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Abstract

Eye movement features are considered to be direct signals reflecting human attention distribution with a low cost
to obtain, inspiring researchers to augment language models with eye-tracking (ET) data. In this study, we select
first fixation duration (FFD) and total reading time (TRT) as the cognitive signals to guide Transformer attention in
question-answering (QA) tasks. We design three different ET attention masks based on the two features, either
collected from human reading events or generated by a gaze-predicting model. We augment BERT and ALBERT
models with attention masks structured based on the ET data. We find that augmenting a model with ET data carries
linguistic features complementing the information captured by the model. It improves the models’ performance but
compromises the stability. Different Transformer models benefit from different types of ET attention masks, while
ALBERT performs better than BERT. Moreover, ET data collected from real-life reading events has better model
augmenting ability than the model-predicted data.

Keywords: Eye-tracking augmented, Transformer, attention, question answering

1. Introductionn

Language inference tasks (NLI) have been de-
signed to examine whether models can compre-
hend language and extract desired information,
while language model (LM) performance contin-
uously approaches human performance in these
tasks according to the past decades of natural lan-
guage processing (NLP) studies. From recurrent
neural networks (RNN) models to Transformers
(Devlin et al., 2019; Lan et al., 2019; Li and Rudz-
icz, 2021), progress has been achieved in making
models ‘think’. Other than scaling the models, re-
searchers have also attempted to seek augmenting
methods based on human attention.

Reading is an essential event in human language
processing, and eye movement features reflect
human attention activity during the event(Rayner,
2009). Eye-tracking (ET) data is the eye movement
information captured during reading events along
with time and positional information; researchers
explore human attention distribution based on ET
data (Bicknell et al., 2008; Snell and Theeuwes,
2020), and adapt it to inspire the development of
LMs (Hollenstein and Zhang, 2019; Hollenstein
et al., 2019a; Zhao et al., 2023). As a direct in-
dicator of human attention in reading activities, ET
data have been actively applied in enhancing LMs
for downstream NLP tasks, such as named entity
recognition and sentiment analysis (Barrett et al.,
2018; Barrett and Hollenstein, 2020; Hollenstein
and Zhang, 2019), and positive results have been
achieved.

Most of the ET data augmenting research was
conducted based on RNN models over decades,

yet few attempts have been made to introduce this
cognitive signal to Transformer models. Moreover,
current cognitive-related studies focus mostly on
classification and annotation rather than reading
comprehension tasks. Evidence has shown that
‘dwell times of human eye movements were strongly
correlated with the attention patterns occurring in
the early layers of pre-trained Transformers such as
BERT’ (Bensemann et al., 2022), therefore, great
potential is expected in guiding Transformer atten-
tion with ET data for downstream tasks.

In this paper, ET data is directly introduced into
Transformer attention blocks during the fine-tuning
process to see if human attention can augment
model performance in reading-based question-
answering (QA) tasks. Specifically, our experiment
examines whether both the ET data collected from
human reading events and generated by a gaze-
predicting model can enhance Transformer perfor-
mance equally in QA tasks.

Contribution: In this study, we reveal the follow-
ing achievements:

• Due to different hidden representative transfer-
ring mechanisms, the ALBERT model benefits
more from adding ET attention masks than
BERT. Specifically, augmented ET data can
better enhance ALBERT’s performance, while
weakened data fits BERT better.

• Compared with real-life ET data, the linguistic
features contained in model-predict ET data
are relatively limited. While models benefit
from the former, the advantage brought by the
latter is not significant.
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• Introducing eye-movement features containing
either low-level or high-level linguistic features
to a layer carrying the corresponding level of
information enhances the attention distribution
on that layer. While introducing ET data im-
proves a model’s performance scores, it may
impact the model’s stability.

The source code is available online1.

2. Related Work

This research focuses on augmenting LMs with ET
data, lying at the intersection of NLP and compu-
tational cognitive science. Below we outline the
related works in the corresponding fields.

