt these for the language model. To
maintain fidelity to the experimental setting used
in the human experiment, we used the same lists
of items. Each list was run 20 times. Separate
connections were used each time to eliminate the
chance of the results being confounded by the pre-
vious runs. As in the human experiment, we an-
notated the generated expressions for their refer-
ential forms. To accomplish this, we used GPT-
4 once more, this time to annotate two specific
pieces of information: (1) the form of the RE, and
(2) whether the generated RE accurately referred
to the intended referent. After this step, all annota-
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Figure 2: Example of an item from the crowdsourcing experiment. Participants were tasked with supplying
referring expressions at each slot for the referent shown at the top of the item (the subject)

and described in more detail in the helper sentence.

tions were manually reviewed for potential errors
and inconsistencies.

4. Results Relative to the Hypotheses

This section compares the experimental results in
Human and Gpt with the distributions in Corpus
and explores the relationships between them. The
discussion is focussed on finding support, or oth-
erwise, for our hypotheses from section 2. Since
uninterpretable responses from participants do not
bear on our hypotheses, we exclude ‘unacceptable’
cases from this analysis.
H1 variation patterns are more similar within

categories than between them. In Human, 414
REs from the WSJ became slots for participants to
fill. Each was filled by 20 participants. However, a
number of the 8 280 responses had to be discarded
as uninterpretable. The 20 REs collected for each
of these slots form a distribution over answer forms.
If we identify slots by labels s, we can write nf

s for
the number of times a REF f occurs in the an-
swers provided for this slot. Note that throughout
this paper, as in tensor notation, superscripts are
indices rather than powers. Each of these occur-
rence counts can be recast as a relative frequency
distribution rfs = nf

s/
∑

g n
g
s .

Like Castro Ferreira et al. (2016a), Castro Fer-
reira et al. (2016b) and Ellison and Same (2022),

we compare distributions of variation using the
Jensen-Shannon Divergence (JSD) measure. This
symmetric metric measures how much two distribu-
tions differ from each other. It sums the asymmetri-
cal KL (Kullback-Liebler) divergence measure of
each distribution from the average of the two. The
definition of the JSD and KL measures are shown
in equations (1) and (2) respectively. In these defi-
nitions, d = (df )f∈F is a distribution over a set F
of values f . Two different distributions are notated
by d1 and d2.

JSD(d1,d2) =
KL(d1||d12) +KL(d2||d12)

2
(1)

where d12 =
d1 + d2

2

KL(d2||d1) =
∑
f∈F

df log
df2
df1

(2)

For each pair of unique REs, s1 and s2, that oc-
cur in Human, we look at the Jensen-Shannon di-
vergence (JSD) score between the distributions
returned by the participants for those REs, i.e.
JSD(rs1 , rs2). Note that we are here comparing
only distributions take from Human with each other,
not with distributions from other data sets, i.e. Cor-
pus or Gpt. For ease of visualisation, we take all
logarithms here to be base 2.

Figure 3 shows two density plots structured as a
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split violin graph. The green density plot on the left
shows the distribution of JSDs for all pairs of slots
in Human. The right, orange density plot shows
the distribution of JSDs where the slots being com-
pared belong to the same feature-defined category.
The figure shows a strong reduction in JSDs when
categories match, with the median JSD across all
pairs being greater than the 3rd quartile value from
the matching pairs. This result supports hypothesis
H1.

Figure 3: Intra-class vs. between-class JSD scores.
In the box plots, the dots show the means. The
boundaries of the box and the centre line show the
quartile points and the median respectively. The
whiskers mark out 95% of the data.

Description Length. In order to see how strong
support is for hypothesis H1, we look at the encod-
ing length of the experimental data relative to match-
ing categories. This is then compared to the aver-
age encoding length obtained from random align-
ments of categories. Intuitively, the encoding length
is the smallest number of bits needed to losslessly
encode the model and the data together (see e.g.
Rissanen, 1978,Wallace and Dowe, 1999,Grün-
wald, 2007). This encoding length, denoted by
EL(nf |pf ), combines the count nf of forms of a
type f , given their optimal encoding, based on their
probability pf . It is defined in (3).

