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Abstract
Previous Sign Language Translation (SLT) methods achieve superior performance by relying on gloss annotations.
However, labeling high-quality glosses is a labor-intensive task, which limits the further development of SLT. Although
some approaches work towards gloss-free SLT through jointly training the visual encoder and translation network,
these efforts still suffer from poor performance and inefficient use of the powerful Large Language Model (LLM). Most
seriously, we find that directly introducing LLM into SLT will lead to insufficient learning of visual representations as
LLM dominates the learning curve. To address these problems, we propose Factorized Learning assisted with Large
Language Model (FLa-LLM) for gloss-free SLT. Concretely, we factorize the training process into two stages. In
the visual initialing stage, we employ a lightweight translation model after the visual encoder to pre-train the visual
encoder. In the LLM fine-tuning stage, we freeze the acquired knowledge in the visual encoder and integrate it with
a pre-trained LLM to inspire the LLM’s translation potential. This factorized training strategy proves to be highly
effective as evidenced by significant improvements achieved across three SLT datasets which are all conducted
under the gloss-free setting.
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1. Introduction

Sign language is the primary form of communica-
tion for over 70 million deaf people worldwide. It
is a visual language consisting of gestures, body
movements, and expressions which has a unique
linguistic structure. Therefore, it differs greatly from
the natural spoken language. The study of sign
language processing can bring great convenience
between hearing and deaf people.

Unlike Neural Machine Translation (Bengio et al.,
2000), which focuses on translating between dif-
ferent languages (e.g., English to Chinese), Sign
Language Translation (SLT) is a cross-modal task
that involves learning visual representations from
sign language videos and generating correspond-
ing spoken words. Previous SLT approaches (Cam-
goz et al., 2020; Zhou et al., 2021a; Chen et al.,
2022a,b) have relied on gloss sequences to im-
prove performance. Gloss refers to the transcrip-
tion of signed languages sign-by-sign, where every
sign has a unique identifier (Yin et al., 2021). Gloss
sequences are utilized as the supervision for visual
representation learning via performing Continuous
Sign Language Recognition (CSLR). Due to the
substantial manual labor and specialized linguistic
expertise required for gloss annotation, it is chal-
lenging to construct large-scale datasets. There-
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Figure 1: Different frameworks and performance of
gloss-based and gloss-free methods with LLM. The
first row shows the performance of the gloss-based
method with LLM (Chen et al., 2022a). The second
and third show the gloss-free method with LLM in
our experiments. The BLEU-4 score is gotten on
the PHOENIX-2014T test set.

fore, the existing datasets are relatively small in
scale and domain-specific. Consequently, current
gloss-based methods, while achieving good per-
formance on certain specific test sets, suffer from
limited generalizability and are unable to benefit
from large, high-quality datasets without gloss an-
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notations, such as the newly released large-scale
SLT datasets like How2Sign (Duarte et al., 2021)
and OpenASL (Shi et al., 2022).

In summary, the exploration of gloss-free meth-
ods is highly necessary, as it can significantly re-
duce annotation costs and contribute to the devel-
opment of more reliable and general sign language
translation systems.

Recently, there have been attempts (Camgoz
et al., 2018; Li et al., 2020; Lin et al., 2023) to
achieve gloss-free sign language translation by
jointly training a visual network and translation net-
work in an end-to-end manner. To enhance the
performance of SLT, the intuitive approach is to
employ larger and more powerful pre-trained large
language models (LLM) like (Chen et al., 2022a)
(first row in Figure 1). However, jointly training the
visual encoder and LLM end-to-end without gloss
annotations leads to significant performance degra-
dation, as shown in the second row in Figure 1.

We conjecture it is due to the fact that: 1) the
visual encoder was not pre-trained on the sign lan-
guage dataset leads to poor modeling ability of
temporal and spatial information in them. 2) LLM
dominated the training process resulting in insuf-
ficient learning of visual representations. We pro-
vided a detailed analysis of the specific experiments
conducted in Section 3. This phenomenon has
made prior methods use small language models
with random initialization resulting in poor perfor-
mance. To cope with the above challenges and
build a more realistic SLT system, we propose a
Factorized Learning assisted with Large Language
Model (termed FLa-LLM) for gloss-free SLT.

