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Abstract
The mainstream approaches view the knowledge graph-to-text (KG-to-text) generation as a sequence-to-sequence
task and fine-tune the pre-trained model (PLM) to generate the target text from the linearized knowledge graph.
However, the linearization of knowledge graphs and the structure of PLMs lead to the loss of a large amount
of graph structure information. Moreover, PLMs lack an explicit graph-text alignment strategy because of the
discrepancy between structural and textual information. To solve these two problems, we propose a synergetic
KG-to-text model with a dual-path encoder, an alignment module, and a guidance module. The dual-path encoder
consists of a graph structure encoder and a text encoder, which can better encode the structure and text information
of the knowledge graph. The alignment module contains a two-layer Transformer block and an MLP block, which
aligns and integrates the information from the dual encoder. The guidance module combines an improved pointer
network and an MLP block to avoid error-generated entities and ensures the fluency and accuracy of the generated
text. Our approach obtains very competitive performance on three benchmark datasets. Our code is available from
https://github.com/IMU-MachineLearningSXD/G2T.
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1. Introduction

Knowledge graph (KG) is a graph-structured
knowledge base to store real-world entities and the
relationships between them. The KG-to-text gen-
eration task (Gardent et al., 2017) aims to gener-
ate high-quality texts that are consistent with input
knowledge graphs, in which the generation model
needs to encode the structure and content of the
knowledge graphs and decode the latent repre-
sentation into the target text effectively. In prac-
tical application scenarios, KG-to-text can further
enhance the capability of natural language pro-
cessing systems to understand better and utilize
knowledge graphs. Figure 1 shows an example
of KG-to-text generation, which includes a knowl-
edge graph, the linearized sequence of the spe-
cific knowledge graph, and the target natural lan-
guage description of such knowledge graph.

Due to the sparseness of the available KG-to-
text datasets, it is challenging for typical text gen-
eration models to learn the alignment relationship
between knowledge graphs and target tokens from
scratch. Concerning the fact that pre-trained lan-
guage models (PLMs) have learned rich linguistic

*First Author and Second Author contribute equally
to this work.

Figure 1: The knowledge graph (subgraph), lin-
earized knowledge graph (subsequence), and cor-
responding text description (clause). The related
parts of the knowledge graph and sequence have
been marked with the same color. The special to-
kens <H>, <R>, and <T> mean the head entity,
relation, and tail entity in the knowledge triples, re-
spectively.

knowledge, contextual information, and semantic
relationships from the pre-training corpus, current
approaches generally transform KG-to-text gener-
ation into a sequence-to-sequence task and ex-
plore the use of PLMs as the generation models for
this tasks. They fine-tune the PLMs on the training
dataset, in which the knowledge graph is linearized
into an input sequence of PLMs.

https://github.com/IMU-MachineLearningSXD/G2T
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Although fine-tuning PLMs has yielded promis-
ing results, there are still several issues. Firstly, ex-
isting methods lose a significant amount of graph
structure information, since they use linearized
knowledge graphs as input. Although some efforts
have modified the encoders of PLMs to incorporate
graph structure information, these methods still
rely on sequence-to-sequence models and can-
not effectively utilize the complete graph structure.
Secondly, PLMs lack explicit graph-text alignment.
Current PLMs typically employ auto-encoder or
auto-regressive methods to learn text alignment
relationships. In KG-to-text generation, the align-
ment between knowledge graphs and texts is of-
ten not a simple one-to-one correspondence but
rather one-to-many or even many-to-many corre-
spondence, making it significantly challenging to
establish accurate alignment between knowledge
graphs and texts.

