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Abstract
Recent generative large language models (LLMs) have exhibited incredible instruction-following capabilities while
keeping strong task completion ability, even without task-specific fine-tuning. Some works attribute this to the bonus
of the new scaling law, in which the continuous improvement of model capacity yields emergent capabilities, e.g.,
reasoning and universal generalization. However, we point out that recent LLMs still show shortcut learning behavior,
where the models tend to exploit spurious correlations between non-robust features and labels for prediction, which
might lead to overestimating model capabilities. LLMs memorize more complex spurious correlations (i.e., task ↔
feature ↔ label) compared with that learned from previous pre-training and task-specific fine-tuning paradigm (i.e.,
feature ↔ label). Based on our findings, we propose FSLI, a framework for encouraging LLMs to Forget Spurious
correlations and Learn from In-context information. Experiments on three tasks show that FSFI can effectively
mitigate shortcut learning. Besides, we argue not to overestimate the capabilities of LLMs and conduct evaluations in
more challenging and complete test scenarios.
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1. Introduction

Pre-trained models (PLMs) have achieved promis-
ing performance in various tasks in the past few
years (Devlin et al., 2018; Lewis et al., 2020; Raf-
fel et al., 2020). Recently, as the computing re-
sources increase, researchers gradually scale the
model size or data size of original PLMs for supe-
rior performance (Shanahan, 2022; Hoffmann et al.,
2022), known as large language models (LLMs),
e.g., GLM (Zeng et al., 2022), LLaMA (Touvron
et al., 2023) and GPT-4 (OpenAI, 2023). These
LLMs can consistently achieve significant perfor-
mance improvements and exhibit several special
abilities (Wei et al., 2022) compared with original
PLMs. For example, in-context learning is a brand-
new skill (Brown et al., 2020), where LLMs can learn
helpful information from task demonstrations with
only a few input-output pairs concatenated. More-
over, the advanced training technologies such as in-
struction tuning (Wei et al., 2021) and reinforcement
learning with human feedback (RLHF) (Ouyang
et al., 2022) further equip the LLMs with the ability
of zero-shot learning. Since these skills allow LLMs
to handle different tasks without any additional train-
ing process or gradient update, which significantly
enhances their generalization capability and usabil-
ity. Surprisingly, the most representative LLM, GPT-
4, has been proven to be able to benefit more than
1,800 different tasks (Bubeck et al., 2023). The
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development of LLMs goes further to our purpose
of artificial general intelligence (AGI).

Despite the remarkable performance of recent
LLMs, some challenges and problems still arise
in real-world applications, such as hallucination,
ethical and privacy concerns (Bang et al., 2023).
Besides, many researchers probe the recent LLMs
for some specific areas, and witness the degenera-
tion in performance, e.g., ambiguity modeling (Liu
et al., 2023), negative knowledge learning (Chen
et al., 2023), etc. As a result, it is worth further ex-
ploration of whether LLMs truly understand intrinsic
semantics rather than the surface form of texts.

In this paper, we explore shortcut learning (Du
et al., 2022), where the models tend to exploit super-
ficial non-robust features (Ilyas et al., 2019) (e.g.,
lexical overlap and specific content words) instead
of robust features (e.g., semantic understanding
and reasoning) to make predictions. It seriously
hurts the generalization and robustness of natural
language models, leading to inferior performance
when applied to broader applications or more chal-
lenging scenarios (Geirhos et al., 2020). We could
achieve a recognized consensus conclusion from
previous related works that a model trained with
more balanced datasets, more parameters, and
more advanced learning strategies can help to miti-
gate the shortcut learning behavior (Tu et al., 2020;
Ross et al., 2022; Bubeck and Sellke, 2023), and
these all play a crucial role behind the recent suc-
cess of LLMs. However, there exist no related ex-
plorations of shortcut learning for recent LLMs. Nat-
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urally, we wonder: (1) Do recent LLMs (such as
ChatGPT) have shortcut learning behaviors un-
der zero/few-shot learning settings? if have: (2)
When and why do shortcut learning behaviors
occur? and (3) How to mitigate them for LLMs?

