
LREC-COLING 2024, pages 6867–6875
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

6867

Explaining Pre-Trained Language Models with Attribution Scores:
An Analysis in Low-Resource Settings

Wei Zhou1, Heike Adel3, Hendrik Schuff4, Ngoc Thang Vu2

1Bosch Center for Artificial Intelligence, Renningen, Germany
2Institut für Maschinelle Sprachverarbeitung, University of Stuttgart, Germany

3Hochschule der Medien, Stuttgart, Germany
4Ubiquitous Knowledge Processing Lab, Technical University of Darmstadt, Germany

wei.zhou3@de.bosch.com, heike.adel@gmail.com,
hendrik.schuff@tu-darmstadt.de, thang.vu@ims.uni-stuttgart.de

Abstract
Attribution scores indicate the importance of different input parts and can, thus, explain model behaviour. Currently,
prompt-based models are gaining popularity, i.a., due to their easier adaptability in low-resource settings. However,
the quality of attribution scores extracted from prompt-based models has not been investigated yet. In this work,
we address this topic by analyzing attribution scores extracted from prompt-based models w.r.t. plausibility and
faithfulness and comparing them with attribution scores extracted from fine-tuned models and large language
models. In contrast to previous work, we introduce training size as another dimension into the analysis. We find
that using the prompting paradigm (with either encoder-based or decoder-based models) yields more plausible
explanations than fine-tuning the models in low-resource settings and Shapley Value Sampling consistently
outperforms attention and Integrated Gradients in terms of plausibility and faithfulness scores.
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1. Introduction

Recently, two paradigms of using pre-trained trans-
former models, such as BERT or GPT-2 (Devlin
et al., 2019; Brown et al., 2020), have gained
popularity: fine-tuning which adapts the weights
of the model using task-specific training data,
and prompting which defines or learns so-called
prompts to retrieve knowledge from the model, of-
ten leaving the model’s weights unchanged.

When deploying pre-trained models in real-
world downstream applications, two challenges
arise: (i) the need for explaining the results as the
models are very complex (Madsen et al., 2022),
and (ii) the need for adapting the models in low-
resource scenarios as applications in special do-
mains or languages typically do not provide many
labeled training instances (Hedderich et al., 2021).

For challenge (ii), previous work has shown
that fine-tuning models in low-resource settings
is hard (or even impossible for zero-resource set-
tings) while prompting can yield good performance
in those cases (Brown et al., 2020; Schick and
Schütze, 2021; Liu et al., 2022). In terms of chal-
lenge (i), there is a research gap of carefully ana-
lyzing the difference of fine-tuned models (FTMs)
and prompt-based models (PBMs). Most methods
that have been proposed to enhance models’ ex-
plainability (Ribeiro et al., 2016; Lundberg and Lee,
2017) have so far only been studied in the context
of FTMs (Atanasova et al., 2020; DeYoung et al.,

2020; Ding and Koehn, 2021), e.g., to answer the
question which attribution method works best for
different models and tasks. To the best of our
knowledge, no previous work has explored attribu-
tion scores from PBMs (neither encoder-based nor
decoder-based models, i.a., large language mod-
els) nor compared their quality to signals extracted
from FTMs.

In this paper, we thus address the following
questions: (1) How plausible and faithful are ex-
planatory signals extracted from PBMs in compar-
ison to FTMs? While plausibility shows how plau-
sible an explanation is according to human under-
standing, faithfulness measures to what extent the
deemed important tokens are truly important for
the predictions of the model. Thus, we evaluate
explanations both from the perspective of humans
and models, making the analysis comprehensive.1

In addition, we introduce a new dimension into
the analysis, namely the number of training sam-
ples in order to carefully investigate the behaviour
of different methods in low-resource settings.

In our second research question, we investi-
gate the effects of different attribution methods: (2)
How well do different attribution methods perform
in terms of plausibility and faithfulness? We an-
swer this question by comparing different methods

1Those two dimensions are also commonly studied in
related work on models’ explainability (Atanasova et al.,
2020; Ding and Koehn, 2021).
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(namely attention, Integrated Gradients and Shap-
ley Value Sampling) using extensive statistical sig-
nificance tests. We focus on explanations in the
form of attribution scores that highlight the impor-
tance of different input parts since they are more
closely related to the model input and output than,
e.g., generated free-text explanations.

