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Abstract
Large language models (LLMs) have achieved great success in a variety of natural language understanding
tasks. However, domain discrepancies between the downstream task and the pre-training corpora may have
hurdled LLMs to excel further in the vertical applications. Contrary to prior computational-heavy methods, we
propose a lightweight solution to further bridge the gap in applying LLMs to diverse downstream tasks — a
Fast Adaptation method for LLMs via Prompted Data, in short FAvPD. Notably, with FAvPD, we establish an
additional adaptive tuning procedure, wherein we integrate downstream text corpora, gold labels as well as
external knowledge sources and then envelop them into a form of highly controllable prompt. As a simple,
easy-to-use, and versatile solution, FAvPD lies in the intersection of regimes like knowledge-augmented LLMs,
fine-tuning, and adaptation techniques. With extensive experiments, we prove that FAvPD excels in both performance
efficacy and training efficiency over related prior works. FAvPD is publicly available at https://github.com/Hyatio/FAvPD.

Keywords: Large Language Model, Knowledge Injection, Prompt

1. Introduction

The very notable emergence of the large language
models (LLMs1) — such as BERT (Devlin et al.,
2019), ChatGPT (OpenAI, 2022), GPT-4 (Ope-
nAI, 2023) etc. — have greatly altered the terrain
of natural language processing. By applying self-
supervised learning on large-scale unlabeled cor-
pora, LLMs are proven to capture rich lexical (Jawa-
har et al., 2019), syntactic (Hewitt and Manning,
2019) and semantic information that significantly
benefits numerous downstream tasks. Simultane-
ously, many research studies have leveraged the
strong language capabilities of these Language
Models (LLMs) to address downstream tasks by
employing fine-tuning methods (Hu et al., 2022a;
Li and Liang, 2021). The paradigms based on pre-
training and fine-tuning continue to be widely ac-
cepted as the standard workflow in various natural
language understanding domains (Devlin et al.,
2019; Liu et al., 2019; Radford et al., 2018a).

Although LLMs have achieved great success in
the most NLP fields, there still some works (JI
et al., 2022; Bang et al., 2023) have also pointed
out that when lacking domain-specific knowledge,
LLMs are more prone to hallucinate in downstream
tasks. Indeed, throughout the literature, the avail-
able methodological training-based techniques vali-
dated by the community may have included: knowl-
edge injection (Sun et al., 2020b; Wang et al.,
2021b; Meng et al., 2022), continued pre-training
(Gururangan et al., 2020; Qin et al., 2023). De-

* means Equal Contributors
1LLMs are commonly referred to as pre-trained lan-

guage models (PLMs).

spite the merits, these lines’ approaches often uti-
lize distinct sources of information. For instance,
the most common fine-tuning-based methods are
widely applied for their lightweight nature of de-
ployment, and they facilitate the additional tuning
on a small portion of the <label> from the down-
stream dataset. Meanwhile, the knowledge injec-
tion scheme is instead dedicated to merging an
external <knowledge> library or graph through ma-
nipulation in the representation space. And finally,
the domain-adaptation methods are concerned with
bringing the LLMs closer to the distribution drawn
from the downstream <text>. Against this back-
ground, our work explores how to uniformly ap-
ply the above various external information to con-
tinue training pre-trained language models (includ-
ing large language models).

The major contribution of this work can be seen
as two-fold. On one hand, we provide a unified
scheme to feed a pre-trained LLM with downstream
text, associated labels, and linked knowledge
graph synergistically. Inspired by fields such as
prompt-tuning (Ding et al., 2021) and in-context
learning (Dong et al., 2022), we constructed a struc-
ture more suitable for training language models and
proposed a knowledge reconstruction loss function
to assist the model learning from examples. On the
other, we provide an extremely lightning adaptation
workflow upon the above data unification where
we embed an additional adaptive tuning stage in
between the pre-training and fine-tuning stages.
Through empirical verification, we find that this ad-
ditional stage of tuning requires fairly little data
but sharply renders meritable performance gain.
Our approach is dubbed as Fast Adaptation via
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Prompted Data (FAvPD). We provide dense ex-
perimental results to prove: (i)-FAvPD’s extreme
training efficiency and its advantageous efficacy;
(ii)-FAvPD is highly versatile and can be easily com-
bined with most recent white-box LLMs such as
LLaMA (Touvron et al., 2023) and (iii)-FAvPD works
with many other workflows such as LoRA (Hu et al.,
2022a).

Let us give a concrete example. When utilizing
an LLM for a downstream medical NER task, the
standardized workflow usually is conducted by fine-
tuning the pre-trained LLM directly by the gold text-
label pair in a supervised manner. Despite that,
FAvPD makes changes in two aspects. FAvPD
exclusively establishes another round of the data-
efficient tuning procedure, before the task-wise
fine-tuning launches. This procedure manifests
FAvPD’s highly lightweight tuning nature because
it only requires a draft of a few data points from
the downstream corpora. Besides the gold labels
exploited, FAvPD additionally compacts an external
knowledge graph and the gold text altogether as a
synergistic system.