To answer the questions, we conduct analytical
experiments to explore shortcut learning for LLMs
(Section 3). Our results show that LLMs still suffer
from shortcut learning and attribute this to the spuri-
ous correlations learned in the instruction tuning or
RLHF process(Section 3.2). Next, we try to remove
specific elements of the correlations to encourage
LLMs to forget the spurious correlations and learn
useful task information through in-context learn-
ing (Section 4). However, promising performances
are only achieved with numerous examples in the
demonstration. Therefore, we further introduce two
methods to provide enough helpful task information
in the demonstration with relatively fewer examples
to mitigate shortcut learning and improve the over-
all performance (Section 5). Experiments on three
widely-used datasets of different tasks demonstrate
the effectiveness of our methods. In summary, our
work provides a new perspective for evaluating the
performance of LLMs. Models can mask their lack
of semantic understanding through shortcut learn-
ing, and will exhibit significant performance gaps
in simple testing scenarios and complex real-world
scenarios. Therefore, it is crucial not to exagger-
ate the performance of LLMs and to conduct more
realistic and comprehensive testing on them.

2. Background

2.1. Shortcut Learning

Shortcut learning is known to hurt the generaliza-
tion of language models and has been well ex-
plored in recent years (Du et al., 2022). Based
on original PLMs, researchers aim to look for the
origins of shortcut learning (Tu et al., 2020; Lai et al.,
2021; Si et al., 2023) and propose mitigation solu-
tions (Stacey et al., 2020; Utama et al., 2020; Ross
et al., 2022; Yao et al., 2022). However, we notice
several limitations among them: (1) most explo-
rations are based on BERT-like models, only a few
works mention the generative language models,
(2) the parameters of their models are always less
than 1B, leading to limitations of their methods and
conclusions. Recently, Schwartz and Stanovsky
question the basic procedure of large-scale pre-
training and task-specific fine-tuning paradigm and
suggest focusing on zero/few-shot learning instead.
These motivate us to explore shortcut learning in
more comprehensive scenarios.

See Table 1. We introduce two representative
formats. Lexical-overlap bias occurs if it con-
tains two evaluation sentences with overlapping

Lexical-overlap Bias

Premise The judges supported the manager and the lawyers
Hypothesis The lawyers supported the manager.
Gold label Non-entailment
Prediction Entailment

Single-word Bias

Premise No, indeed, said Cynthia
Hypothesis Certainly not, said Cynthia
Gold label Entailment
Prediction Contradiction

Table 1: Examples of lexical-overlap bias and
single-word bias in natural language inference task,
a high rate of lexical-overlap between the premise
and the hypothesis can be a strong indicator of
Entailment, and a negation word can be a strong
indicator of Contradiction.

words, e.g., natural language inference (McCoy
et al., 2020), reading comprehension (Lai et al.,
2021). The language models view the overlap of
two sentences as a shortcut and then make predic-
tions without understanding the internal semantics.
Single-word bias means that every single-word
feature correlation is spurious (Gururangan et al.,
2018; Gardner et al., 2021), e.g., numbers, nega-
tion words, adverbs of degree, etc. The models
could make correct predictions and perform well
in simple testing scenarios through shortcut learn-
ing. However, due to spurious correlations rather
than semantic understanding, the excellent per-
formance fails in more challenging or real-world
settings. Shortcut learning seriously affects the
robustness and performance of language models
and may mislead researchers in evaluating model
powers, which is worth further exploration.

2.2. In-context Learning
In-context learning (ICL) is first mentioned in GPT-
3 (Brown et al., 2020) and allows the LLMs to learn
specific abilities to solve different tasks with only a
few examples in the demonstration. Then, LLMs
can perform well in various tasks without updat-
ing model parameters. After adopting the specific
prompt templates, some corresponding samples
will be concatenated before the test input to serve
as the demonstration (Dong et al., 2022). Specifi-
cally, take the natural language inference task as
an example. Given one test instance Ii = (xi, yi),
and k examples in the demonstration, the model
predicts the label formatted as:

P (yi|xi) = P (yi|I1 ⊕ I2, ...,⊕Ik ⊕ xi), (1)

where ⊕ denotes the concatenation operation, we
omit the prompt template. If k = 0, there is no
example in the demonstration, it changes to the
zero-shot setting. LLMs can perform implicit learn-
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ing and identify the correct concept learned in the
pre-training process via in-context learning.