Our third question concerns the choice of the un-
derlying model, taking into account the new trend
of using large language models: (3) Do the results
for PBMs also hold for decoder-based large lan-
guage models? We show that we get comparable
results when extracting attribution scores from a
large language model.

For the first time, our paper shows that prompt-
based models yield more plausible explanations
than fine-tuned models in low-resource settings
and Shapley Value Sampling consistently outper-
forms attention and Integrated Gradients in terms
of both plausibility and faithfulness scores. Thus,
prompting pre-trained (either encoder-based or
decoder-based) transformer models is better in
low-resource settings than fine-tuning them, not
only in terms of task performance but also when
extracting attribution scores as explanations.

2. Extraction of Attribution Scores

We analyze attribution scores from three different
kinds of models: encoder-only models (e.g., BERT
and similar models) following either the prompt-
based paradigm (called “PBMs” in the following)
or the fine-tuning paradigm (called “FTMs”), and
decoder-only models (e.g., large language mod-
els) following the prompt-based paradigm (called
“LLMs”). We do not investigate encoder-decoder
models as we want to avoid mixing effects from
cross-attention and self-attention. In the following
paragraphs, we describe how we extract attribu-
tion scores from the different model types.

Extraction from PBMs. We illustrate our ap-
proach for extracting attribution scores from
encoder-only PBMs in Figure 1: The input is com-
posed of the actual task input (yellow boxes), trig-
ger tokens (i.e., tokens providing task information,
shown in blue boxes), and a prediction token (i.e.,
the token that the model needs to predict to solve
the task, shown in the pink box). Based on the in-
put, the model computes probabilities for the pre-
diction token. Given the predicted label tokens,2
we then extract attribution scores for the actual
task input. In particular, we use attention scores,
Integrated Gradients and Shapley Value Sampling

2We decided to use the tokens from the verbalizer in-
stead of the true task labels as in Atanasova et al. (2020)
because it cannot be assumed to have access to the true
labels in real-world scenarios.

the movie It was [MASK] .

[MASK][CLS]

PBM

great 0.07
bad 0.05

...

saliency method

1.12.3

likeI

Prom
pt

verbalizer

0.7 0.5

Figure 1: Extraction of explanatory signals from
PBMs. Yellow boxes: actual task input. Blue
boxes: trigger tokens. Pink box: prediction to-
ken. Orange boxes: last hidden representations
of PBM. Green box: predicted label (converted by
verbalizer, e.g., positive → great, negative → bad).

in our study. For attention, we extract attention
scores from the last hidden layer of the [MASK] to-
ken, average them across different attention heads
and normalize the attention scores over the actual
task input. For Integrated Gradients and Shapley
Value Sampling, we calculate attribution scores us-
ing the Captum package.3

Extraction from FTMs. For FTMs, the process
is similar except that there are no prompts ap-
pended at the end of the sentences. Instead of
using the language modeling head (the [MASK] to-
ken) for prediction, we use the default classifica-
tion head (the [CLS] token) for FTMs and extract
attribution scores for each token of the actual task
input based on the predictions.

Extraction from LLMs. Extracting attribution
scores from generative models is more challeng-
ing as they typically generate a whole sequence
of output tokens and the position of the prediction
token is not clear. To tackle this issue, we ex-
plicitly prompt the model to output only the verbal-
ized class label.4 Prompts can be found in Section
A.2. Then we detect if the generated output corre-
sponds to one of the verbalized class labels or not.
If yes, we treat the class label as the prediction to-
ken. If not, we treat the first token in the generated
output sequence as the prediction token. Finally,
we extract attribution scores for the actual task in-
put based on the prediction token, as we did in the
extraction from PBMs or FTMs.

3https://captum.ai
4We chose the verbalizer such that the label name is

part of the model’s vocabulary and is not split into sev-
eral subtokens.
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3. Experimental Setup

Tasks and data sets. We use a sentiment classi-
fication (Tweet Sentiment Extraction (TSE)5) and a
natural language inference dataset (e-SNLI (Cam-
buru et al., 2018)) to cover tasks of different se-
mantic depth and use their annotations of token-
level explanations. Statistics of the datasets can
be found in Table 1.6 To create low-resource set-
tings, we subsample the training sets into six low-
resource sets, ranging from eight instances to the
whole set.