Specifically, as illustrated in the third row of Fig-
ure 1, we factorize the training process into two
distinct stages, visual initialing stage and LLM fine-
tuning stage. In the first stage, we introduce a
lightweight translation model (Light-T) positioned
after the visual encoder to pre-train the visual en-
coder using a video-grounded text generation task.
This strategy can be seen as a soft visual-text align-
ment method that implicitly supervises the visual
encoder with the assistance of a lightweight lan-
guage translation model, enabling it to acquire lan-
guage knowledge. While this stage compels the
visual encoder to learn semantic visual representa-
tions, it may not yield satisfactory translation perfor-
mance due to the limited strength of the lightweight
translation model. To overcome this limitation, we
introduce the Large Language Model (LLM) into the
second stage namely LLM fine-tuning stage. we
incorporate an LLM that has been pre-trained on
extensive corpora using an unsupervised approach
to enhance the translation performance. The pa-
rameters of the pre-trained visual encoder are all
frozen to overcome its risk of being biased by the
LLM. Finally, we successfully took advantage of

LLM in gloss-free SLT and got a BLEU-4 score of
23.09.

In summary, our work makes the following signif-
icant contributions:

• We analyze the reason why directly training
the visual encoder and LLM failed in gloss-
free SLT and propose FLa-LLM to overcome
this problem. To the best of our knowledge,
this is the first successful attempt of LLM on
gloss-free SLT.

• FLa-LLM method factorizes the training pro-
cess into two distinct stages namely the visual
initialing stage and LLM fine-tuning stage. This
division helps mitigate the detrimental effects
of the Large Language Model (LLM) on visual
representation learning. Moreover, it allows us
to leverage the LLM’s assistance in SLT at a
low cost, improving translation performance.

• Our approach greatly boosts the performance
of the gloss-free SLT. Specifically, we improve
the BLEU-4 score by a large margin of 1.65
on PHOENIX14T(Camgoz et al., 2018), 3.20
on CSL-Daily(Zhou et al., 2021a) and 1.63 on
How2Sign(Duarte et al., 2021) compared with
the previous state-of-the-art methods.

2. Related Work

Gloss-based SLT. Sign Language Translation
(SLT) is proposed by (Camgoz et al., 2018) which
intends to translate sign language videos into cor-
responding spoken sentences. Most SLT meth-
ods utilize gloss annotations for pre-training or as
assisted supervision which we define as gloss-
based SLT. Camgoz et al. (2020) used the trans-
former (Vaswani et al., 2017) architecture and jointly
trained Continuous Sign Language Recognition
(CSLR) and SLT. Zhou et al. (2021a) utilized gloss
as an intermediary and translated spoken sen-
tences back into sign language features to expand
the translation corpus. Chen et al. (2022a) trans-
ferred a powerful large language model to the sign
language domain and improved the performance of
SLT significantly. Considering the special structure
of sign language, Zhou et al. (2021b); Chen et al.
(2022b) used a multi-cue network for detailed sign
language modeling. Gloss-based SLT methods
can achieve better performance, but the difficulty
of labeling gloss leads to great limitations.
Gloss-free SLT. There are a few methods attempt-
ing to build a more realistic SLT system with the
gloss-free setting. Camgoz et al. (2018) built an
attention-based encoder-decoder framework for
SLT. Li et al. (2020) learned hierarchical features
of sign language via temporal semantic pyramid.
Zhao et al. (2021) improved the accuracy and flu-
ency of SLT by conditional sentence generation
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Figure 2: The grad norm and parameters norm of
the last layer of the visual encoder and the last layer
of the LLM when jointly training the visual encoder
and LLM end-to-end.

and cross-modal reranking. Orbay and Akarun
(2020) utilized adversarial, multi-task, and transfer
learning to search for semi-supervised tokenization
approaches. Yin et al. (2023) analyzed the role of
gloss in SLT. Based on it, they proposed gloss atten-
tion which enables the model to keep its attention
within video segments that have the same seman-
tics locally as the gloss-based model. Lin et al.
(2023) exploited the shared underlying semantics
of signs and the corresponding spoken translation
to improve the gloss-free SLT performance. Zhou
et al. (2023) integrate contrastive language image
pre-training with masked self-supervised learning
to create pre-tasks that bridge the semantic gap
between visual and textual representations and re-
store masked sentences. Due to the lack of the
assistance of gloss, the above gloss-free methods
basically did not use LLM resulting in poor perfor-
mance of language generation. In addition, the
huge computational cost caused by the large num-
ber of sign language video frames makes it difficult
to perform end-to-end fine-tuning using LLM.