2.3. Instruction Tuning and RLHF
Instruction tuning is where a pre-trained LLM is fine-
tuned on a collection of natural language instruc-
tions containing various tasks and datasets (Wei
et al., 2021, 2023b). It combines the appealing as-
pects of the pre-training and fine-tuning paradigms
with prompting (Sanh et al., 2021). After instruction
tuning, LLMs can show superior ability in zero-shot
learning and achieve promising performance in un-
seen tasks (Wei et al., 2021; Chung et al., 2022).
Surprisingly, instruction tuning can be combined
with other prompting methods to improve perfor-
mance, such as in-context learning and chain-of-
thought prompting. Reinforcement learning from
human feedback (RLHF) (Christiano et al., 2017;
Ouyang et al., 2022) is another skill to boost the
capacity of LLMs, which aims to align the outputs
of LLMs with human values. Specifically, RLHF
adopts a reward model that is trained with the
human feedback data to provide the alignment
score and then trains the LLMs with reinforcement
learning (RL) algorithms (e.g., Proximal Policy Op-
timization (PPO) (Schulman et al., 2017)). After
RLHF, the alignment criteria of LLMs (e.g., helpful-
ness, honesty, and harmlessness) will be greatly
improved (Zhao et al., 2023).

3. Shortcut Learning of LLMs

Previous works have explored the shortcut learning
problem and proposed mitigation solutions based
on original PLMs (Friedman et al., 2022; Wen et al.,
2022; Joshi et al., 2022; Eisenstein, 2022). Re-
cently, LLMs have attracted much attention in the
NLP community. Despite the remarkable perfor-
mance, whether they still have the shortcut learning
behavior remains unknown. Next, we first verify that
LLMs also learn shortcut behaviors after instruc-
tion tuning or RLHF processes. Then, we further
analyze the potential reasons.

3.1. Study Settings
We use HANS (McCoy et al., 2020) consisting of
pairs of premise and hypothesis sentences with
labels entailment/non-entailment as our evaluation
dataset for early experiments. Premise and hy-
pothesis sentences in this dataset all contain word
overlaps. For backbone LLMs, we adopt different
pairs of models without and with instruction tun-
ing or RLHF but containing comparable parame-
ters, e.g., GPT-3 davinci (Brown et al., 2020) and
ChatGPT1, LLaMA (Touvron et al., 2023) and Al-

1https://chat.openai.com/chat

Method Accuracy Decline Method Accuracy Decline

LLaMA-7B – – Alpaca-7B 51.30 32.47
w/ ICL 56.65 1.00 w/ ICL 49.60 40.13

T5-XXL 69.50 \ Flan-T5-XXL 72.60 54.80
w/ ICL 50.00 \ w/ ICL 75.33 49.33

GPT-3 davinci – – ChatGPT 72.20 26.27
w/ ICL 63.00 \ w/ ICL 75.40 15.87

Table 2: Performance on HANS of different LLMs,
– denotes this setting does not support our evalua-
tion, \ denotes that no decline exists.

paca (Taori et al., 2023), T5 (Raffel et al., 2020)
and Flan-T5 (Wei et al., 2021). Due to the limi-
tation of computing resources, we randomly se-
lect 1,000 examples from the original development
set to conduct experiments, and the rest are used
for in-context learning. More specifically, we keep
the same proportion of different labels, i.e., the
numbers for examples with label Entailment and
Non-entailment are both 500. We adopt manual
prompts following Min et al. (2022) for exploration.
For in-context learning (ICL), we randomly select 16
examples from the rest of the original sets. Besides,
we keep the composition ratio of different labels as
balanced as possible to weaken the influence of
in-context learning (Tang et al., 2023).

3.2. Results and Analysis
As mentioned in Section 2.1, the language models
will exploit the overlap bias to make predictions, i.e.,
if the premise and hypothesis sentences contain
many word overlaps, they will tend to predict the
label as entailment. The performance on exam-
ples with label non-entailment will be worse than
those with label entailment. As a result, we report
the corresponding performance decline between
label non-entailment and entailment to represent
the extent of shortcut learning. Notice the more
significant the decline is, the more seriously the
language model suffers from shortcut learning.