EL(n|p) = −
∑
f

nf log pf (3)

For example, suppose we have 10 pronouns, 6
proper names and 4 descriptions chosen by partic-
ipants to fill a particular slot. The probabilities pf of
these REFs are respectively 0.5, 0.3 and 0.2, while
their counts nf are 10, 6 and 4. The total informa-
tion needed to encode these results are therefore
−10 log2 0.5− 6 log2 0.3− 4 log2 0.2 = 29.71 bits.

The bit-length difference in two encodings is the
negative logarithm of the Bayes’ Factor comparison
of the two defining models. In other words, shorter
encodings are provided by better models, and much
shorter encodings by much better models.

The optimal encoding model offers a different
encoding of REFs for each RE slot. However, this
is a false economy, as it requires many bits to en-
code the distribution of responses separately for
each RE slot, information that is needed to fix the
per-slot encodings. This cost is the number of inde-
pendent probabilities which need to be specified,
multiplied by the (possibly fractional) number of
bits needed to express each. We use N equally-
spaced buckets on the unit interval to discretise
probabilities for finite representation (see figure 4).
Any of the probabilities to be specified is mapped
onto its containing bucket

[
i−1
N , i

N

)
. The probabil-

ity used in practice is then the centre point of the
bucket, normalised against the other members of
its distribution.

Figure 4: Finite precision representation of proba-
bilities in N buckets on the unit interval. If the value
to be represented is p, then the finite precision ver-
sion will be ⌊pN⌋+⌈pN⌉

2 .

Table 2 shows the fraction of information in the
experimental results which is accounted for by the
model. The baseline account tries all distributions
available in the model class to encode the experi-
mental data and averages the encoding lengths. A
maximum entropy model of the data (equal prob-
ability encodings of description, name, and pro-
noun) is taken as the floor in performance. For
our dataset, this quantity was: 11 997 bits. The
ceiling in performance is obtained when we model
the distributions of REFs by category in terms of
the frequencies gained in the experiment itself, to
a precision of 7 bits, giving a total of 9 031 bits for
representing the experimental results. We take this
as our 100% success value.

The graph in figure 3 corresponds to the model
RE E in table 2. The encoding length for the All
case is greater than that for the Matching case by
7592 bits, corresponding to a Bayes’ factor of ap-
proximately 102285. We can say that the difference
in the density plots of 2 is statistically significant.
Thus matching categories do result in significantly
less unaccounted variation in Human - reflected in
the shorter encoding - than when categories are
not matching.
H2 in-corpus and experimental variation are

more similar when aligned. This hypothesis was
tested by comparing the JSDs of distributions of
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Model N Matching (b) Matching(%) All (b)
MaxEnt 11 996.6 0.0%
RE E 21 10 636.3 45.9% 18 228.4
Cat E 7 9 030.9 100.0% 13 706.6
Cat C 3 10 802.5 34.1% 14 192.8
Diff C 3 9 677.2 78.2% 11 697.6

Table 2: Description length of Human encoded
by different models. The columns give the model
name, the precision (dividing probability space into
N parts), the number of bits needed to encode the
corpus with matched IDs, and the average num-
ber of bits required across arbitrary matchings of
the RE or category IDs. The models are: MaxEnt
equal length fixed encodings for all three REFs; RE
E a new, precise encoding is defined for each RE
slot, with probabilities from frequency in the experi-
mental results themselves; Cat E a new encoding
is defined per category with probabilities from Hu-
man; Cat C a new encoding is defined per category
with probabilities from Corpus; and DiffC applies
the diffusion matrix to Cat C.

REFs found for each category in Corpus and in
Human. First, for each category, we compute the
relative frequency of REFs from that category. Sub-
sequently, we repeat the process in Human, look-
ing at the distribution over responses for all slots
from each category. For example, there are 661
cases in the corpus where the REs referring to hu-
mans occur in the subject position within the same
paragraph but in a different sentence from their cor-
responding pronominal antecedent. Of these 661
cases, 458 (69.29%) are pronouns, 147 are proper
names (22.24%), and 56 (8.47%) are descriptions.
Examining the same feature-value category in the
experimental results, there are 369 cases (exclud-
ing unacceptables). Among these, 203 (55.01%)
are pronouns, 137 (37.13%) are names, and 29
(7.86%) are descriptions. The JSD of these two
distributions is 0.0196.

Figure 5: JSDs of corpus and experimental form
distributions with identical (Matching) and arbitrary
(All) feature-value combinations.