To address the two issues in KG-to-text gener-
ation, we explore the synergy of the dual-path en-
coder and an alignment module in the proposed
model. For the problem of losing graph structure
information, we design a dual-path encoder, which
comprises a graph encoder based on graph atten-
tion (GAT) and a text encoder based on PLMs. The
dual-path encoder simultaneously takes the knowl-
edge graph and the linearized knowledge graph
as input, encoding both the structural and textual
information of the knowledge graphs. For the prob-
lem of lacking graph and text alignment, we de-
signed an alignment module after the dual-path en-
coder. This module, based on Transformer, aligns
the text and graph information and merges them.
Additionally, we incorporate a guidance module to
ensure the quality of the generated text, which in-
volves an improved pointer network and an MLP
block. We conducted experiments on three pub-
licly available KG-to-text datasets, and the results
demonstrate that our model is highly competitive
among current KG-to-text models.

In summary, our innovation lies in proposing a
synergistic KG-to-text model composed of three
main components:

• Dual-path Encoder In our proposed model,
the dual-path encoder consists of a graph en-
coder based on graph self-attention (GAT),
and a text encoder based on a pre-trained
model (PLM), which can better capture the
structure and text information of the knowl-
edge graph and avoid the problem of structure
information loss.

• Alignment Module The alignment module
based on Transformer allows the text informa-
tion and graph information to be better aligned
and fused.

• Guidance Module The guidance module em-

ploys an improved pointer network to avoid
error-generated entities and ensures the flu-
ency and accuracy of the generated text.

2. Related Work

2.1. KG-to-Text Generation
Since the WebNLG dataset was proposed (Gar-
dent et al., 2017), KG-to-text generation has be-
come a popular task. Early tasks proposed a
neural network-based approach to generate text
from linearized KG triples (Gardent et al., 2017),
but the approach could not model the knowledge
graph’s structural information. To obtain informa-
tion about the structure of knowledge graphs. (1)
Some work focuses on the use of graph neural net-
works (GNNs) or graph transformers that explic-
itly encode graph structure (Velickovic et al., 2017;
Koncel-Kedziorski et al., 2019). (2) Some work
uses non-parallel graphical data and designs un-
supervised training targets as a way to jointly learn
graph-to-text and text-to-graph conversion tasks
(Schmitt et al., 2020; Guo et al., 2020; Jin et al.,
2020). (3) Some work has explored the lineariza-
tion order of knowledge graphs. Most of the work
is based on heuristic graph traversal methods for
KG sequential generation (Flanigan et al., 2016;
Gardent et al., 2017; Ke et al., 2021). (Li et al.,
2021) proposed to linearize the KG using a rela-
tional biased breadth-first search (RBFS) strategy.
However, none of these works consider lexical or-
der information in the ground truth. (Liu et al.,
2022) extracts order information from the ground
truth as supervision and trains an order prediction
module to generate the optimal order that captures
the partial graph structure in the triples.

2.2. KG-to-Text Generation Based on
PLMs

In recent years, PLMs have made remarkable
achievements in natural language processing
tasks (Radford et al., 2018; Devlin et al., 2019;
Lewis et al., 2020; Raffel et al., 2020). After
pre-training with a large-scale corpus, pre-trained
models demonstrate unprecedented generaliza-
tion capabilities to solve relevant downstream
tasks. These models have been adapted and fine-
tuned for the KG-to-text task. (Zhang et al., 2019;
Peters et al., 2019) use fixed entity embeddings
based on TransE (Bordes et al., 2013) or word vec-
tors (Mikolov et al., 2013)directly during the pre-
training process. (Ribeiro et al., 2020) fine-tune
PLMs to leverage the generative power of PLMs.
KEPLER (Wang et al., 2021) and JAKET (Yu et al.,
2022), on the other hand, use a joint pre-trained
graph-to-text representation approach. Specifi-
cally, they encode textual information of entities
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using pre-trained language models and jointly opti-
mize knowledge embedding targets and mask lan-
guage modeling targets. Unlike the joint graph-
text coding approaches considered for natural lan-
guage understanding tasks, (Ke et al., 2021; Co-
las et al., 2022) focus on a joint pre-training ap-
proach for knowledge graph coding and sequence
decoding in KG-to-Text generation tasks. Differ-
ent from them, we add a graph encoder in addition
to the text encoder. The graph encoder captures
structural information directly using the knowledge
graph as input. Our model uses a dual-path en-
coder.