Do recent LLMs have shortcut learning behav-
iors? We present the results in Table 2, we can
find that: (1) LLMs without instruction tuning or
RLHF can not directly support our evaluation in
zero-shot setting, except T52. There is no evident
decline between different labels in the few-shot set-
ting, but the overall accuracy is relatively low. (2)
LLMs after instruction tuning or RLHF significantly
aggravate the performance decline, and adopting
in-context learning does not alleviate this problem
effectively. (3) ChatGPT has the most potential to

2Thanks to the unified text-to-text pre-training
paradigm, we can directly adopt T5 to predict the specific
label with the input format following Raffel et al. (2020).

https://chat.openai.com/chat
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Figure 1: Left: correlations learned in different fine-tuning methods. Dashed line denotes spurious
correlations, NLI denotes natural language inference task. Right: adopting different prompts and labels to
remove specific elements in spurious correlations, e.g., minimal prompts contain no natural language
instructions for specific tasks, symbolic labels are irrelevant to the previous ones adopted in specific tasks.

solve shortcut learning since the accuracy is the
highest (75.40) and the decline is the lowest (15.87).
Overall, our findings provide evidence that recent
LLMs with instruction tuning or RLHF still have
shortcut learning behaviors.

When do recent LLMs get shortcut learning be-
haviors? As mentioned above, we evaluate the
performance of LLMs without and with instruction
tuning or RLHF, since the performance decline be-
tween different target labels is only evident in the
latter ones, we would rather attribute the short-
cut learning behaviors to the instruction tuning
or RLHF processes. Recently, Tang et al. point
out that LLMs may learn shortcuts through the ex-
amples in the demonstration. However, as shown
in Table 2, shortcut learning is serious in zero-shot
settings, indicating that LLMs have got shortcut
learning behaviors before in-context learning.

Why do recent LLMs get shortcut learning be-
haviors? We further analyze the potential rea-
sons why shortcut learning behaviors occur during
instruction tuning or RLHF processes. We draw in-
spiration from the previous works exploring shortcut
learning based on the pre-training and task-specific
fine-tuning paradigm. During the task-specific fine-
tuning process, the models learn the spurious cor-
relation between non-robust features and labels,
as {Feature ↔ Label}. When it comes to LLMs with
instruction tuning or RLHF processes, we consider
that LLMs learn more complex correlations as {Task
↔ Feature ↔ Label} since it is a multi-task scenario.
Figure 1 presents several correlations. We notice
that not all the correlations are beneficial for predic-
tion (e.g., correlations with dashed lines in Figure 1).
Compared to understanding semantics, language
models tend to use spurious correlations for pre-
diction, known as shortcut learning. For example,
in our experiments, the models will predict the cor-

responding label as Entailment through shortcuts
from manual prompts and sentence inputs, which
provide task information as natural language infer-
ence and spurious features such as lexical overlap,
respectively. In-context learning may not benefit or
even deepen the performance decline by provid-
ing helpful task information (Pan et al., 2023) while
encouraging the models to adopt such spurious
correlations. Therefore, we attribute the reason
to the spurious correlations LLMs learned in
the instruction tuning or RLHF processes.

4. Potential Solutions to Forgetting
Spurious Correlations for LLMs

As mentioned in the previous section, LLMs can
learn the correlations as {Task ↔ Feature ↔ Label},
and this may be converted to {Natural Language
Inference ↔ Lexical-overlap ↔ Entailment} when
applied to HANS dataset. We assume that each
specific element may help LLMs recall the spuri-
ous correlation learned during training. Therefore,
we encourage the LLMs to forget this spurious cor-
relation by removing the specific elements during
inference. More specifically, since the {Feature}
element can not be removed since it is contained
in the test examples, we adopt different strategies
to remove the other two during inference as shown
in the right part of Figure 1. Next, we give more
detailed introduction and analysis of these strate-
gies. Since ChatGPT presents the most potential,
we conduct our experiments based on ChatGPT.