Data set TSE e-SNLI

Train 11931 549367
Dev 2983 9842
Test 1449 9825

Table 1: Number of training, development, and test
instances in TSE and e-SNLI.

Base models. For our main analysis, we fo-
cus on state-of-the-art encoder-based transformer
models since running large language models
(LLMs) on all our evaluation setups would have
been infeasible due to extensive computational
costs. In particular, we use BERT-base (Devlin
et al., 2019), BERT-large, and RoBERTa-large
(Liu et al., 2019). Nevertheless, we also per-
form a small comparative study with LLMs after-
wards, namely with the Vicuna model (Chiang
et al., 2023), a fine-tuned LLaMA version (Touvron
et al., 2023).

Prompting methods. In our study, we focus on
discrete prompts because they are more explain-
able than continuous prompts and also the stan-
dard input for LLMs. To be able to factor out
possible differences stemming from the choice of
the prompting method, we study three different
methods: Manual uses a prompt from Schick and
Schütze (2021) and fine-tunes all parameters of
the model. BitFit uses the manual prompt but
updates only the bias terms of the model during
fine-tuning (Logan IV et al., 2022), and BFF auto-
matically searches for a prompt (Gao et al., 2021)
and fine-tunes all parameters with that prompt.
Prompts and verbalizers are provided in Table 2.7

5https://www.kaggle.com/c/tweet-sentiment-
extraction

6For TSE, we exclude data with the neutral label be-
cause their annotated explanations are mostly the whole
sentence.

7For the LLM, we use manual prompts only.

Training details. We use 4-fold cross-validation
to tune both PBMs and FTMs. The hyperparame-
ters can be found in Section A.1.

Evaluation metrics. We evaluate the plausibility
and faithfulness of the explanatory signals. Those
two dimensions allow to investigate explanations
both from the perspective of humans and models.
They are also commonly used in related work on
explainability (Atanasova et al., 2020; Ding and
Koehn, 2021).

Plausibility indicates how plausible an explana-
tion is according to human intuition. We quan-
tify this with average precision (Atanasova et al.,
2020).8

Faithfulness shows a model’s ability to accu-
rately represent its reasoning process. In related
work, an established way of quantifying this is
measuring the performance decrease when mask-
ing the most salient words (DeYoung et al., 2020;
Atanasova et al., 2020). We follow Atanasova et al.
(2020) and create several dataset perturbations by
masking 0, 10, 20, ..., 100% of the tokens in the
order of decreasing saliency. To calculate a sin-
gle measure for faithfulness, the area under the
threshold-performance curve (AUC) is used. How-
ever, this measure does not allow cross-model
comparisons. Therefore, we normalize the AUC
as the proportion of the area under the curve to the
whole area (calculated as the highest possible per-
formance multiplied by the number of thresholds).
The lower the normalized score, the better the ex-
planation is in faithfully showing the model’s rea-
soning.

To investigate the statistical significance of our
results, we apply Kruskal-Wallis tests and Dunn’s
Tests for pairwise differences.

4. Results

4.1. Comparing PBMs and FTMs
We extract attribution scores from all PBMs and
FTMs and compute its plausibility and faithfulness
scores for different training sizes, averaging out ef-
fects from different prompting methods and base
models. Figure 2 shows the results. Individual re-
sults for base models and attribution methods can
be found in Section A.4. We also report the task
performance of the models in Section A.3.