3. The Dominance of LLM in SLT

In this section, we analyze the idea presented in
Section 1 that LLM dominates the SLT training pro-
cess when jointly training the visual encoder and
LLM end-to-end.

The grad norm represents the rate of change of
the parameter while the parameter norm represents
the magnitude of the change. They can reflect
which part of the training process is more active.
We chose the last layer of LLM to represent the LLM
module and the last layer of the visual encoder to
represent the visual encoder. As shown in Figure 2,
we visualized the grad norm and parameters norm
of these two layers when jointly training the visual
encoder and LLM end-to-end. The grad norm of the
last layer of LLM was always greater than the last
layer of the visual encoder. At the same time, the
parameter norm of the last layer of LLM changed
more drastically than the last layer of the visual
encoder. It indicates that the main update of the

model lies in the LLM module i.e. LLM dominates
the SLT training process. It will lead to suppression
of visual encoder training and thus failure to learn
good visual representations of sign language. The
results of Table 4 experiments similarly prove this
statement.

4. Method

4.1. Overview
SLT aims to translate a sign video V = (I1, I2, ...IT )
with T frames into the corresponding spoken sen-
tence S = (w1, w2, ...wU ) with U words. In this
work, we focus on a gloss-free solution that doesn’t
require gloss annotations. As illustrated in Figure 3,
the training process is factorized into two stages.
In the visual initialing stage (Section 4.2), the ob-
jective is to facilitate the learning of semantic visual
knowledge by the visual encoder from downsam-
pled videos. The visual features are then mapped
into a textual embedding space using a Visual-
Language Adapter (VL-Adapter). We construct a
lightweight translation model (Light-T) to perform
video-grounded text generation pre-training. Sub-
sequently, in the LLM fine-tuning stage (Section
4.3), we retain the pre-trained visual encoder from
the visual initialing stage to extract sign-wise fea-
tures of input videos. Then the features are passed
into an LLM-Adapter and LLM to generate corre-
sponding spoken sentences.

4.2. Visual Initialing
Since sign language possesses special spatial
properties, the visual initialing of the visual encoder
on sign language datasets is necessary. With the
gloss-free setting, only the spoken sentences can
be used as text supervision. Therefore, we con-
struct a visual encoder followed by a lightweight
translation model (Light-T) to perform visual initial-
ing by a video-grounded text generation task.
Video Downsampling. The number of frames in a
sign language video is greater than the number of
words in the corresponding sentence, which has a
lot of redundant information. Therefore, we down-
sample a (T×3×H×W ) input sign language video
into (T/4 × 3 ×H ×W ) to reduce computational
cost without performance degradation.
Visual Encoder. The visual encoder consists of
a vision backbone and a local temporal module.
ResNet18 (He et al., 2016) is chosen as our vision
backbone. The downsampled sign video is fed into
the visual backbone frame by frame to get frame-
wise features. A complete sign language token
is often expressed by several continuous frames.
Therefore, we designed a temporal module to cap-
ture the local timing information within the sign lan-
guage video. The temporal module consists of one
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Figure 3: The overall framework of our proposed method. LLM represents the large language model.

temporal convolutional layer, one batch normaliza-
tion layer, and one Relu layer. The frame-wise
features are passed through the temporal module
to get sign-wise features F = (f1, f2, ...fN ) where
N = T/4 with a size of (T/4 × C). The above
operation can be formulated as:

f1:N = VisualEncoder(I1:T ). (1)

VL-Adapter. After the visual encoder, we build a
VL-Adapter using an MLP with one hidden layer.
The sign-wise features from visual space RN×C

are mapped into textual space RN×D by the VL-
Adapter as follows:

g1:N = VL-Adapter(f1:N ). (2)

Light-T. We pick transformer (Vaswani et al., 2017)
as our lightweight translation model. It contains
a text encoder and a text decoder which are com-
posed of several transformer layers. The input fea-
tures are added with a positional encoding (PE) as
ĝn = gn + PE(n). The text encoder models the
global timing information of the input as follows:

h1:N = TextEncoder(ĝ1:N ). (3)