Remove the task element: minimal prompts
with natural language labels. Motivated by pre-
vious works (Min et al., 2022; Pan et al., 2023),
we adopt minimal prompts which remove any nat-
ural language instructions for the task rather than
the previous widely-used manual prompts which
provide the task information, thus weakening the
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Methods ICL w/ 4-shot ICL w/ 8-shot ICL w/ 16-shot ICL w/ 32-shot ICL w/ 64-shot

Accuracy Decline Accuracy Decline Accuracy Decline Accuracy Decline Accuracy Decline

1O 72.35 20.30 72.85 23.30 72.35 23.10 72.65 26.70 76.20 24.80
2O 70.00 18.80 68.10 29.40 71.00 28.80 74.70 15.00 77.00 2.40
3O 58.05 \ 62.40 6.00 65.60 1.60 69.90 0.60 76.05 0.50
4O 44.70 \ 63.05 \ 69.10 0.20 74.50 1.00 – –

Table 3: Results on HANS of several potential solutions by removing specific elements in the learned
correlations as shown in Figure 1. 1O: manual prompts with labels Yes and No, 2O: minimal prompts with
labels Yes and No, 3O: minimal prompts with labels A4 and B6, 4O: manual prompts with labels A4 and B6.
Some potential results are in bold. \ denotes that no decline exists.

{Task ↔ Feature} in spurious correlations. Instead,
we force LLMs to conduct task learning (Pan et al.,
2023) to learn valuable task information through
in-context learning. As a result, we replace the
prompts used in 3.2 with minimal prompts and con-
duct experiments on HANS. Since the number of
examples in the demonstration plays a key role for
LLMs to conduct task learning (Pan et al., 2023), we
conduct experiments based on different numbers of
examples in the demonstration. Results are shown
in Table 3 ( 2O) , we can find that: (1) in-context
learning with 64 examples in the demonstration
(w/ 64-shot) can effectively mitigate shortcut learn-
ing as well as improve the performance, (2) when
the number of examples in the demonstration is
relatively small (w/ 32/16/8-shot), the decline on
examples with the label non-entailment still exists,
and shows an upward trend with k decreasing. This
verifies that the ability of task learning heavily relies
on the number of examples in the demonstration
when adopting minimal prompts. We assume that
when the model can not achieve enough task in-
formation through in-context learning (e.g., fewer
examples in the demonstration provide limited help-
ful information for specific tasks), it will still utilize
the knowledge learned in the instruction tuning or
RLHF processes. Besides, since we adopt the la-
bels as yes/no in minimal prompts, LLMs will adopt
the correlations {Task ↔ Label} to recognize the
task information, (i.e., these labels are closely re-
lated to the natural language inference task after
adopting different prompt templates in the multi-
task fine-tuning process), then still presents the
shortcut learning behaviors during inference.

Remove the task and label elements: minimal
prompts with symbolic labels. To further re-
move the label information in prompts, we adopt
symbols without semantics as label choices rather
than natural language labels (e.g., positive, yes,
true). More specifically, we randomly sample a
combination of letters and numbers (e.g., A4, 7X ),
and then randomly sample a mapping between
symbolic labels and the original natural language
labels (Wei et al., 2023a). Table 3 ( 3O) presents the

results, we can find that: (1) As the performance
decline on different labels is small, in-context learn-
ing with examples adopting minimal prompts and
symbolic labels in the demonstration can effectively
mitigate shortcut learning, (2) the overall accuracy
declines as the number of examples in the demon-
stration decreasing, indicating that LLMs can not
achieve enough task information (i.e., this prompt-
ing template fully transforms the original natural
language inference to a new task which is not con-
tained in the training process, LLMs learn this new
task through the examples in the demonstration).

Remove the label element: manual prompts
with symbolic labels. We also remove only label
information by adopting manual prompts but trans-
forming the labels to symbols (i.e., the combination
of letters and numbers). Due to the length limitation,
we can maximum give 32 examples in the demon-
stration. We present the results in Table 3 ( 4O) .
Compared with minimal prompts, we can find that
(1) in-context learning with 16/32 examples in the
demonstration (w/ 16/32-shot) can perform better to
mitigate the shortcut learning, (2) the performance
is comparable with minimal prompts with 8 exam-
ples in the demonstration, and declines significantly
with 4 examples in the demonstration. Overall, com-
pared with the above two methods, manual prompts
with symbolic labels seem to have the most poten-
tial. However, we also find that adopting manual
prompts for each example may provide strong task
information, as well as bringing extra length over-
head (e.g., manual prompts contain the extra task
description compared to minimal prompts, 64 exam-
ples are out of length limits in our experiments). As
a result, although the labels of all examples in the
demonstration are transformed into symbols, LLMs
still generate natural language predictions. For ex-
ample, we adopt the following prompt: {Hypothesis}
{Premise} Do these sentences show entailment?
The answer is {A4/B6}, LLMs still predict the label
as yes and No.