2.1. Language Models in Language
Inference Tasks

NLI tasks are NLP tasks stated in natural language
and closely relate to lexical, semantic, and prag-
matic analysis (MacCartney, 2009). Early inference
tasks focused mostly on annotation and ground
truth extraction like part-of-speech tagging (Marcus
et al., 1993) and named entity recognition (Grish-
man and Sundheim, 1996). Later, advanced infer-
ence tasks required an understanding of external
linguistic knowledge, such as word meaning, gram-
mar, syntax, semantics, and discourse structure
for the detection of the relation between words and
sentences. Benchmarks of specific tasks were es-
tablished to standard the examination of model per-
formance, among which QA benchmarks, request-
ing abilities to disambiguate the text and extract the
necessary information to solve the puzzle, became
one of the most well-established branches (Storks
et al., 2019) with diverse forms (Lai et al., 2017; Hill
et al., 2016; Rajpurkar et al., 2016; Rayner et al.,
2006; Choi et al., 2018; Christmann et al., 2019;
Thomas et al., 2017).

Transformer models are a popular type of model
applied in multiple machine learning studies, with
BERT (Devlin et al., 2019), ALBERT (Lan et al.,
2019), RoBERTa (Li and Rudzicz, 2021), etc. as
the most outstanding representatives. Compared
with RNN models, Transformer models conquer the
limitation of sequential processing, generate struc-
tural representation to reflect the syntax tree (Hen-
derson, 2020) and establish strong ability in parallel
computation (Chaudhari et al., 2021). They encode
context information in the hidden representatives,
with the self-attention mechanism unifying the cross
attention between two sentences (Shi et al., 2021)
and providing contextual information in the input
sequence in the map (Yun et al., 2019). These

1https://github.com/SodaFont/
EyetrackingAugmentedTransformers

powerful models have advanced multiple state-of-
the-art results on token-level and sentence-level
NLP tasks, including GLUE (Wang et al., 2018),
MNLI (Williams et al., 2018), SQuAD (Rajpurkar
et al., 2016), etc., surpassing many previous task-
specific models.

With expectations of how self-attention controls
the performance of BERT, researchers pursued
customizing the structure of self-attention to further
boost its potential. Customized attention blocks
in Transformers have been developed, improving
the model with either its performance or its training
effectiveness (Cui et al., 2019; Guo et al., 2019; Li
et al., 2019; Shi et al., 2021).

2.2. Eye-Tracking in Natural Language
Processing

Eye movements are signals reflecting brain activi-
ties, and can be directly observed and obtained; it
provides insights into the cognitive processing of
language processing with high temporal resolution.
In reading comprehensive studies, ET features re-
lated to fixation, saccade, gaze, and reading time
are frequently adopted to explore human cognitive
load. It has been demonstrated that eye move-
ments can be sensitive to text features from lexi-
cal to discourse level in reading events, including
word frequency (Inhoff and Rayner, 1986), syn-
tactic ambiguity (Frazier and Rayner, 1987), text
readability (Rayner et al., 2006), etc. Early mea-
sures collected at the initial stage of language pro-
cessing are related to based properties recognition,
and late measures reflected processing strategies
countering with processing difficulty (Conklin and
Pellicer-Sánchez, 2016). Detailedly, early-stage
features such as first fixations duration (FFD) have
been found to possess a correlation with mostly
basic lexical (Henderson and Ferreira, 1990; Inhoff
and Rayner, 1986; Rayner and Frazier, 1987) and
possibly syntactic factors (Ferreira and Henderson,
1990; Rayner and Frazier, 1987), while late-stage
features like total reading time (TRT) has been in-
spected as an indicator of word density, sophistica-
tion, and readability (Mishra et al., 2018).

To promote the utility of ET data in language
processing research, corpora with ET features
have been established. The material of the text
carrier would not affect human reading behaviour
(Skaramagkas et al., 2021), therefore, ET data
collected based on any reliable media should be
available for universal utility. Corpora with ET data
such as DUNDEE (Kennedy et al., 2003), GECO
(Cop et al., 2017), PROVO (Luke and Christian-
son, 2018), ZuCO (Hollenstein et al., 2018, 2020),
etc. were constructed, based on which experi-
ments have been conducted for a various range of
purposes like language asymmetry (Demberg and

https://github.com/SodaFont/EyetrackingAugmentedTransformers
https://github.com/SodaFont/EyetrackingAugmentedTransformers
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Keller, 2008), second language acquisition (God-
froid, 2019; Winke et al., 2013), reading behaviour
of local coherences (Bicknell et al., 2008), syntactic
factors’ influence on reading patterns level (Snell
and Theeuwes, 2020), etc. These corpora are also
applied in machine learning studies. On the one
hand, data has been adopted in augmenting model
performance in downstream tasks (Hollenstein and
Zhang, 2019; Hollenstein et al., 2019a; Zhao et al.,
2023; Meister et al., 2021; Bakarov, 2018; Hollen-
stein et al., 2019b), and ‘surprising robustness’ has
been spotted (Goodkind and Bicknell, 2018); on
the other hand, models combined with ET data to
simulate human reading behaviour have been pro-
posed (Malmaud et al., 2020; Sood et al., 2020;
Reichle et al., 2003) to interpret LMs (Hollenstein
et al., 2021; Eberle et al., 2022).

