@inproceedings{musil-marecek-2024-exploring,
title = "Exploring Interpretability of Independent Components of Word Embeddings with Automated Word Intruder Test",
author = "Musil, Tom{\'a}{\v{s}} and
Mare{\v{c}}ek, David",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.605",
pages = "6922--6928",
abstract = "Independent Component Analysis (ICA) is an algorithm originally developed for finding separate sources in a mixed signal, such as a recording of multiple people in the same room speaking at the same time. Unlike Principal Component Analysis (PCA), ICA permits the representation of a word as an unstructured set of features, without any particular feature being deemed more significant than the others. In this paper, we used ICA to analyze word embeddings. We have found that ICA can be used to find semantic features of the words and these features can easily be combined to search for words that satisfy the combination. We show that most of the independent components represent such features. To quantify the interpretability of the components, we use the word intruder test, performed both by humans and by large language models. We propose to use the automated version of the word intruder test as a fast and inexpensive way of quantifying vector interpretability without the need for human effort.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="musil-marecek-2024-exploring">
<titleInfo>
<title>Exploring Interpretability of Independent Components of Word Embeddings with Automated Word Intruder Test</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tomáš</namePart>
<namePart type="family">Musil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Mareček</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Independent Component Analysis (ICA) is an algorithm originally developed for finding separate sources in a mixed signal, such as a recording of multiple people in the same room speaking at the same time. Unlike Principal Component Analysis (PCA), ICA permits the representation of a word as an unstructured set of features, without any particular feature being deemed more significant than the others. In this paper, we used ICA to analyze word embeddings. We have found that ICA can be used to find semantic features of the words and these features can easily be combined to search for words that satisfy the combination. We show that most of the independent components represent such features. To quantify the interpretability of the components, we use the word intruder test, performed both by humans and by large language models. We propose to use the automated version of the word intruder test as a fast and inexpensive way of quantifying vector interpretability without the need for human effort.</abstract>
<identifier type="citekey">musil-marecek-2024-exploring</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.605</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>6922</start>
<end>6928</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Interpretability of Independent Components of Word Embeddings with Automated Word Intruder Test
%A Musil, Tomáš
%A Mareček, David
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F musil-marecek-2024-exploring
%X Independent Component Analysis (ICA) is an algorithm originally developed for finding separate sources in a mixed signal, such as a recording of multiple people in the same room speaking at the same time. Unlike Principal Component Analysis (PCA), ICA permits the representation of a word as an unstructured set of features, without any particular feature being deemed more significant than the others. In this paper, we used ICA to analyze word embeddings. We have found that ICA can be used to find semantic features of the words and these features can easily be combined to search for words that satisfy the combination. We show that most of the independent components represent such features. To quantify the interpretability of the components, we use the word intruder test, performed both by humans and by large language models. We propose to use the automated version of the word intruder test as a fast and inexpensive way of quantifying vector interpretability without the need for human effort.
%U https://aclanthology.org/2024.lrec-main.605
%P 6922-6928
Markdown (Informal)
[Exploring Interpretability of Independent Components of Word Embeddings with Automated Word Intruder Test](https://aclanthology.org/2024.lrec-main.605) (Musil & Mareček, LREC-COLING 2024)
ACL