We validate FavPD by extensive experiments. In
terms of efficacy, our method outperforms most
of the previous work and achieves state-of-the-art
results on Open Entity and FIGER while exceed-
ing the rivals by up to 10.1% by F1. Furthermore,
the combination of FAvPD and the PEFT method
of LLMs can significantly improve the accuracy
of domain question answering tasks. For train-
ing efficiency, FAvPD manifests in an extremely
lightweight fashion. Notably, the corpora size and
the training time consumption are roughly less than
1% of the general knowledge injection framework.
An exemplary code is provided as a part of the
supplementary material.

2. Related Work

2.1. Knowledge-Enhanced LLMs

Knowledge-Enhanced LLMs mean the enhance
the performance of LLM by Knowledge Injection
method (Zhang et al., 2019). This method is a
well-known practical approach to solving the lack
of factual knowledge caused by domain discrep-
ancies and aims to integrate entity information,
relation triplets, or knowledge graph into the lan-
guage model and further helps LLMs improve down-
stream tasks’ performance (Peters et al., 2019;
Wang et al., 2021c; Liu et al., 2020a; Yamada et al.,
2020; Zhang et al., 2019; Wang et al., 2021b; Meng
et al., 2022; Dong et al., 2023). Among those
knowledge-enhanced models, many works use
knowledge representation-based methods to incor-
porate factual knowledge (Zhang et al., 2019; Su
et al., 2021a; Ye et al., 2022; Peters et al., 2019;

Wang et al., 2021d; Yamada et al., 2020; Sun et al.,
2020a). Other models use other forms to integrate
knowledge into the model (Liu et al., 2020b; Meng
et al., 2021; Hosseini et al., 2022,?; Lu et al., 2022).

Notably, the above methods are all based on
the idea of directly integrating knowledge into the
model, while the goal of FAvPD is to construct
knowledge into samples and guide the models to
learn the implicit knowledge patterns.

2.2. Continual Pretraining
The continual pretraining of LLMs, also called adap-
tation in some cases, can significantly improve the
performance of some downstream tasks (Gururan-
gan et al., 2020). A common solution is to conduct
a further pre-training (Gururangan et al., 2020;
Howard and Ruder, 2018; Phang et al., 2018; Guru-
rangan et al., 2020; Qin et al., 2023) on the available
domain- or task-specific training data. Additionally,
there exist more advanced and sophisticated meth-
ods that yield superior results in proprietary do-
mains (Lee et al., 2019; Beltagy et al., 2019; Araci
and Genc, 2019; Huang et al., 2019). For example,
PMC-LLaMA further finetuning LLaMA on medical
papers (Wu et al., 2023). Such methods achieve a
significant gain in performance in their respective
domains but are expensive and time-consuming
as they require a large number of domain corpora
(usually several GBs).

We argue that these tasks require large amounts
of training data and high computing power costs.
However, the additional tuning in the FAvPD can
be much faster and more lightweight with sampling
part of the downstream task training set data (usu-
ally within 1 MB).

2.3. Prompt Learning
Since the emergence of GPT-3 (Brown et al., 2020),
prompt-based learning has received considerable
attention. GPT-3 (Brown et al., 2020) demonstrates
that with prompt-tuning and in-context learning,
large-scale language models can achieve superior
performance in the low-data regime. The follow-
ing works (Schick and Schütze, 2021a,b) argue
that small-scale language models (Radford et al.,
2018a; Devlin et al., 2019; Liu et al., 2019; Lan et al.,
2020; Hu et al., 2022b; Ding et al., 2021) can also
achieve decent performance using prompt-tuning.
Prompt-based learning works by utilizing the knowl-
edge acquired by the pre-trained language models
on a large amount of text data to solve various types
of downstream tasks (Liu et al., 2021).

FAvPD uses prompts for different goals. The
above work mainly uses labels as the target objec-
tive of prompt-tuning to directly train the model’s
downstream task capabilities. However, in FAvPD,
the object that prompts needs to fill in the blanks
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is the information from distinct sources. We argue
that this method can help the model to mine the
implicit patterns between exogenous information
and the text.

3. Method

As mentioned above, the unified FAvPD framework
includes a special prompt structure for the infor-
mation from distinct sources and an information
reconstruction loss function. In this section, we will
introduce both in detail.