Due to the scale limitation of existing ET data, re-
searchers explored machine-learning approaches
to predict human reading patterns. Based on the
standardized datasets (Hollenstein et al., 2018,
2020), a diversity of gaze-predicting models have
been established (Hollenstein et al., 2021). The
accurate modelling of ET features should be crucial
to enhance the understanding of language process-
ing.

3. Methodology

The number of corpora with ET features collected
is far from sufficient in real-case studies, and it can
hardly ensure that future data adopted for LM stud-
ies will be ready-prepared with desired ET features.
Therefore, we design two parts of experiments: (1)
whether the ET data collected from real-life read-
ing events can augment model performance in QA
tasks, (2) whether model-predicted ET data can
augment model performance in the same type of
task, so as to assess the generalization ability of
the augmenting methods.

3.1. Language Model and Setup

We choose BERT-base-cased2 and ALBERT-base-
v23 in the experiments. For the BERT model, since
each layer adopts independent parameters, the
information passing through the neural network
changes drastically as it moves towards the deeper
layers, enabling it to infer higher-level linguistic in-
formation (Puccetti et al., 2021). ALBERT, sharing
parameters between layers, has a much smoother
information transition flow compared with BERT
(Lan et al., 2019), thus the output of its attention

2https://huggingface.co/google-bert/
bert-base-cased

3https://huggingface.co/albert/
albert-base-v2

block is more likely to hold the low-level linguistic
information.

3.2. Experiment Tasks
The form of the QA task in this experiment is to
extract the answer span from the context. The
experiment is composed of two parts (Figure 1):

• Task 1 Examining whether ET data collected
from real-life reading events can enhance
Transformer model performance in QA tasks.
We combine DUNDEE (Kennedy et al., 2003),
the English-reading part of GECO (Cop et al.,
2017), PROVO (Luke and Christianson, 2018),
and the task-free reading part of ZuCO (Hollen-
stein et al., 2018, 2020) to compose a larger
ET dataset, and segment each context into a
trial with less than 300 words. For each trial,
QA pairs are then generated by the Quest-
gen model 4, and conduct manual cleaning
to remove trials with QA pairs semantically or
logically making no sense, or questions not
matching to an identical answer. To ensure
every token of the input data is covered by
an ET data point, ET data for question texts
is predicted by the gaze-predicting model de-
veloped by team TorontoCL (Li and Rudzicz,
2021). The final dataset with 2051 total trials
is split into training and test sets at the ratio of
4:1.

• Task 2 Examining whether ET data predicted
by the model can augment Transformer perfor-
mance in QA tasks. We choose SQuAD v1.0
(Rajpurkar et al., 2016) for the second task,
which contains abundant QA tasks covering
a diversity of topics. For a rigorous horizon-
tal comparison with task 1, SQuAD v2.0 with
unanswerable questions is excluded. Addi-
tionally, there are abundant trials in SQuAD
spotting with a mixture of different languages,
some also contain non-Latin characters, chal-
lenging both the gaze-predicting model and
the QA model to counter with uncleaned multi-
lingual data. The ET features for tokens in both
contexts and questions are predicted by the
same gaze-predicting model in task 1.

3.3. Eye-Tracking Attention Mask
We choose TRT and FFD for ET attention mask
structuring:

• TRT is frequently regarded as the index of
total cognitive load (Frank and Hoeks, 2019)
- longer reading time marks higher cognitive

4https://github.com/ramsrigouthamg/
Questgen.ai

https://huggingface.co/google-bert/bert-base-cased
https://huggingface.co/google-bert/bert-base-cased
https://huggingface.co/albert/albert-base-v2
https://huggingface.co/albert/albert-base-v2
https://github.com/ramsrigouthamg/Questgen.ai
https://github.com/ramsrigouthamg/Questgen.ai
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Figure 1: The structure of the two parts of the experiment. Task 1 (top) is based on corpora with real-life
collected eye-tracking data, and task 2 (bottom) is based on SQuAD v1.0 benchmark with model-predicted
gaze data.