Potential solution: finding the balance of task
information and spurious correlations. In gen-
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eral, removing the elements of spurious correla-
tions directly and urging the LLMs to achieve task
information through in-context learning can miti-
gate shortcut learning. However, it needs numer-
ous examples in the demonstration to provide task
information to maintain comparable performance,
and the performance declines with fewer examples.
Since there is a maximum length constraint for the
inputs of LLMs (nearly 2,048 tokens for most of the
LLMs), more examples in the demonstration mean
longer input for LLMs. It is necessary to find miti-
gation solutions with fewer examples (8 or even 4)
in the demonstration. Based on our experiments,
achieving enough task information through in-
context learning while forgetting spurious cor-
relations is critical to mitigating shortcut learn-
ing.

5. Enhanced Strategies for LLMs to
Learn from In-context Information

In this section, we aim to make LLMs achieve
enough task information through only a few exam-
ples in the demonstration while avoiding adopting
the learned spurious correlations to make predic-
tions. Firstly, we propose two simple yet effective
methods to realize this purpose (§5.1). Then, we
give details of our experimental settings to evaluate
our methods (§5.2). Finally, we present the results
and further analysis (§5.3).

5.1. Methodology

As mentioned above, we aim to provide enough
task information while forgetting the spurious corre-
lations via in-context learning for LLMs. Therefore,
based on the minima prompts with symbolic la-
bels, we aim to provide extra task information from
two different respects, i.e., the manual prompts
and natural language labels. Specifically, we can
replace several examples with manual prompts,
called mixed prompts, or replace several symbolic
labels of the examples in the demonstration with
natural language labels, called mixed labels. How-
ever, we should constrain the proportion and format
of the replaced examples to find the balance be-
tween task information and spurious correlations.

Mixed prompts. To avoid too much task informa-
tion for LLMs to memorize the previous spurious
correlations, we only replace one example with the
manual prompt. Motivated by mixed prompts in
previous works (Kojima et al., 2022; Zhang et al.,
2023), we replace the first example in the demon-
stration and find this effective enough to provide
task information. Specifically, take the natural lan-
guage inference task as an example, given one test

Datasets Train Dev Test Eval. Demon.

HANS 30,000 30,000 - 1,000 29,000
PAWS 11,988 677 - 300 80
SST-2 47,350 873 1,821 1,000 138

Table 4: Data Statistics. Eval. denotes examples
used for evaluation, Demon. denotes candidate
examples used for in-context learning.

Type Prompt Template

Original minimal Sentence 1: <Premise> Sentence 2:
<Hypothesis> Label: {A4/B6}

Mixed labels Sentence 1: <Premise> Sentence 2: <Hypothesis>
Label: {(Yes,True,A4,7X)/(No,False,B6,9Y)}

Mixed prompts

Given following sentence 1 and sentence 2, if they
are entailment, the answer is A4, if they are not

entailment, the answer is B6. Sentence 1:
<Premise> Sentence 2:<Hypothesis> Label: {A4/B6}

Table 5: Prompts format of our methods applied in
in-context learning, Mixed Prompts only present the
first one and others are original minimal prompts.

instance Ii = (xi, yi), k examples in the demon-
stration, the model predicts the label formatted as:

P (yi|xi) = P (yi|N(I1)⊕ I2, ...,⊕Ik ⊕ xi), (2)

where ⊕ denotes the concatenation operation, N(·)
denotes the manual prompt, and we omit the mini-
mal prompt M(·) in other instances (e.g., M(I2)).

Mixed labels. After adopting minimal prompts,
we transform the original labels (e.g., Entailment
and Non-entailment) to several label sets (e.g.,
{Yes, True, A4, 7X } and {No, False, B6, 9Y }), de-
noted as Entailment set and Non-entailment set,
respectively. Then, we replace the original exam-
ple labels in the demonstration with labels from the
corresponding label set in a particular proportion.
The part of natural language labels provides task
information, while the composition of symbolic la-
bels avoids LLMs using spurious correlations and
learns from in-context information. We consider a
prediction to be correct if the label predicted by the
model is in the Entailment set and the ground-truth
label is also Entailment, and vice versa. Notice the
different compositions of label sets may have differ-
ent effects, we will explore this more in Section 5.3.