Meanwhile, the corresponding spoken sentence
S = (w1, w2, ...wU ) is tokenized into S

′
=

(o1, o2, ...oL) by the same tokenizer from the LLM
we will use next. Then it is passed through the word
embedding layer (WEL) and a positional encoding
(PE) layer as:

zi = WEL(oi) + PE(i). (4)

The text decoder takes word embeddings alone
with sign hidden states h1:N as input to generate a
predicted sentence one word at a time:

yi = TextDecoder(z1:i−1, h1:N ). (5)

A language modeling head (Lm_Head) is plugged
after the text decoder to calculate the conditional
probabilities as follows:

p(oi|o1:i−1, V ) = (softmax(Lm_Head(yi)))oi . (6)

Training. We train the model using the video-
grounded text generation objective, which aims
to generate spoken sentences corresponding to
the input videos. We use the ground truth spoken
sentences to calculate the cross-entropy loss and
optimize the entire network:

LCE = −
L∑

i=1

log p(oi|o1:i−1, V ). (7)

After the above workflow, we finished initializing
the visual encoder on the sign language datasets.
The well-initialized visual encoder is now capable
of extracting text-oriented features from sign videos.
Next, we will take advantage of LLM to generate
more approximate and fluent spoken sentences.

4.3. LLM Fine-tuning
Now we present how the proposed method can
exploit the potential of LLM in Gloss-free SLT. In
general, we keep the pre-trained visual encoder
and plug it into an LLM-Adapter and an LLM. During
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training, the visual encoder is frozen while the other
modules are fine-tuned.
LLM Selection. The LLM selection follows two
standards. Firstly, the selected LLM should be
an encoder-decoder architecture because SLT is
a translation-type downstream task. Secondly,
LLM pre-trained on multilingual corpus is pre-
ferred because different datasets have spoken sen-
tences in various languages, such as German in
PHOENIX14T (Camgoz et al., 2018) and Chinese
in CSL-Daily (Zhou et al., 2021a). Under these two
criteria, we choose MBart (Liu et al., 2020) as our
LLM. MBart is a sequence-to-sequence denoising
auto-encoder pre-trained on large-scale monolin-
gual corpora in many languages. It has a standard
transformer (Vaswani et al., 2017) architecture with
12 layers of the encoder and 12 layers of the de-
coder. MBart primarily intends for translation tasks
and has been proven to significantly improve the
performance of SLT (Chen et al., 2022a). Although
the number of parameters in MBart is only 680M, to
the best of our knowledge, it is the largest language
model in the SLT domain.
Fine-tuning.

The word embedding layer of the MBart’s en-
coder is replaced by an LLM-Adapter. It is sim-
ply implemented as a fully connected MLP with
one hidden layer whose output dimension fits with
the LLM. We use the well-initialized visual encoder
to extract the sign-wise features of the input sign
videos and feed them into the LLM-Adapter to gen-
erate sign embeddings. Then the MBart’s encoder
takes sign embeddings as input to generate hidden
states. The corresponding spoken sentences are
tokenized by a tokenizer and project one-hot vec-
tors into dense text embeddings via MBart’s pre-
trained word embedding layer. MBart’s decoder
takes the hidden states alone with the text embed-
dings to generate predicted sentences one word at
a time. During fine-tuning, we freeze the visual en-
coder and optimize other modules using sequence-
to-sequence cross-entropy loss as shown in Equa-
tion 7.

5. Experiments

5.1. Datasets and Evaluation Metrics

Datasets. The experiments are performed
on PHOENIX14T (Camgoz et al., 2018), CSL-
Daily (Zhou et al., 2021a) and How2Sign (Duarte
et al., 2021). PHOENIX14T is a German Sign Lan-
guage (DGS) dataset taken from a TV broadcast
whose topic focuses on weather forecasts. It con-
tains 7096, 519, and 642 video-gloss-text pairs in
train, dev, and test set, respectively. CSL-Daily
is a Chinese Sign Language (CSL) dataset that
contains 18401, 1077, and 1176 video-gloss-text