load spent during language processing, there-
fore is positively correlated with text process-
ing difficulty (Tanenhaus et al., 2000). It is
considered closely related to the late stage
of text processing, such as information re-
analysis, discourse integration, etc. (Barrett,
2018). While Transformers’ embedding in-
cludes mostly lexical-level information (Devlin
et al., 2019), TRT introduces extra informa-
tion from syntactic and semantic levels and
may guide models on capturing correspond-
ing information, thus assisting the analysis of
sophisticated cases and enhancing model per-
formance in difficult tasks such as ambiguous
phrase parsing (Barrett, 2018).

• FFD conveys an enormous amount of infor-
mation in language processing (Henderson,
1993). Collected at the early stage of the read-
ing event, it is considered to provide the most
accurate information on object identification
processes (Henderson et al., 1987) based on
low-level features like word frequency, word
length, word position, etc. (Barrett, 2018), also
positively correlated to word surprisal (Vainio
et al., 2009). FFD may slightly carry informa-
tion at syntactic (Barrett and Søgaard, 2015;
Demberg and Keller, 2008) and even seman-
tic level (Barrett, 2018) as well, for it is sig-
nificantly influenced by the properties of the
previous and upcoming words of the currently
fixated word (Kliegl et al., 2006). The features
reflected by FFD highly correspond to BERT’s
embedding, thus the attention mask structured
based on it is expected to resonate with Trans-

former attention.

Figure 2: The eye-tracking attention mask is added
to the attention score in the self-attention block.

Inspired by Shi’s study (2021), we add the out-
source attention mask to the attention score in the
self-attention blocks. Figure 2 shows the mecha-
nism of the modified self-attention module, where
the ET attention mask applied is marked out. Three
different ET attention masks are designed:

• Standard mask standardizes the original ET
data sequence and keeps the ratio of differ-
ences between elements.

• Weakened mask is derived from the standard
mask, with every element in the sequence mi-
nus 1, and goes through the exponential calcu-
lation. The difference ratio between elements
is narrowed.
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Mask scale Accuracy F1-Score
10e0 2.433 3.326
10e− 1 3.650 4.965
10e− 2 52.311 55.161
10e− 3 77.625 79.087
10e− 4 81.265* 82.870*
10e− 5 74.915 76.300

Table 1: Pilot experiment results with different nu-
merical scales of eye-tracking masks applied on
ALBERT model.

• Augmented mask applies the softmax func-
tion on the standard mask to polarise the ele-
ments within the range from 0 to 1.

Table 1 shows the result of a pilot experiment for
determining the proper scale of the ET attention
mask to determine the scale of the attention masks.

3.4. Evaluation
We apply the following indicators to evaluate model
performance:

• Accuracy is the percentage of exactly match
answers.

• F1-score is a robust index calculated based
on precision and recall rate.

• Recall aims to show how well a model per-
forms in data retrieval to generate the match-
ing answer, and can also be regarded as an
indicator of sufficiency. It indicates the sensitiv-
ity of a model towards the rationales including
answers, yet oversensitivity can result in the
model capturing too much useless information,
leading to a high rate of answer invalidity.

• Comprehensiveness checked whether the
model selected rationale is sufficient to make
a correct prediction. It is calculated as:

Comprehensiveness =
∑ ni

N

where ni is whether the ground truth answer
is comprehensively included in the model ra-
tionale (1 for true and 0 for false), and N is the
total number of trials. Similarly, higher compre-
hensiveness scores do not equal better perfor-
mance.

4. Results

Tables 2, 3, 4, and 5 present comparisons of
the performance between the type of augmented
models with the highest average accuracy and the
corresponding vanilla model in each task, respec-
tively. The result scores are the average of 5 runs
in each group of experiments.

When introducing real-life ET data into model at-
tention, the ALBERT model combined with the aug-
mented mask structured based on FFD achieves
the best result (Table 2). While the model has a
better chance of achieving higher best scores, the
standard deviation in accuracy exceeded the orig-
inal. For sufficiency and comprehensiveness es-
pecially, the model is improved greatly in both its
performance scores and corresponding stability.
However, the introduction of ET attention masks
brings much instability to the BERT model in every
aspect. In contrast, the best performance of the
model guided by the weakened TRT mask improves
slightly (Table 3).