5.2. Experimental settings
We evaluate the effectiveness of our methods on
three well-studied tasks, i.e., natural language
inference (NLI), sentiment analysis, and para-
phrase identification. As shown in Figure 1, we
study two well-known biases. For lexical-overlap
bias, we adopt HANS (McCoy et al., 2020) and
PAWSQQP (Zhang et al., 2019) datsets. HANS con-
sists of pairs of premise and hypothesis sentences
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Methods ICL w/ 4-shot ICL w/ 8-shot ICL w/ 16-shot ICL w/ 32-shot

Accuracy Decline Accuracy Decline Accuracy Decline Accuracy Decline

HANS

Manual Prompts 72.35 20.30 72.85 23.30 72.35 23.10 72.65 26.70
Minimal Propmts 52.83 \ 59.10 2.20 62.25 2.70 68.90 2.00
Mixed Prompts 73.73 \ 71.10 1.40 70.63 \ 73.30 6.60
Mixed Labels 53.20 \ 69.02 \ 68.30 \ 74.20 \

PAWS

Manual Prompts 79.50 21.66 80.33 15.34 81.17 14.34 79.50 7.00
Minimal Propmts 61.67 \ 66.00 \ 76.00 \ 78.33 0.67
Mixed Prompts 85.33 6.00 85.17 2.34 83.50 1.67 83.33 3.34
Mixed Labels 62.60 \ 76.30 \ 77.20 \ 79.70 \

SST-2

Manual Prompts 87.80 11.80 89.50 10.40 90.55 8.30 92.70 7.20
Minimal Propmts 49.90 25.40 88.55 8.50 95.70 2.40 96.45 1.30
Mixed Prompts 95.65 2.10 96.13 0.85 96.85 1.90 96.60 1.60
Mixed Labels 78.80 \ 90.90 \ 95.20 \ 94.50 \

Table 6: Results of different prompts and our methods. Manual Prompts and Minimal Prompts denote
two baselines as mentioned in the main body. Our methods are based on original minimal prompts with
symbolic labels. Some significant results of our methods are in bold. \ denotes that no decline exists.

whose labels are Entailment and Non-entailment.
PAWSQQP is a set in which the question pairs are
highly overlapping in words. Since the models tend
to exploit lexical overlaps to predict the positive
labels (e.g., Entailment and Duplicate), we com-
pare the performance of different labels. For single-
word bias, we use SST-2 (Socher et al., 2013)
dataset, which is a binary sentiment classification
task based on movie reviews. We first select the ex-
amples containing specific words (e.g., film, movie)
following the previous works (Si et al., 2023). Then,
we split these examples into two sets according to
their labels. We also compare the performance of
different labels to show if these specific words are
related to specific labels.

We adopt ChatGPT for all experiments since
ChatGPT achieves the highest accuracy and
presents the most potential in alleviating the short-
cut learning as shown in Table 2. Due to budget
limitations, i.e., we can only conduct experiments
through Openai Api since ChatGPT has not been
opened publicly, we select part of the examples to
serve as our test sets. We randomly select the ex-
amples with an equal proportion of different labels
for all datasets. Specifically, we keep the same set-
ting as mentioned in Section 3.1 for HANS. Since
PAWS has 486 examples with label Not duplicate
and 191 with label Duplicate, we randomly select
150 examples for each label and 300 examples
in total to keep the number of examples of each
label the same. For SST-2, we first select the spe-
cific words related to the labels, then we choose

examples containing at least two such words from
original test sets, including 1,138 examples in total.
Then, we select 1000 examples in total and keep
the numbers of examples for each label the same
(i.e., the numbers for examples with label Positive
and Negative are both 500). We randomly select
examples from the rest of the set for in-context
learning. Table 4 lists the detailed data statistics.

We conduct multiple experiments for our meth-
ods to avoid the influence of randomness. We
adopt several manual and minimal prompts with dif-
ferent symbolic labels for our baseline settings and
mixed prompts to conduct experiments and report
the average performance. Besides, we adopt differ-
ent label choices and compositions for the mixed
labels strategy and report the average performance.
Table 5 present particle prompts we adopted in our
experiments, and more details can be found in the
previous work (Min et al., 2022).