3. Method

3.1. Overview Of The Proposed Model
KG-to-text generation is the process of convert-
ing structured knowledge from the knowledge
graph into natural language. We are given
the knowledge graph G = (V, E), where V =
{e1, e2, . . . , e|V|} is the set of entities containing the
knowledge graph, E = (rij)|V|×|V| is a set contain-
ing the relationships of entities in the graph. The
linearized knowledge graph Glinear = (l1, l2, . . . , lm)
is a sequence of all the triples in the knowledge
graph into a sequence with m tokens. The se-
quence contains the tokens of the components of
the triples (heads, relations, tails). Generate a text
sequence S = (w1, w2, ..., ws), where there are s
words.

This paper proposes a synergetic KG-to-text
model with a dual-path encoder, an alignment
module, and a guidance module. The dual-path
encoder consists of a graph structure encoder
and a text encoder, which can better encode the
structure and text information of the knowledge
graph. The alignment module contains a two-layer
Transformer block and an MLP block, which aligns
and integrates the information from the dual en-
coder. The guidance module combines an im-
proved pointer network and an MLP block to avoid
error-generated entities and assists the decoder in
generating fluent and accurate natural language.

3.2. Dual-path Encoder

3.2.1. Graph Encoder

Different from (Chen et al., 2020; Ke et al., 2021;
Colas et al., 2022) which only use PLM encoders
for linearized knowledge graphs, we use both the
graph encoder and the text encoder for knowledge
graphs. The knowledge graph is used as the input
of the graph encoder. At first, the knowledge graph
is passed into the embedding layer to obtain the
corresponding embedding representation, and the
process is formulated as follows:

hG = EMBgraph(G)

= {h⃗1, h⃗2, . . . , h⃗|V|},
(1)

where h ∈ R|V|, and |V| is the number of entities in
the knowledge graph. h⃗i ∈ Rn and is the feature
vector of each node. n is the dimension of the fea-
ture vector of each node in the knowledge graph.

Then, we pass the embedding encoding to the
graph encoder to obtain the structure representa-
tion of the knowledge graph. The graph encoder
has two parts: (1) the GAT which is used to obtain
the structural information of the knowledge graph,
and (2) the pooling layer which is used to aggre-
gate the features of the representation. The whole
process can be formulated as follows:

hgraph = pooling(GAT(hG))

= {h⃗′
1, h⃗

′
2, . . . , h⃗

′
|V|},

(2)

where h⃗′
i is the feature vector of node i obtained by

weighting all neighboring nodes j of node i, and
the calculation process of Equation 3 can be ex-
pressed in detail as follows:

h⃗′
i = σ

 1

K

K∑
k=1

∑
j∈Ni

αk
ijW

kh⃗j

 , (3)

where K is the number of multi-headed attention,
αij = softmax(Attention(W h⃗i,W h⃗j) is the impor-
tance of all neighbor nodes j of node i to node i,
and W is the trainable parameter, and σ denotes
the activation function.

3.2.2. Text Encoder

Inspired by JointGT (Ke et al., 2021), we use the
BART encoder as the encoder of knowledge triple
sequences. First, we linearize all the triples of
the knowledge graph into a sequence Glinear. This
sequence is treated as normal text and passed
through the embedding layer to obtain the corre-
sponding embedding encoding, and the process
is formulated as follows:

hGlinear = EMBtext(Glinear)

= {h⃗1, h⃗2, . . . , h⃗m},
(4)

where hGlinear ∈ Rm, m is the number of tokens in
Glinear. h⃗i ∈ Rn, h⃗i is the feature vector of the ith
token, and n is the dimension of the feature of each
token in the linearized knowledge graph.