pairs in train, dev, and test set, respectively. It
is recorded in the laboratory whose topic focuses
on daily life. How2Sign is an American Sign Lan-
guage (ASL) dataset that contains 31164, 1740,
and 2356 video-text pairs in train, dev, and test set,
respectively. It is recorded in the laboratory and fo-
cuses on instructional topics corresponding to vari-
ous categories. The proposed method is compared
with state-of-the-art methods on three datasets and
conducted ablation analysis on PHOENIX14T. We
report all the results on the test set.
Protocol. Our experiments follow Gloss-free
Sign2Text protocol proposed by (Lin et al., 2023).
It requests a direct translation from sign language
videos to the corresponding spoken sentences with-
out gloss assistance through the entire framework.
Evaluation Metrics. Following (Zhou et al., 2021a;
Chen et al., 2022b; Lin et al., 2023; Yin et al., 2023),
we adopt ROUGE-L (Lin, 2004) and BLEU (Pap-
ineni et al., 2002) to evaluate SLT performance.

5.2. Implementation Details

Our model is implemented using the Pytorch frame-
work (Paszke et al., 2019). The experiments are
conducted on NVIDIA GeForce RTX 3090 GPUs.
Network setting. We choose ResNet18 (He et al.,
2016) pretrained on ImageNet (Deng et al., 2009)
as visual backbone. The local temporal module
uses a combination of Conv1D-BN-Relu layers.
The Light-T has 3 transformer layers for both en-
coder and decoder. Each layer has an attention
head of 8, a hidden size of 512, and a feed-forward
dim of 2048. Our LLM is initialized with the official
release of MBart-large-cc25. The model and corre-
sponding tokenizers are trimmed using the transla-
tion corpus of the target SLT train set to save GPU
memory.
Training and Inference. In the visual initial-
ing stage, the model is trained using SGD opti-
mizer (Robbins and Monro, 1951) with 0.9 momen-
tum and a batch size of 8 across 2 GPUs. The
learning rate is set to 1 × 10−2 with a cosine an-
nealing schedule (Loshchilov and Hutter, 2016). In
the LLM fine-tuning stage, the model is trained us-
ing Adam optimizer (Kingma and Ba, 2014) with
a batch size of 16 on 1 GPU. The learning rate is
set to 1 × 10−5 for the LLM and 1 × 10−3 for the
LLM-Adapter layer with a cosine annealing sched-
ule. We employ cross-entropy loss with a label
smoothing of 0.2 in both stages. During inference,
we use beam search strategy (Wu et al., 2016) with
a beam size of 5.

https://huggingface.co/facebook/
MBart-large-cc25

https://huggingface.co/facebook/MBart-large-cc25
https://huggingface.co/facebook/MBart-large-cc25
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Method Gloss-Free Rouge-L BLEU-1 BLEU-2 BLEU-3 BLEU-4
SLRT (Camgoz et al., 2020) × - 46.61 33.73 26.19 21.32
STMC-T (Zhou et al., 2021b) × 46.65 46.98 36.09 28.70 23.65
SignBT (Zhou et al., 2021a) × 49.54 50.80 37.75 29.72 24.32
MMTLB (Chen et al., 2022a) × 52.65 53.97 41.75 33.84 28.39
TS-SLT (Chen et al., 2022b) × 53.48 54.90 42.43 34.46 28.95
NSLT (Camgoz et al., 2018) ✓ 31.80 32.24 19.03 12.83 9.58
SLRT-GF∗ (Camgoz et al., 2020) ✓ 31.10 30.88 18.57 13.12 10.19
TK-SLT (Orbay and Akarun, 2020) ✓ 36.28 37.22 23.88 17.08 13.25
TSPNet (Li et al., 2020) ✓ 34.96 36.10 23.12 16.88 13.41
CSGCR (Zhao et al., 2021) ✓ 38.85 36.71 25.40 18.86 15.18
GASLT (Yin et al., 2023) ✓ 39.86 39.07 26.74 21.86 15.74
GFSLT-VLP (Zhou et al., 2023) ✓ 42.49 43.71 33.18 26.11 21.44
FLa-LLM(ours) ✓ 45.27 46.29 35.33 28.03 23.09
Improvement +2.78 +2.58 +2.15 +1.92 +1.65

Table 1: Experimental results on PHOENIX14T dataset. * denotes methods reproduced by (Yin et al.,
2023). We bold the best results in the gloss-based setting and gloss-free setting. Improvement represents
comparisons with the previous best gloss-free result.