The JSDs comparing Human and Corpus when
categories are matching or associated arbitrarily

are shown in figure 5. Once again, we see that the
median JSD for the Matching spread is less than
the lower quartile of the All spread, suggesting a
strong effect of category alignment.

The corresponding line in table 2 is Cat C. Here
we see that there is a difference in representational
length of 3 390.3 bits between category-aligned
and arbitrarily matched encodings. This encoding
length difference reflects a Bayes’ Factor of the
order of 101020. The model with matching cate-
gories is substantially superior to those with arbi-
trarily matched slots.
H3 more pronouns in the experimental re-

sults, H4 fewer definite descriptions in the ex-
perimental results. The raw values can be seen
in figure 6. It is apparent that in the experimen-
tal results, we see fewer descriptions and more
pronouns.

Figure 6: Relative frequencies of different forms in
corpus and experimental results.

Because the results in Human were gathered on
the basis of categories in Corpus, we can directly
relate the REFs in the corpus to conditional distri-
butions of REFs in the experimental results. These
are visualised as a heatmap in figure 7.

Figure 7: The conditional probability of experimen-
tal forms given the original form used in the corpus.

The heatmap shows a strong correlation between
the pronominal realisation in Corpus and in Human.
The central column of the heatmap, where the orig-
inal corpus RE was a proper name, also exhibits
substantial agreement. However, where there is
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a definite description in the corpus, these are not
realised consistently in the experiment. They seem
equally likely to be realised as ‘descriptions’, ‘proper
names’ or ‘pronouns’. So H3 and H4 are tied. The
lack of realisation of corpus ‘descriptions’ as ‘de-
scriptions’ in the experimental results accounts for
their fall in numbers in Human, and their redistribu-
tion accounts for the increase in pronominal forms.
H5 human experimental participants produce

noisier, and thus flatter, distributions of refer-
ring expressions. One potential problem with
using the relative frequencies from Corpus as a
model of Human is that it overfits. Here we explore
one way of relaxing this tightness of fit with Cor-
pus: we add randomness that brings the overall
distribution of REFs in Corpus into line with the
distribution of REFs found in Human. We write hf

f ′

for the ‘diffusion‘ matrix of relative frequencies of
f in Human in slots where the corpus had REF f ′.
We can mimic the noise in the relationship between
context categories and REFs in the following way.
In each context k, where the distribution of REFs in
the corpus is qf

′

k , we spread this distribution by mul-
tiplying it by the diffusion matrix hf

f ′ . The resulting
matrix of conditional probabilities vfk =

∑
f ′ h

f
f ′q

f ′

k

gives a new distribution for each category. As a
result, it offers predictions more in line with the re-
sponses seen in Human. We say that the resulting
conditional distribution is diffused.

Figure 8: JSDs of the corpus and experiment dis-
tributions in non-diffused (Category) and diffused
models.

We see how the non-diffused and diffused dis-
tributions match the experiment results in figure 8.
The diffused model is a substantially better match
for the experimental results, as is visible in its lower
JSD values, indicating a better match between the
distributions found in Human and Corpus (after
diffusion).

The diffused conditional probabilities are bet-
ter predictors of the data in Human than the non-
diffused corpus relative frequencies. Even incorpo-
rating the cost of representing the matrix in bits of
information (presuming a probability resolution of
0.002%), we find in table 2 that the diffused model
Diff C outperforms all models, other than Cat E.

Recall that Cat E offers the best possible encoding
of Human because it uses distributions found there
to predict, and so encode, its own data. Diff C has
removed 78% of the redundancy in the maximum
entropy model relative to Cat E.
H6 proposed that Gpt REF distributions

would be more similar to those of Corpus than
to those of Human. This hypothesis is not sup-
ported by the experimental results. Instead, as
shown in figure 9, the mean JSDs found between
categories in Gpt and Corpus are substantially
higher than those between Gpt and Human. These
results suggest that the LLM models are better
accounts of the variation seen in Human, i.e. re-
sponses given by experimental participants, than
the variation seen in Corpus, i.e. the thought-over
and edited use of REs in newspaper articles.