After that, we feed the embedding encoding into
the text encoder to obtain the sequence represen-
tation of the linearized knowledge graph, which is
formulated as follows:

htext = Encodertext(hGlinear)

= {h⃗′
1, h⃗

′
2, . . . , h⃗

′
m},

(5)
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Figure 2: Illustration of the proposed model.

where h⃗′
i ∈ Rn ,⃗h′

i is the text encoder output of
the ith token, and n is the dimension of the hidden
vector.

3.3. Alignment Module
After the dual-path encoder, we obtain the graph
structure representation and the sequence repre-
sentation. Then, we concatenate these two repre-
sentations together and feed them to the alignment
module, as

c = [htext∥λhgraph], (6)
where htext and hgraph are the knowledge graph rep-
resentations from the graph encoder and text en-
coder, respectively. λ is the hyperparameter that
controls the weight of the graph structure informa-
tion. Next, the concatenated representation c is
processed by a two-layer Transformer block. The
computation process is formulated as follows:

Q,K, V = cWQ, cWK , cW V , (7)
where WQ, WK and W V are weight matrices
used to compute the query, key, and value for the
concatenated representation, respectively.

Attention(c) = Softmax
(
Q(K)T√

dk

)
V, (8)

Oi = FN(Attention(c))
= ReLU(Attention(c)W 1 + b1)W 2 + b2,

(9)

where i is the ith attention head, and W 1, W 2,
b1 and b2 are the weights and biases of the feed-
forward block FN in the Transformer.

After the Transformer block, we further adjust
the dimensions and refine the results by passing
them through an MLP block composed of fully con-
nected layers. The process is formulated as fol-
lows:

halign = FC(∥Ki=1Oi)WO. (10)
where FC denotes the MLP block.

3.4. Guidance Module

To avoid error-generated entities and obtain flu-
ent and accurate results, inspired by (Koncel-
Kedziorski et al., 2019; Li et al., 2021), we added a
guidance module in the proposed model. The guid-
ance module contains an improved pointer net-
work (See et al., 2017) and an MLP block com-
posed of fully connected layers. We use the
pointer network to guide the decoder generation,
which requires calculating the probability of copy-
ing words from the PLMs generated vocabulary
and the knowledge graph text:

pi
copy = σ

(
W

(
h⃗i + EMBtext (li)

)
+ bcopy

)
,

(11)
where h⃗i is the ith hidden state in the top layer of
the pre-trained model decoder, li is the ith token in
the linearized knowledge graph, W is the trainable
parameter, and bcopy is the trainable bias.

Through experiments, we found that adding h⃗i

and li together can yield better results than the orig-
inal pointer network that directly collocates h⃗i and
li. Therefore, we modify the vector calculation to
summation when calculating the copying vocabu-
lary probabilities. In addition, we also found in our
experiments that using the text encoder embed-
ding encoding is better than using the dual-path
encoder hidden state. Therefore, we choose the
text encoder embedding encoding as part of the
input for the pointer network.

To ensure the word accuracy of the generated
text, it is necessary to ensure that the generated
vocabulary is derived from the knowledge graph
as much as possible. This process is equivalent to
minimizing the copy probability pi

copy of the gener-
ated tokens wi from the vocabulary list while max-
imizing the copy probability pj

copy of the token ej
copied from the knowledge graph entities. Thus,
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the loss of the point network is

Lcopy =
∑
wi

pi
copy +

∑
ej

(
1− pj

copy

)
, (12)

3.5. Loss Function
The decoder of our model is the BART decoder,
which is a pre-trained language model. During
the model training phase, the primary goal is to
minimize the difference between the ground truth
and the text generated by the decoder. This pro-
cess is equivalent to minimizing the negative log-
likelihood, as follows:

Lgene = −
T∑

i=1

log pgene (wi | w1, . . . , wi−1;G) ,

(13)
where pgene is the generation probability of the pre-
trained model.