Method Gloss-Free Rouge-L BLEU-1 BLEU-2 BLEU-3 BLEU-4
SLRT† (Camgoz et al., 2020) × 36.74 37.38 24.36 16.55 11.79
SignBT (Zhou et al., 2021a) × 49.31 51.42 37.26 27.76 21.34
MMTLB (Chen et al., 2022a) × 53.25 53.31 40.41 30.87 23.92
TS-SLT (Chen et al., 2022b) × 55.72 55.44 42.59 32.87 25.79
NSLT† (Camgoz et al., 2018) ✓ 34.54 34.16 19.57 11.84 7.56
TSPNet∗ (Li et al., 2020) ✓ 18.38 17.09 8.98 5.07 2.97
GASLT (Yin et al., 2023) ✓ 20.35 19.90 9.94 5.98 4.07
GFSLT-VLP (Zhou et al., 2023) ✓ 36.44 39.37 24.93 16.26 11.00
FLa-LLM(ours) ✓ 37.25 37.13 25.12 18.38 14.20
Improvement +0.81 -2.24 +0.19 +2.12 +3.20

Table 2: Experimental results on CSL-daily dataset. * denotes methods reproduced by (Yin et al., 2023).
† denotes methods reproduced by (Zhou et al., 2021a). We bold the highest scores in the gloss-based
setting and gloss-free setting. Improvement represents comparisons with the previous best gloss-free
result.

5.3. Comparison with State-of-the-art
Methods

Results on PHOENIX14T dataset. We compare
our method with state-of-the-art gloss-based and
gloss-free SLT approaches in Table 1. With the
gloss-free setting, our method achieves a signifi-
cant breakthrough in all metrics compared to the
previous methods. In particular, we get an outstand-
ing BLEU-4 improvement of 1.65 on the test set
compared with the previous state-of-the-art method
GFSLT-VLP (Zhou et al., 2023). Surprisingly, our
approach is fairly comparable to some gloss-based
approaches, such as SLRT (Camgoz et al., 2020),
STMC-T (Zhou et al., 2021b) and SignBT (Zhou
et al., 2021a). The performance of our method is
still far from MMTLB (Chen et al., 2022a) and TS-
SLT (Chen et al., 2022b), which also utilizes the
LLM capability to enhance SLT. However, they rely
heavily on gloss for visual and linguistic pre-training
with great limitations.

Results on CSL-Daily dataset. Table 2 shows
the comparisons between our method and other
state-of-the-art methods on the CSL-Daily dataset.
When compared with other gloss-free methods,
our method achieves a substantial improvement
with a margin of 3.20 in BLEU-4 which is 29.09%
higher than the previous state-of-the-art method
GFSLT-VLP (Zhou et al., 2023). However, there
is a big gap between our method and the gloss-
based methods. This may be due to the size of the
sign word’s vocabulary. CSL-daily has more than
2K sign words’ vocabulary size resulting in more
reliance on glosses.
Results on How2Sign dataset. In Table 3, our
method is compared with other state-of-the-art
methods on the How2Sign dataset. The perfor-
mance of our method is substantially better than
TF-H2S (Alvarez et al.) and GloFE-VN (Lin et al.,
2023). However, we only surpass SLT-IV (Tarrés
et al., 2023) on BLEU-3 and BLEU-4 while falling
behind on BLEU-1 and BLEU-2. Higher BLEU-3
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Method Gloss-Free Rouge-L BLEU-1 BLEU-2 BLEU-3 BLEU-4
TF-H2S (Alvarez et al.) ✓ - 17.40 7.69 3.97 2.21
SLT-IV (Tarrés et al., 2023) ✓ - 34.01 19.30 12.18 8.03
GloFE-VN (Lin et al., 2023) ✓ 12.61 14.94 7.27 3.93 2.24
FLa-LLM(ours) ✓ 27.81 29.81 18.99 13.27 9.66
Improvement +15.20 -4.20 -0.31 +1.09 +1.63

Table 3: Experimental results on How2Sign dataset. We bold the highest scores. Improvement represents
comparisons with the previous best gloss-free result.