Plausibility. For smaller training sizes, PBMs
outperform FTMs but the trend reverses as the
training size increases. To investigate whether
the differences between PBMs and FTMs in the
low/rich-resource settings are significant, we set

8sklearn.metrics.average_precision_score
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Task Prompt Verbalizer Setting

TSE [S] It was [P]. terrible/great Manual/Bitfit
This is [P]. [S] ragged/soldiers BFF

e-SNLI [S1] ? |[P] , [S2] yes/no/maybe Manual/Bitfit
[S1] . [P] , no , [S2] alright/except/watch BFF

Table 2: Prompts for TSE and e-SNLI in different settings. [S] stands for the sentence ([S1] and [S2] are
the premise and hypothesis respectively), and [P] is the prediction token. For TSE, the verbalizers corre-
spond to positive/negative. For e-SNLI, the verbalizers correspond to entailment/contradiction/neutral.
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(a) Plausibility Results on TSE.
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(b) Plausibility Results on e-SNLI
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(c) Faithfulness Results on TSE
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(d) Faithfulness Results on e-SNLI

Figure 2: Plausibility (the higher the better) and faithfulness (the lower the better) scores for different
prompting methods and fine-tuning and different explanation methods, averaged across base models
and seeds. The faithfulness results are shown as the difference between faithfulness scores of the resp.
explanation method and the gold standard. attn: attention, ig: Integrated Gradients, shap: ShapSample.

up two bins for each task: we treat the two train-
ing sets with fewest data as low-resource and
the two training sets with most data as high-
resource. Within the low-resource part of the
data, we find all comparisons to be statistically
significant (TSE: H(89)=73.86, p<0.001, e-SNLI:
H(89)=29.24, p<0.001). Within the high-resource
part of the data, the differences are not sig-
nificant. We also calculate the random base-
line for plausibility scores (0.436 for TSE and
0.476 for e-SNLI) and find that explanations pro-
vided by PBMs achieve considerably higher plau-
sibility scores than the random baselines in low-
resource setting. Method-wise, we find that for
both tasks, the plausibility scores of the explana-

tions extracted by ShapSample are significantly
higher than those from attention and Integrated
Gradients.

Plausibility error analysis. We sample 20 in-
stances per dataset for each attribution method to
conduct a small error analysis in terms of plausi-
bility of explanations. We find that Integrated Gra-
dients tend to assign negative values to functional
words. We also find that attention seems to en-
code sentence information into a single token, so
a specific token can get high attribution scores.

Faithfulness. Figures 2c and 2d show that faith-
fulness scores are influenced by the attribution



6871

Data Model Plausibility Faithfulness
attn ig shap attn ig shap

TSE RoBERTa .56 .57 .56 .02 .00 .01
Vicuna .47 .57 .59 .07 .06 .02

e-SNLI RoBERTa .53 .51 .50 .22 .09 .11
Vicuna .43 .51 .55 .02 .05 .00

Table 3: Plausibility (the higher the better) and
faithfulness (the lower the better) scores of expla-
nations obtained from Vicuna and RoBERTa.

methods. For instance, explanations extracted
from FTMs with ShapSample are more faithful
than explanations from PBMs independent of the
number of resources. Explanations from PBMs
with attention lead to the lowest faithfulness scores
across all training sizes. For both datasets, we
observe significant differences for all attribution
method pairs except for ShapSample and gold.
Thus, Shapley Value Sampling attribution scores
are comparably faithful as gold annotations.

4.2. Studying LLMs
Given the increased relevance of large language
models, we now investigate whether our findings
hold for them as well and which plausibility and
faithfulness scores we get for them compared
to PBMs (i.e., encoder-based models used with
prompting). Due to the large computational costs
for obtaining attribution scores from LLMs, we limit
the number of test instances to 100 for each data
set and evaluate the 8-shot setting only. For the
LLM, the 8 training samples are provided in each
input prompt. The prompts can be found in Sec-
tion A.2. For the PBM (we chose RoBERTa-Large
with BitFit prompts which was the best performing
individual model in our previous analysis), the 8
training samples are used to tune the bias terms
of the model.

The results in Table 3 show that Shapley Value
Sampling again leads to more plausible and faith-
ful explanations for Vicuna. When comparing Vi-
cuna with RoBERTa, we note larger performance
gaps among the attribution methods. We further
note that the plausibility scores of attention are
even lower for Vicuna than for RoBERTa. A reason
could be that LLMs encode a larger input context
and, thus, information of tokens that are irrelevant
to the prediction might also be encoded.