In the proposed model, the BART decoder aims
to generate target text, while the guidance mod-
ule guarantees the lexical accuracy of the output.
Therefore, the total loss function includes the text
generation loss and the pointer network loss:

Ltotal = Lgene + α1Lcopy. (14)

where α1 is a hyper-parameter that is used to trade
off these two loss functions.

4. Experiment

4.1. Dataset
In this paper, we used PathQuestions (Zhou et al.,
2018) and WebNLG (Gardent et al., 2017) as
benchmark datasets to evaluate the performance
of our model. The size of the dataset is shown in
Table 1.

Dataset Entities Relations Train Size Test Size
PathQuestions 7250 378 9793 1000
WEBNLG(U) 3114 373 34352 4224
WEBNLG(C) 3129 373 34536 4148

Table 1: The details of the datasets

PathQuestions is constructed using two sub-
sets of Freebase as a knowledge base for the multi-
relational question-and-answer task. Each ques-
tion contains two or three triples per question set
and their corresponding textual description. Our
work uses the same preprocessing steps and data
partitioning approach as in existing work.

WEBNLG is a collection of triples describing
facts (entities and relations between them) ex-
tracted from DBpedia and the corresponding nat-
ural language text, covering about 450 different
DBpedia attributes. Each set of triples contains

a subject, a point, and an object describing a fact
(entity and the relationship between them). Each
question in this corpus contains up to 7 triples and
one or more corresponding reference text descrip-
tions. It is the most widely used dataset for knowl-
edge graph generation text tasks. We partition the
dataset into WebNLG(U) and WebNLG(C) using
the same processing steps and the same data par-
titioning as (Ke et al., 2021).

4.2. Baseline
We used five models of KG-to-Text generation as
baselines.

• BART-Base (Lewis et al., 2020) linearizes
the knowledge graph into a sequence of
triples and uses BART-Base to generate the
text.

• T5-Base (Raffel et al., 2020) linearizes the
knowledge graph into a ternary sequence and
uses T5-Base to generate the text.

• KGPT (Chen et al., 2020) is a pre-trained
model based on the knowledge graph for data-
to-text generation. This model can be fine-
tuned on various data-to-text generation tasks
to generate task-specific text.

• JointGT (BART) (Ke et al., 2021) is a pre-
training model based on joint representation
learning of knowledge graphs and text se-
quences for the KG-to-text task on the KG-
TEXT dataset. It uses BART as the base
model and adds a structure-aware language
aggregation module.

• GAP (Colas et al., 2022) is also a pre-trained
model for KG-to-text tasks based on joint rep-
resentation learning of knowledge graphs and
text sequences. It is the most advanced
model on the WebNLG(U) dataset. It also
improves on the encoder of the pre-trained
model

4.3. Evaluation Metric
Following (Gardent et al., 2017; Colas et al., 2022),
we adopt BLEU(Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005), and ROUGE-L (Lin,
2004) as the evaluation metrics. Since BLEU is
more concerned with the accuracy and smooth-
ness of the generated results, the BLEU score is
also of more significant concern to us.

4.4. Implementation Detail
In the graph encoder, we set the number of layers
to 1 and the hidden layer dimension to 768. In the
text encoder, we use the improved BART encoder
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proposed by JointGT(Ke et al., 2021), which is con-
structed by adding a graph structure aggregation
module to the BART encoder. In the alignment
module, we use a two-layer Transformer block with
multi-head attention. The maximum length of the
linearized input graph is 256, and the maximum
length of the output text sequence is 128. We use
Adam (Kingma and Ba, 2015) as the optimizer and
set the learning rate to 2e − 5. The preheating ra-
tio is 0.1. All parameters are optimized under the
supervision of Ltotal. More details can be found in
Table 2.