Factorized R B1 B2 B3 B4
× 32.52 31.96 21.96 16.32 12.90
✓ 45.27 46.29 35.33 28.03 23.09

Table 4: Effect of the proposed factorized learning
strategy. The first row represents end-to-end joint
training of the visual encoder and LLM.

VIS LFS R B1 B2 B3 B4
× ✓ 17.33 17.64 10.51 7.37 5.62
✓ × 38.67 39.09 28.20 21.83 17.69
✓ ✓ 45.27 46.29 35.33 28.03 23.09

Table 5: Effect of each stage. VIS represents the
visual initialing stage and LFS means the LLM fine-
tuning stage. The first row represents freezing the
vision backbone and fine-tuning the other modules.

and BLEU-4 indicate our model has better short
phrase generating ability which possibly gains from
LLM.

5.4. Ablation Studies
Our ablation experiments are performed on the
PHOENIX14T test set since it is the most widely
used benchmark for SLT. Note that we use R to rep-
resent ROUGE-L and B1-B4 to represent BLEU1-
BLEU4.

5.4.1. Ablation on Factorized Learning

Effect of Factorized Learning Strategy. We first
verify the effectiveness of our proposed factorized
learning strategy. The most straightforward ap-
proach is to compare our factorized learning with
the end-to-end joint training of the visual encoder
and LLM. As shown in Table 4, our factorized learn-
ing strategy substantially outperforms the end-to-
end training approach. This may be because the
LLM dominates during end-to-end training as men-
tioned in Section 3, resulting in weak supervision
for the visual encoder.
Effect of Each Stage. In Table 5, we verify the
contribution of each stage in the proposed FLa-
LLM method. The first row of the Table 5 means
we freeze the vision backbone which is only pre-
trained on ImageNet and trained the local temporal

Rate Time R B1 B2 B3 B4
100% 17.90h 44.55 45.68 35.01 27.82 22.96
50% 9.85h 44.60 46.22 35.12 27.90 23.04
25% 4.75h 45.27 46.29 35.33 28.03 23.09
12.5% 3.55h 40.77 42.42 31.62 24.68 20.02

Table 6: Effect of downsampling rate. The second
column represents the time required to complete
the visual initialing stage.

module with the LLM-Adapter and LLM end-to-end.
It leads to a very poor result without initialing the
visual encoder which demonstrates the importance
of visual initialing on the sign language datasets.
The second row shows the performance of the vi-
sual encoder and Light-T i.e. the visual initialing
stage performance. The visual initialing stage fo-
cuses on the visual encoder resulting in fair per-
formance. Based on sufficient initialization of the
visual encoder, we successfully take advantage of
the LLM and yield better results as shown in the
third row.

5.4.2. Ablation on Visual Initializing

Effect of Downsampling Rate. We show the ef-
fect of different downsampling rates on the training
time and model performance in Table 6. When the
downsampling rate is not lower than 25%, it has
little impact on the model performance while sig-
nificantly reducing the training time. Therefore, we
choose a sampling rate of 25% to ensure model
performance and save training time.
Effect of Light-T. We investigate whether the scale
of the Light-T in the visual initialing stage affects the
final LLM fine-tuning results. As shown in Table 7,
the transformer scale has little impact on final per-
formance. This indicates that the main focus during
the visual initialing stage is on the visual encoder.
The visual encoder can get a good sign language
representation ability after initialing regardless of
the transformer scale connected.
Effect of Initialing Time. We train various visual
encoders with different epochs in the initialing stage
and use them to do LLM fine-tuning in the same
setting. Figure 4 shows the results of the visual
initialing stage and the LLM fine-tuning stage with
different initialing epochs. LLM fine-tuning can sig-
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Size Settings Params B4
Tiny (1,4,256,1024) 3.61M 22.52
Small (2,4,512,2048) 18.25M 22.36
Base (3,8,512,2048) 25.61M 23.09
Large (4,8,1024,4096) 124.66M 22.49

Table 7: Effect of translation network scale. The
(1,4,256,1024) in the second column represents
that the transformer has 1 hidden layer, 4 attention
heads, a hidden size of 256, and a feed-forward
dim of 2048. Params represents the number of
model parameters.