With either mask structured based on model-
predicted ET data, the benefit is comparatively not
satisfying (Table 4 and 5). Though the stability of
both ALBERT and BERT increases, the improve-
ment in each average or best performance score
is relatively slight, or even become worse.

To assist result analysis, we visualize the atten-
tion of the fine-tuned models with the best accura-
cies to inspect the impact of different ET attention
masks bringing to models’ attention distribution.

5. Discussion

In a series of experiments introducing different ET
features into Transformer models for QA tasks, we
inspect significant improvement with certain com-
binations. Variables affecting the results are dis-
cussed in detail.

5.1. ALBERT vs. BERT
We can easily spot that the vanilla ALBERT model
has already outperformed the vanilla BERT with
a much shorter training time, indicating that the
former has higher confidence in QA tasks based
on reading comprehension. Introducing ET masks
expands the gap, especially when adopting real-
life collected data. ALBERT model is greatly im-
proved by its sensitiveness towards valid rationales,
and also performs more precisely, while the BERT
model does not benefit much from the extra guid-
ance. This may closely relate to the structure of
models. As has been mentioned, the attention
block of BERT is better at inferring high-level lin-
guistic information, while the one of ALBERT is
more likely to hold the low-level information input
to the attention module initially, ergo additional eye-
movement signals may interfere with BERT’s rea-
soning performance but compensate for the lin-
guistic information deficiencies on ALBERT’s deep
layers.

Figures 3 and 4 show the attention heat maps
of ALBERT and BERT on certain heads. We can
observe that the attention distribution is enhanced
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2*Index Non-masked model Masked model
Average Std. Best Average Std. Best

accuracy 81.606 1.248 83.212 82.920 1.599 84.915
f1-score 82.733 1.361 84.324 84.471 1.313 86.021
recall 80.408 3.830 85.629 84.860 0.972 85.972
comprehensiveness 79.684 4.035 85.158 84.380 0.979 85.401

Table 2: Comparison between non-masked and augmented real-life first fixation duration data masked
ALBERT

2*Index Non-masked model Masked model
Average Std. Best Average Std. Best

accuracy 77.859 0.988 78.589 78.735 2.083 80.779
f1-score 79.423 1.200 80.342 80.610 2.328 82.993
recall 79.594 1.106 80.848 81.639 2.717 84.637
comprehensiveness 78.929 1.123 80.292 81.071 2.640 84.185

Table 3: Comparison between non-masked and weakened real-life total reading time data masked BERT

2*Index Non-masked model Masked model
Average Std. Best Average Std. Best

accuracy 82.117 1.991 83.500 82.479 1.865 83.614
f1-score 89.661 1.298 90.580 89.800 1.170 90.580
recall 82.081 0.818 83.214 82.236 0.873 83.081
comprehensiveness 72.677 0.876 74.144 73.118 0.740 73.851

Table 4: Comparison between non-masked and standard model-predicted first fixation duration data
masked ALBERT

2*Index Non-masked model Masked model
Average Std. Best Average Std. Best

accuracy 79.712 1.350 81.220 80.123 1.141 81.088
f1-score 87.615 0.777 88.527 87.912 0.623 88.456
recall 81.060 0.393 81.601 81.167 0.343 81.585
comprehensiveness 72.297 0.160 72.479 72.392 0.290 72.753

Table 5: Comparison between non-masked and augmented model-predicted total reading time data
masked BERT

on deep layers. Specifically, TRT, as a late-stage
feature reflecting high-level linguistic signals, such
as semantic or even pragmatic information, assists
in making up for the little growth of linguistic in-
formation in ALBERT’s attention block. However,
BERT can originally infer higher-level linguistic fea-
tures through its network - interdependence be-
tween cross-layer units tended to grow, eventually
contributing to the structuring of the global syn-
tax tree (Puccetti et al., 2021) - and information
introduced extra messages cause a disturbance
(Figure 5).

We also notice that the weakened masks suit
BERT better, while augmented masks suit ALBERT
models better. Hence, when the augmentation of
data strengthens its ability to enhance ALBERT
performance, the out-source mask with decreased
information fits BERT better for it interfering with the
model attention less at the early stage. However,
a positive influence appears indeed while applying

ET data to BERT models. Therefore, the concern
for BERT should be what the proper ET data inten-
sity is to reach a balance where BERT can benefit
most with the least distractions.