Hyperparameter PathQuestions WEBNLG(C) WEBNLG(U)
Learning Rate 2e-5 2e-5 2e-5
Warmup Steps 300 0 1600

Beam Size 5 5 5
Length Penalty 1.0 1.0 1.0

Num Nodes 50 50 50
Num Relations 60 60 60

Embedding 768 768 768
λ 0.1 0.1 0.1
α1 0.6 0.6 0.43

Batch Size 32 48 48

Table 2: Hyperparameter details

5. Result and Discussion

5.1. Main Results
To evaluate the effectiveness of the proposed
approach, we compare it with the baselines on
the above-mentioned three benchmark datasets,
including PathQuestions, WebNLG(C), and
WebNLG(U). The results are shown in Table 3.
On these three datasets, our model outperforms
the baselines overall. On the PathQuestions
dataset, our model improves the BLEU score by
3.46% and 8.25% over the current state-of-the-art
pre-trained models Bart and T5, respectively, and
enhances the ROUGE-L score by 1.86% and
3.04%, respectively. Compared with JointGT, our
model improves the BLEU and Rouge-L scores by
1.31% and 0.75%, respectively. This indicates the
superiority of the proposed model in this paper.
According to our analysis, this is because our
proposed dual-path encoder not only inherits the
capability of the pre-trained model in text encoding
but also encodes the graph structure information
effectively. Meanwhile, the alignment module
can align and fuse the graph representation and
text representation from the dual-path encoder
effectively. In addition, the proposed guidance
module can avoid error-generated entities and
ensure the fluency and accuracy of the generated
text. On the other two datasets, we achieved the
same significant results.

While KGPT and JointGT rely on additional pre-
training tasks to encode the graph structure infor-
mation, our approach adapts the graph structure

by a dual-path encoder and requires no additional
pre-training. This is another advantage of our pro-
posed model.

5.2. Ablation Study

5.2.1. Modules Ablation

To evaluate the impact of each module on the per-
formance of the proposed model, we conducted
an ablation experiment on PathQuestions. We ex-
perimented with various combinations of the three
modules to analyze their impacts. Table 4 shows
the results.

As shown in the 2rd row in Table 4, when only
the text encoder is used in the encoding stage,
adding the guidance module can significantly im-
prove the quality of the generated text. This is
because the improved pointer network in the guid-
ance module can avoid error-generated entities
and out-of-distribution vocabulary and improve the
fluency and accuracy of the generated text. How-
ever, due to the lack of a graph encoder, the knowl-
edge of graph structure information is not fully ac-
cessible, and there is still room for improvement.

As shown in 3rd row in Table 4, when we add the
graph encoder and eliminate the guidance mod-
ule, the graph structure can be adequately cap-
tured and encoded, but the generation of improper
nouns and out-of-distribution vocabulary leads to
a particular gap between the generated text and
the target result.

As shown in the 4th row in Table 4, when the
dual-path encoder (consisting of the text encoder
and the graph encoder) and the alignment module
are used, the model can fully capture the knowl-
edge graph structure information. There is also an
improvement than the 3rd row in Table 4 on the
quality of the generated text.

When the alignment module is not used (in 5th
row in Table 4), the output of the dual-path encoder
is directly summed up as the input of the decoder.
In this case, the graph structure information and
text information from the dual-path encoder can-
not be well aligned and utilized. Compared the 5th
row to the 6th in Table 4, we found that adding an
alignment module can improve the performance ef-
fectively since the alignment module can make the
representation from the dual-path encoder better
fused and aligned.

In summary, the three modules proposed in this
paper are complementary to each other. The pro-
posed model can achieve excellent results.