Figure 9: Mean JSDs comparing REF distribu-
tions in Gpt with those based on Corpus predic-
tions, and also the distributions produced by hu-
man participants. As shown by the non-overlapping
standard-error error-bars, there is a significant dif-
ference between the mean JSDs of Gpt and Cor-
pus on the one hand (red), and Gpt and Human
on the other (blue). This indicates that the Gpt
distributions are not more closely aligned with the
Corpus distrbutions, but rather with the Human
ones, contradicting H6. Note that Corpus also
shows low JSDs with Human, offering a model of
experimental variation at a similar level to the LLM.

H7 proposed that GPT would produce more
descriptive REs than human participants. This
is indeed confirmed, as shown in figure 10. The dif-
ference in relative frequencies is substantial (34%:
0.188 for GPT, 0.140 for the human participants),
confirming the hypothesis.

5. Discussion

The results in section 4 show positive evaluations
of our hypotheses, except for hypothesis H6. In Hu-
man, the distributions of variation for REFs drawn
from the same category are more similar than dis-
tributions from different categories. Comparing Hu-
man and Corpus, distributions over forms condi-
tioned by category are more similar for matching
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Figure 10: The likelihood of description (vs pronoun
or name) use in experimental results: Gpt vs Hu-
man. The error bars show the Beta-Bernoulli 95%
confidence intervals, and do not overlap, so the
difference in results is unlikely to be due to chance.

categories than for non-matching categories. The
pattern of forms in Human reflects our prediction
that there are fewer ‘descriptions’ and more ‘pro-
nouns’. Using a diffusion matrix to render the Cor-
pus conditional distributions more like those from
Human resulted in substantially better predictions
of the experimental data.

Consideration of the variation in Gpt and Human
led to two more hypotheses. Our hypothesis that
the LLM would behave more like Corpus than Hu-
man proved incorrect. However, it was the case that
Gpt showed more use of descriptions than Human.

Our aim in this paper has been to explore how
well the variation seen in a large corpus, like WSJ,
can function as a proxy for variation found in ex-
periments. Both corpus and experiment are op-
portunities to explore how contextual feature-value
categories condition inherent variability in REFs.
This is reflected in the results in section 4, in the
evaluation of hypothesis H2. Distributions defined
by the same feature-value categories are much
more similar than those defined by arbitrary match-
ing. So there is evidence of a common cause at
play in conditioning these distributions.

One interesting finding is the effect of overfitting.
While the categorisations themselves allow good
compression of the data (see table 2, model Cat
E), the distributions constructed within the corpus
offer only partial improvement over the flat distri-
bution (34% at best). However, applying a mask
mapping from corpus to experimental forms, de-
rived from how the original forms in corpus slots
are realised within Human, resulted in superior per-
formance, eliminating 78% of available redundancy.
This mask has the effect of reconciling the differ-
ence in the overall distribution of REFs in the two
data sets Corpus and Human. It also tends to
flatten distributions, reducing the amount of over-
fitting, and so leading to a more general model of
referential variation.

We compared the distributions of RE types from

Corpus with GPT-4’s interpolation of referential
forms (Gpt), when it was assigned the same task
as human experimental participants.

Comparing the three conditional distributions
over the data sets, using the JSD, gives us three
distance measures: Corpus-Gpt, Corpus-Human
and Human-Gpt. The Corpus-Gpt divergence is
the largest. While the Human-Gpt divergence is
the smallest. These results together imply that both
Gpt and Corpus are capturing substantial aspects
of the variation found in human experimental vari-
ation. However, the fact that the variation in Gpt
and Corpus are so different shows that they are
not capturing the same aspects of human variation.

This result, in turn, suggests that corpus study
can teach us things about referential type use not
yet captured in LLMs. This conclusion also qui-
etens concerns that GPT-4 might just reproduce
forms from the corpus which may well have formed
part of its training set.

The results presented here show that there is a
substantial connection between variation we see in
corpora and variation found in and between human
participants in a variationist experiment. If we take
care not to overfit, we can find substantial agree-
ment between the two. Any remaining mismatch
may result from differences in cognitive aspects of
the language-production situation.

Possible future work could enrich these con-
clusions by looking at the lexical content of
the referring expressions themselves, not just
at their type. All associated data including
the human and GPT-4 experimental results are
publicly available and can be accessed on
our GitHub repository: https://github.com/
fsame/WSJ-VariationCorpus.
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