5.3. Results and Analysis

Main results. We adopt mixed prompts and
mixed labels based on minimal prompts and com-
pare with two baseline settings, i.e., adopting man-
ual prompts with natural language labels and min-
imal prompts with symbolic labels, called manual
baseline and minimal baseline in the following con-
texts, respectively. Table 6 presents all results. We
report the overall accuracy and performance de-
cline of two labels to measure the extent of shortcut
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learning and verify the effectiveness of our methods.
We can find that: (1) Our methods can effectively
mitigate shortcut learning on all datasets. The
performance decline of two labels with our methods
is much smaller than those in manual baselines,
even with 8/16 examples in the demonstration. (2)
Our methods are all better than minimal base-
lines for overall performance. Compared with
manual baselines, our methods perform better in
most testing cases on PAWS and SST-2, and better
with 32 examples in the demonstration on HANS.
Notice researchers may overestimate the perfor-
mance of manual baselines since LLMs are easy
to predict one specific label with spurious corre-
lations. (3) Mixed labels can achieve promis-
ing performance with a few examples, while
mixed prompts can perform well with fewer ex-
amples. Mixed prompts are more effective than
mixed labels. As mentioned in Section 3, manual
prompts can provide more information than natural
language labels through in-context learning. There-
fore, mixed prompts need relatively fewer examples
to be effective than mixed labels.

Can mixed prompts perform better with con-
straints? Following Zhang et al. (2023), we fur-
ther add task-specific constraints, e.g., for HANS
dataset, based on the task information: Given fol-
lowing sentence 1 and sentence 2, if they are entail-
ment, the answer is A4, if they are not entailment,
the answer is B6., we add the following constraint:
Consider the actual semantics and do not focus
on the word overlaps. We compare the results of
original mixed prompts with constraints in Figure 2.
Adopting the mixed prompts method further
with task-specific constraints does not bring
many benefits in mitigating shortcut learning.
Besides, the overall performance even declines
with few examples in the demonstration.

Do different label sets affect the performance?
As mentioned in Section 5.1, we adopt a set of la-
bels to transform the original labels, and the label
sets contain both natural language and symbolic
labels playing different roles during inference. We
study the effects of the different compositions of
the mixed labels. Firstly, we adopt all-natural lan-
guage labels in the labels sets, denoted as natural
language sets, e.g., {Yes, True, Entailment} and
{No, False, Non-entailment}, and symbolic sets,
e.g., {A4, 7X, F8} and {B6, 9Y, D6}. Figure 3
presents the results. Compared with our balanced
sets, adopting natural language sets deepens
shortcut learning, and minimal sets lead to a de-
cline in overall performance. This further verifies
the necessity of mixed labels and natural language
and symbolic labels play different roles.

Figure 2: Results of mixed prompts with and without
constraints.

Figure 3: Results of different label sets.

Figure 4: Results of different composition ratios.

Do different composition ratios affect the per-
formance? We also study the effects of different
composition ratios of the examples in the demon-
stration. We adopt the same proportion of various
labels in our experiments mentioned in Section 5.3.
We further consider two settings, we first fix the
same label sets (e.g., {Yes, A4} and {No, B6} ),
then give different ratios to natural language labels.
Results are shown in Figure 4 and we find that
adopting a high proportion of natural language
labels leads to a more significant performance
decline while adopting a low ratio can be helpful
to the overall performance, e.g., with 16 exam-
ples in the demonstration.

6. Conclusion

In this paper, we first verify that LLMs after in-
struction tuning or RLHF still suffer from shortcut
learning from analytical experiments. Then, we fur-
ther propose a framework for encouraging LLMs
to Forget Spurious correlations and Learn from
In-context information (FSLI) through two simple
yet effective methods. Extensive experiments on



6891

three different tasks demonstrate that FSLI can
effectively mitigate shortcut learning and improve
overall performance.

Considering that shortcut learning can not be
reflected in normal testing scenarios but truly hurts
the generalization and performance in real-world
settings, researchers should consider this problem
and design more detailed and thorough evaluation
methods. In the future, we will explore shortcut
learning for more tasks, such as natural language
generation and image classification.
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