5.2.2. Alignment Module Layers

To test the impact of the number of transformer
layers in the alignment module, we experiment on
PathQuestions. We set the number of layers of
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PathQuestions WEBNLG(C) WEBNLG(U)
B-4 M R-L B-4 M R-L B-4 M R-L

NPT† 61.48 44.57 77.72 48.00 36.00 65.00 61.00 42.00 71.00
KGPT† - - - - - - 64.11 46.30 74.57
BART† 63.74 47.23 77.76 56.65 44.51 70.94 64.55 46.51 75.13

T5† 58.95 44.72 76.58 58.66 46.04 73.06 64.42 46.58 74.77
JointGT† 65.89 48.25 78.87 58.55 45.01 72.31 65.92 47.15 76.10

GAP‡ 66.18 48.12 76.38 - - - 66.20 46.77 76.36
Ours 67.20 48.56 79.62 59.33 44.92 73.14 66.41 47.38 76.18

Table 3: Performance comparison on PathQuestions, WebNLG(U) and webNLG(C). The symbols † and
‡ indicate that the data are from JointGT(Ke et al., 2021) and GAP(Colas et al., 2022), respectively. Bold
and underline fonts indicate the best-performing and second-best-performing results, respectively. We
also used the abbreviations of the evaluation metrics: B-4 is BLEU-4, M is METEOR, and R-L is ROUGE-
L.

Dual-path Encoder Alignment Module Guidance Module BLEU-4 METEOR ROUGE-L
only text encoder × × 65.89 48.25 78.87
only text encoder × � 66.88 48.49 79.51� × × 66.01 48.15 78.81� � × 66.64 48.35 79.23� × � 66.25 48.33 79.02� � � 67.20 48.56 79.62

Table 4: Ablation study on PathQuestions

Figure 3: The impact of the transformer layers in
the alignment module on PathQuestions.

the alignment module N ∈ [0, 3]. The results are
shown in Figure 3.

From Figure 3, we found that when the number
of layers is 2, the proposed model achieves the
best results, improving 1.31% on the BLEU score.
The point with 0 layer represents the model with-
out the alignment module. In such a case, the
performance is the worst. The performance with
a 3-layer transformer block is worse than that with
a 2-layer transformer block since increasing the
transformer layers will lead to overfitting. In the
proposed model, a 2-layer transformer block in the
alignment module is adequate to align and fuse the
representations from the dual-path encoder.

Figure 4: The effect of λ values on model perfor-
mance on PathQuestions.

5.2.3. Graph Encoder Weights

We use a graph encoder to capture the structure
information of knowledge graphs. To explore the
impact of the weight coefficient λ in Eq. 8 in the
alignment module, we conduct experiments on
PathQuestions. We set λ ∈ {0.05, 0.1, 0.15, 0.2}.
Figure 4 shows the impact of λ.

As shown in Figure 4, the model achieves the
best results when λ = 0.1. Figure 4 also indicates
that the structural information affects the quality of
generation.
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Figure 5: Visualization of the attention in the align-
ment module.

5.3. Attention in Alignment Module
In the alignment module, the attention represents
the correlations between elements in the triples in
knowledge graphs. We obtain the attention in the
alignment module for the example in Figure 1 and
visualize it in Figure 5. The attention between the
elements in the same triples shows higher atten-
tion values than that between the elements not ap-
pearing in any same triples. This suggests that
our model effectively captures the attention infor-
mation in the knowledge graphs.

5.4. Case Study
To further show the effectiveness of the proposed
approach, we list some examples of the generated
texts on the WebNLG test set in Table 5. We can
find that the generated texts are almost semanti-
cally equivalent to the reference texts. Since there
are different ways to express the same seman-
tics, the automatic evaluation metrics may give low
scores to the results with the same semantics but
different expressions.

6. Conclusion

In this paper, we propose a synergistic model
of the dual-path encoder, alignment module, and
guidance module for KG-to-text generation. The
proposed model obtains a more competitive per-
formance than the baselines. Another advantage
of the proposed model is that it adapts the graph
structure by the dual-path encoder and requires
no additional pre-training. Through extensive ex-
periments, we found that the dual-path encoder
can encode the knowledge graph more effectively,
and introducing a graph encoder can avoid the
miss of structure information in the KG-to-text task.

Meanwhile, using an alignment module is better
than directly concatenating the graph representa-
tion and text representation for model performance.
In addition, introducing the guidance module can
avoid error-generated entities and ensure the flu-
ency and accuracy of the generated text.
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