5.2. Real-Life Data vs. Model-Predicted
Data

Evidently, real-life ET data shows a much stronger
potential in boosting model performance in QA
tasks compared with model-predicted data. This
can be credited to a high alignment of the charac-
ters of both the Transformer’s representatives and
ET features.

Firstly, the astonishing and long-lasting success
of Transformer models achieved in NLI tasks is
closely related to the structure of its deep learning
architecture built to present the text. Unlike the
sequential representative in RNN models, Trans-
formers provides a structural representation to re-
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Figure 3: Comparison between the attention maps
of non-masked ALBERT and the one masked by
augmented real-life total reading time data on layer
#7 and #11.

Figure 4: Comparison between the attention maps
of non-masked BERT and the one masked by weak-
ened real-life total reading time data on layer #11.

flect the syntax tree (Henderson, 2020), while the
ET mask also presents a structural attention dis-
tribution instead of a sequential one. Since the
tree structure Transformers built purely relies on
its attention mechanism (Jawahar et al., 2019), it
is reasonable that introducing ET attention signals
can benefit its structuring process. Secondly, fea-
tures like sentence and token length, as well as
the relation link between tokens, are captured by
the Transformers as the basic linguistic feature and
help build the tree structure inside the model; mean-
while, these linguistic features strongly correlate

Figure 5: Comparison between the attention maps
of non-masked BERT and the one masked by weak-
ened real-life first fixation duration data on deep
layer #12.

with ET features, which are also extra sensitive to
the tokens with close relation but with long distance
between (Sarti et al., 2021), so the ET data assists
in determining the nodes of the parse tree among
tokens. Apart from the alignment, introducing ET
data also introduces supplementary information
contributing to disambiguation (Duffy et al., 1988)
at the early stage of models’ reading comprehen-
sion.

However, when applying ET data generated by
the gaze-predicting model, little improvement is
found between the vanilla model and the aug-
mented ones. In many cases, it even fails to out-
perform the original model. Indeed, multiple re-
searches have proved that adopting fewer linguistic
features as the variable for predicting ET features
improves the accuracy of the predicting models
(Bestgen, 2021), yet it can result in less linguistic
signal involved in the predicted data. The predicting
model adopted in this study only takes four lexical-
level features as factors to generate predictions (Li
and Rudzicz, 2021), and all higher-level linguistic
features, such as positional and grammatical in-
formation, are completely left out. An extra strong
focus on low-level information may cause models to
ignore other linguistic information, leading to worse
performance on extracting target rationales in QA
tasks, especially for ALBERT. Additionally, the word
frequency calculation in the gaze-predicting model
involves an external library(Bestgen, 2021), while
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the word co-occurrence within the target text does
matter in generating cognitive signals during read-
ing (Eberle et al., 2022), further impacts the quality
of the generated data. Yet the generated data has
its advantage in stabilizing model performance, in-
dicating that there may be abundant disturbance
and noise involved in the real-life data.

5.3. Total Reading Time vs. First Fixation
Duration

TRT and FFD are features collected from differ-
ent stages of reading events, and they contain dif-
ferent levels of linguistic signal that affect model
performance differently. While FFD’s enhancing
ability is stronger than TRT for the ALBERT model
with all four indices, in more than half of cases,
the BERT model combined with TRT data outper-
forms the one combined with FFD. The features
that succeeded in enhancing model performance
carry the complementary linguistic features to what
the model is good at transferring cross-layer in its at-
tention block. BERT is equipped with the inference
ability to upgrade the level of linguistic features
between layers, hence importing extra signals of
basic-level linguistic features may force BERT to
keep more low-level linguistic information. Oppo-
sitely, the low-level linguistic information passes
smoothly in the ALBERT model’s attention block,
so introducing TRT mends the lack of high-level lin-
guistic features in its output. This complementary
can also be intuitively observed in the attention heat
maps (Figure 3). Notably, when a model benefits
in its performance from the introduction of comple-
mentary information, there is a compromise in its
stability, and this may indicate that extra-linguistic
information imported to the models’ layers causes
confusion in the fine-tuning process. Nevertheless,
for many models obtaining higher average and best
scores, the confusion is triggered probabilistically
rather than inevitably.