4.3. Discussion
Comparison of attribution methods. Shap-
Sample consistently yields more plausible expla-
nations than methods. We assume the reason for
this lies in the calculation of Shapley Values: it
takes in every permutation of features enabled to

calculate a feature’s importance. For instance, if
we have a feature set “good”, “day”, the attribution
score of the feature “good” is calculated by every
permutation that contains it, i.e., “good” and “good
day”. Whereas for Integrated Gradients, this is not
considered. We think taking each permutation to
calculate feature importance is helpful in models
like BERT, as context is of vital importance. Atten-
tion is the least plausible; this observation is in line
with previous works, e.g., Bibal et al. (2022).

PBMs vs. FTMs vs. LLMs in low-resource
settings. PBMs yield more plausible attribution
scores than FTMs in low-resource settings. We
think this might be because PBMs pick up task in-
formation quicker than FTMs in the low-resource
settings, so the explanations given by PBMs are
more plausible. Our study with LLMs shows that
the trends of LLMs are comparable to the trends
of PMBs, indicating the relevancy of our findings.

5. Conclusion

In this paper, we studied attribution scores ex-
tracted from prompt-based models in comparison
to fine-tuned models, and compared different attri-
bution methods w.r.t. plausibility and faithfulness
scores. Our main findings were: (1) Prompt-based
models generate more plausible explanations in
low-resource settings. (2) Shapley Value Sam-
pling outperforms other attribution methods, such
as attention and Integrated Gradients across tasks
and settings and is similarly faithful as gold anno-
tations. (3) Our findings seem to be transferable
to generative large language models.

Directions for future work are the investigation of
soft prompts as well as a more extensive study of
explanatory signals from large language models.
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A. Appendix

A.1. Hyperparameters
Table 4 provides the hyperparameters for training
our models. The learning rate and accumulation
steps are automatically selected based on the val-
idation accuracy from the range of [1, 2, 4] for
the accumulation steps and [1.0e-5, 5.0e-5, 1.0e-
4, 5.0e-4] for the learning rate.

Task Training size Batch size Epoch

TSE 8/32/128 2 30
TSE 512 4 15
TSE 2048/11828 8 5

e-SNLI 8/32/128 2 30
e-SNLI 1024 4 15
e-SNLI 16384/549367 32 3

Table 4: Hyperparameters.

A.2. LLM Prompts
• TSE: You will be given a target sentence

and you will decide the sentiment of the sen-
tence (Please return either yes or no only).
Here are some examples: Input: {s1} Output:
{l1}...Input: {s8} Output: {l8}

• e-SNLI: You will be given a pair of sentences
and you will decide the relationship between
the sentences (Please return yes for entail-
ment, no for contradiction, maybe for neutral
only.). Here are some examples: Input1: {s1}
Input2: {s2} Output: {l1}...Input1: {s8} Input2:
{s8} Output: {l8}

A.3. Task Performance
Figure 3 shows the task performances of PBMs
and FTMs with regards to different training sizes.

Figure 3: The F1 scores of models trained with dif-
ferent sizes. From top to bottom: TSE and e-SNLI.

A.4. Comparing Saliency Methods and
Base Models

Figure 4 illustrates the plausibility and faithfulness
scores per saliency method, averaged across
models, training sizes, prompting methods and
seeds. Figure 5 illustrates the plausibility scores
per base model, averaged across saliency meth-
ods, training sizes, prompting methods and seeds.
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(a) Plausibility:TSE (b) Plausibility:e-SNLI

(c) Faithfulness:TSE (d) Faithfulness:e-SNLI

Figure 4: The Plausibility scores of explanatory signals, averaged across base models, training sizes
and prompting methods. attn stands for attention. ig stands for Integrated Gradients and shap stands for
Shapley Value Sampling. gold stands for the gold annotations. NS stands for the no significant difference.
*, **, *** stand for p-value <.05, .01 and .001.
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(a) Plausibility:TSE (b) Plausibility:e-SNLI

(c) Faithfulness:TSE (d) Faithfulness:e-SNLI

Figure 5: The Plausibility scores of base models, averaged across saliency methods, training sizes and
prompting methods. attn stands for attention. ig stands for Integrated Gradients and shap stands for
Shapley Value Sampling. gold stands for the gold annotations.NS stands for the no significant difference.
*, **, *** stand for p-value <.05, .01 and .001.
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