Figure 4: Effect of initialing time. VIS represents
the visual initialing stage and LFS represents the
LLM fine-tuning stage.

nificantly improve the model translation capability
in all cases. When the initialing epoch is 100, the
performance of LLM fine-tuning decreases com-
pared to epoch 75, probably due to model overfit-
ting. Therefore, we choose the model with epoch
75 for fine-tuning in other experiments.

5.4.3. Ablation on LLM Fine-tuning

Effect of Input Features. In Table 8, we inves-
tigate the effect of different input features of the
LLM-Adapter layer. We select three features as
shown in Figure 3, namely frame-wise features,
sign-wise features, and sign hidden states. The
best result is obtained by using sign-wise features
as input for LLM fine-tuning. This may be due to
the fact that sign-wise features contain both spatial
representations and local timing information of sign
language videos.
Effect of Frozen Blocks. The visual encoder with
valid initialization is frozen during the LLM fine-
tuning stage. We examined the effect of freezing
different parts of the visual encoder in Table 9. It
can be seen that fine-tuning the visual encoder
during the LLM fine-tuning stage hurt the perfor-
mance substantially. This may be due to that LLM
dominates the training process and disrupts the
initialization of the visual encoder. It also indicates

Features R B1 B2 B3 B4
Frame-wise 41.59 42.54 31.72 24.82 20.30
Sign-wise 45.27 46.29 35.33 28.03 23.09
Hidden states 45.16 45.41 34.74 27.47 22.60

Table 8: Effect of different input features of LLM.
The different features are shown in Figure 3.

VB TM R B1 B2 B3 B4
× × 40.72 40.74 29.79 22.65 17.86
✓ × 39.86 41.64 31.48 24.86 20.40
✓ ✓ 45.27 46.29 35.33 28.03 23.09

Table 9: Effect of freezing different parts of the
visual encoder. VB means visual backbone. TM
represents the local temporal module. ✓ means
freezing the module while × means no freezing.

LLM R B1 B2 B3 B4
MBart w/o pre 40.18 37.18 26.99 20.54 16.19
MT5-Base w/o pre 22.71 18.02 12.21 9.17 7.39
MBart w/ pre 45.27 46.29 35.33 28.03 23.09
MT5-Base w/ pre 41.06 41.96 31.20 24.24 19.71

Table 10: Effect of different LLMs. W/o, w/, and pre
means without, with, and pretraining, respectively.

that the visual encoder already has a sufficient vi-
sual representation of sign language after the visual
initializing stage.
Effect of Different LLMs. In order to verify the
robustness of our training strategy and to select
the most suitable LLM for sign language, we per-
form the fine-tuning stage using different LLMs.
We select two popular multilingual unsupervised
pre-training models which are MBart (Liu et al.,
2020) and MT5-Base (Xue et al., 2021). Table 10
shows the fine-tuning results of these two LLMs
with random initialization and after pre-training. It
can be seen that unsupervised pre-training on a
large-scale corpus can significantly improve the
performance of LLM fine-tuning on sign language
datasets. In addition, MBart performs better com-
pared to MT5-Base, so we chose MBart as our
default LLM.

6. Conclusion

In this paper, we propose a factorized learning strat-
egy to transfer LLM for gloss-free SLT. In the vi-
sual initialing stage, we use a lightweight transla-
tion model to pre-train the visual encoder without
gloss supervision. In the LLM fine-tuning stage, we
freeze the well-initialized visual encoder and fine-
tune a powerful LLM to adapt to the downstream
SLT task. By splitting the training into two stages,
we avoid performance degradation and utilize LLM
in a resource-friendly situation. Our method signif-
icantly boosts the performance of gloss-free SLT
on several datasets.
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7. Limitations

Our proposed method has two main drawbacks.
First, though the factorized learning strategy can
avoid performance degradation, it is more cumber-
some compared to end-to-end training. A more
ideal approach would be adding additional con-
straints on the visual encoder to the end-to-end
framework. Second, in the fine-tuning stage, we
fine-tune all parameters of the large language
model which limits the scale of our LLM. In future
work, we will investigate parameter-efficient fine-
tuning methods such as Lora (Hu et al., 2022) and
Prefix-Turning (Li and Liang, 2021).
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