6. Conclusion

In this work, we find that introducing eye-tracking
data into the self-attention module of BERT and
ALBERT contributes to the improvement of model
performance in QA tasks in varying degrees. Com-
pared with other cognitive signals, for instance,
EEG and fMRI brain activity measures, ET fea-
tures are relatively easily accessible with lower
cost and expertise required in its collecting process,
and extensive existing research in psycholinguistics
brought forth standardized methods of preprocess-
ing and feature extraction. These reasons make
eye-tracking data a valuable source of human cog-
nitive signals for language processing. The positive
result of ET augmentation of Transformer models

for question-answering tasks showed that data go-
ing through simple initial processing can benefit
model performance. The mechanism of information
transmission within the attention block and the lin-
guistic information carried by the ET data both affect
the effectiveness of augmentation, therefore it is im-
portant to select the appropriate features for model
augmentation. Meanwhile, approaches to enhance
the stability of model performance while keeping
the benefits of applying ET attention masks remain
to be explored. It is encouraged to design opti-
mized eye-tracking augmentation methods based
on mathematical and machine learning theories,
as well as to apply different ET features on differ-
ent attention heads or layers specifically for more
delicate model enhancement.

The positive result achieved in this study is a
heuristic step we take, but due to the limited re-
sources of existing ET data, it is only a prelimi-
nary attempt. Structuring scaled data should play
a significant role in method generalization. The
establishment of the webcam eye-tracking method
could further reduce the ET data collection cost;
though with a compromise in its accuracy, we show
that it is helpful in augmenting language model
performance to some extent. Therefore, introduc-
ing webcam-captured data into a model’s attention
block can also be a worthy attempt for future re-
search. From the current results, we found that
introducing the ET data generated by the predicted
model modestly benefits the performance of the
Transformer models. Therefore, promoting the es-
tablishment of an effective ET-predicting model will
also be a key step in advancing the augmenting lan-
guage model performance. A better understanding
of the relationship between language models and
human attention should bring further advantages
in both model interpretation and neurolinguistics.

Limitations

Firstly, the eye-tracking datasets established with
human participants involved in this research pro-
vide anonymous records in compliance with ethical
board approvals and contain no personal informa-
tion of the participants.

The experiment in this paper is conducted fully
depending on English datasets, therefore the gen-
eralization of the method with other languages re-
quires further examination.

For data collected from human reading events,
we aggregate the data to obtain an average perfor-
mance of human reading behaviour on each trial.
However, individual data may vary greatly across
participants, for the reading experiment environ-
mental conditions and reading strategy participants
take can be different. Specific reading patterns may
have an extra strong positive or negative impact on
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model performance.
For task 1 (see Section 3.2) specifically, the task

dataset is relatively small and the QA pairs are
generated by a model with limited quality compared
to well-established benchmarks. Constructing a
QA-specialized eye-tracking corpora may further
improve the study.
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ET mask type ALBERT BERT
mean std. best mean std. best

no extra mask 81.606 1.248 83.212 77.859 0.988* 78.589
standard TRT mask 79.501 0.540* 80.049 77.324 1.864 79.562
weakened TRT mask 80.756 2.148 83.341 78.735* 2.083 80.779*
augmented TRT mask 82.482 1.804 84.672 78.248 1.673 80.292
standard FFD mask 82.774 1.159 83.942 76.691 1.080 77.859
weakened FFD mask 80.535 1.939 83.455 78.248 1.174 79.805
augmented FFD mask 82.920* 1.599 84.915* 77.178 1.672 79.805

Table 6: Accuracy of models fine-tuned on eye-tracking corpora guided by different eye-tracking attention
masks

ET mask type ALBERT BERT
mean std. best mean std. best

no extra mask 82.733 1.361 84.324 79.423 1.200* 80.342
standard TRT mask 80.997 0.480* 81.507 79.482 2.151 81.876
weakened TRT mask 81.494 1.615 83.813 80.610* 2.328 82.993
augmented TRT mask 83.783 1.584 85.718 80.051 1.793 82.457
standard FFD mask 84.023 1.154 85.330 78.662 1.339 80.443
weakened FFD mask 81.679 1.753 84.312 80.342 1.741 83.009*
augmented FFD mask 84.471* 1.313 86.021* 79.051 1.612 81.577

Table 7: F1-scores of models fine-tuned on eye-tracking corpora guided by different eye-tracking attention
masks

ET mask type ALBERT BERT
mean std. best mean std. best

no extra mask 80.408 3.830 85.629 79.594 1.106* 80.848
standard TRT mask 80.163 2.150 81.766 80.228 2.371 82.653
weakened TRT mask 82.144 2.044 84.374 81.639* 2.717 84.637
augmented TRT mask 83.935 1.710 85.792 80.991 1.930 83.905
standard FFD mask 83.983 1.056 84.749 79.617 1.675 81.909
weakened FFD mask 81.960 1.381 83.358 81.269 2.264 84.813*
augmented FFD mask 84.860* 0.972* 85.972* 80.332 2.063 83.642

Table 8: Recall of models fine-tuned on eye-tracking corpora guided by different eye-tracking attention
masks

ET mask type ALBERT BERT
mean std. best mean std. best

no extra mask 79.684 4.035 85.158 78.929 1.123* 80.292
standard TRT mask 78.881 3.065 80.535 79.270 2.298 81.509
weakened TRT mask 81.703 2.165 84.185 81.071* 2.640 84.185*
augmented TRT mask 83.260 1.766 85.158 80.487 1.749 83.212
standard FFD mask 83.650 1.120 84.672 78.929 1.700 81.022
weakened FFD mask 81.265 1.419 82.725 80.535 2.156 83.942
augmented FFD mask 84.380* 0.979* 85.401* 79.757 2.152 83.212

Table 9: Comprehensiveness of models fine-tuned on eye-tracking corpora guided by different eye-tracking
attention masks
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ET mask type ALBERT BERT
mean std. best mean std. best

no extra mask 82.117 1.991 83.500 79.712 1.350 81.220*
standard TRT mask 82.420 0.867* 83.453 78.831 1.189 80.624
weakened TRT mask 81.251 2.375 83.699 79.707 1.245 80.634
augmented TRT mask 81.198 1.523 83.349 80.123* 1.141 81.088
standard FFD mask 82.479* 1.865 83.614 79.692 1.096 80.482
weakened FFD mask 80.789 1.824 83.396 79.633 1.060* 80.776
augmented FFD mask 81.985 1.826 83.746* 79.092 1.939 80.785

Table 10: Accuracy of models fine-tuned on SQuAD v1.0 guided by different eye-tracking attention masks

ET mask type ALBERT BERT
mean std. best mean std. best

no extra mask 89.661 1.298 90.580 87.615 0.777 88.527*
standard TRT mask 89.996* 0.697* 90.793* 87.111 0.650 88.137
weakened TRT mask 89.139 1.461 90.629 87.706 0.754 88.360
augmented TRT mask 89.112 0.969 90.560 87.912* 0.623* 88.456
standard FFD mask 89.800 1.170 90.580 87.639 0.772 88.225
weakened FFD mask 88.877 1.006 90.296 87.649 0.657 88.346
augmented FFD mask 89.607 1.072 90.782 87.274 1.250 88.337

Table 11: F1-scores of models fine-tuned on SQuAD v1.0 guided by different eye-tracking attention masks

ET mask type ALBERT BERT
mean std. best mean std. best

no extra mask 82.081 0.818 83.214 81.060 0.393 81.601
standard TRT mask 82.786* 0.731 83.546 81.040 0.440 81.499
weakened TRT mask 82.314 1.175 83.516 81.097 0.565 81.627
augmented TRT mask 82.287 0.843 83.554* 81.167* 0.343* 81.585
standard FFD mask 82.236 0.873 83.081 80.945 0.740 81.839*
weakened FFD mask 82.034 0.650* 83.045 80.944 0.430 81.346
augmented FFD mask 82.422 0.777 83.272 80.941 0.392 81.472

Table 12: Recall of models fine-tuned on SQuAD v1.0 guided by different eye-tracking attention masks

ET mask type ALBERT BERT
mean std. best mean std. best

no extra mask 72.677 0.876 74.144 72.297* 0.160* 72.479
standard TRT mask 73.574* 0.915 74.484 72.163 0.445 72.658
weakened TRT mask 73.262 1.244 74.570* 72.191 0.509 72.611
augmented TRT mask 73.342 0.812 74.428 72.392 0.290 72.753
standard FFD mask 73.118 0.740 73.851 71.885 0.744 72.904*
weakened FFD mask 73.075 0.541* 73.983 72.083 0.424 72.526
augmented FFD mask 73.381 0.600 74.049 72.108 0.300 72.507

Table 13: Comprehensiveness of models fine-tuned on SQuAD v1.0 guided by different eye-tracking
attention masks
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