3.1. Preliminary
Before we begin, we first explain a very important
thing, that is, the stage in which FAvPD works.
The goal of FAvPD is to enhance the Large Lan-
guage Models (LLMs) by forming a synergy of the
combination of three items the external knowledge,
and the task-specific text associated with the corre-
sponding ground-truth labels. In our proposal, this
unified form of domain-specific data is encapsu-
lated and then exploited in a new additional tuning
stage. Put another way, FAvPD sheds some light on
the following three-stage workflow: Pre-Training ->
Additional Tuning -> Fine-Tuning . Noticed that
the additional tuning is designed to be lightweight,
data-efficient, and fast.

3.2. Notations
We denote the train set of downstream task as
D = {xn, yn}Nn=1, where xn denotes the input
sentence, yn the associated gold label and N the
size of dataset D. In particular, given a sentence
x = [ w1, w2, . . . ], it is an ordered sequence of
tokens. We use V to denote the vocabulary set
used in LLMs covering all the tokens inside both
pre-training and downstream corpora. Noted, we
ignore the data point index n for simplicity. We
denote K as the set of external knowledge-base
and {e, k} ∈ K, where e is the entity and k is the
corresponding factual knowledge.

3.3. Unified External Information Prompt
The core of FAvPD is to introduce an additional
phase of pre-training, facilitated by a unified form
of data envelope consisting of downstream text,
labels, and an external knowledge component. In
particular, unlike the usual fine-tuning, adaption,
or knowledge-injection methods that focus on any
element singly, FAvPD proposes to unify all three
modalities.

Context with External Knowledge Source. To
begin with, we add an external knowledge compo-

nent to the envelope. We offer a simple example
in Figure 2.

First, we gather the context information by insert-
ing the input sentence x individually drawn from
the downstream corpus D. Afterwards we adopt
a standardized entity-linking tool (Wu et al., 2020)
that scans x together with searching K. Noted, we
use BLINK (Wu et al., 2020) toolkit made by Meta
for entity linking. Feeding x into the entity-linking
tool returns two variables: the entity-mention w(e)

where w(e) ∈ x denoting a sub-sequence related to
the corresponded entity appearance on the knowl-
edge base, together with its corresponding knowl-
edge description, k. Formally, we write down the
prompted knowledge: promptk = [w(e), is,a, k].
Notice that we simply adopt “[] is a []” as the
standard template to fill in the prompt.

Context with Gold Labels Besides the exter-
nal source of knowledge, we further incorporate
the gold labels from the downstream tasks into
the data envelope. Formally, for given input text
x, we draft the corresponding label y and con-
struct the prompted label as follows: promptl =
[w(e), is,a, y]. Notice that in our targeted tasks, y
is not only a quantized indexed number but also
expresses entity information.

Final Assemble We use the lemmatization tool
to process both constructed prompts. To process
them, we concatenate the input text, and both
prompts to form a final text structure of data en-
velope: x′ = [x,promptk,promptl]. This in turn
yields the dataset applied for the adaptive pre-
training phase, D′ = {x′}Mm=1

2 in a self-supervised
manner.

Invisible Attention To adapt to input in the form
of prompted data, we modify the embedding and
encoder layers upon a vanilla Transformer (see
Figure 1 using the same Kylian Mbappé example).
For token embedding, we insert prompts into the
original context. We tag the original text with iden-
tical positional encoding with BERT and extend it
by incrementing the token index for the appended
prompt.

To mitigate the effect of prompt on irrelevant con-
text other than its corresponding entity, we use a
mask matrix M ∈ Rn∗n (Liu et al., 2020a) to block
part of the self-attention messages. For example,
tokens in the original text x that are not the entity
w(e) should not have direct attention to tokens in
prompt sentence promptk/l. The representation

2M ≤ N since we sample some examples from the
original dataset for FAvPD, see Section A.1 for more
details.
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Figure 1: The model architecture of FAvPD. Context refers to the input text itself, and Prompt is the
incremental text based on external source information. Fig 2 provides an example.

Figure 2: The illustration on prompted data con-
struction.

after masked self-attention is denoted as

q, k, v = x′W q, x′W k, x′W v (1)

Attn(q, k, v) = softmax(
qkT + M

√
dk

)v (2)

where x′ = [x,promptk,promptl] ∈ Rn∗d is the
prompted input sequence. W q,W k,W v ∈ Rd∗dk

are learnable parameters. q, k, v are the query vec-
tors, key vectors and value vectors, respectively. n
is the length of the input sequence. d is the dimen-
sion of the input embedding. dK is the dimension
of the key vectors. M ∈ Rn∗n is the mask matrix

defined as

Mij =

{
−∞ wi ∈ x ∧ wj ∈ promptk(l)

0 otherwise.
(3)

where wi, wj ∈ x′.

3.4. Adaptive Tuning Objective

Based on the above text processing, FAvPD will
further tune the LLM on the prompted data D′ =
{x′}Mm=1. In this section, we introduce the adap-
tive tuning procedure on the LLM. In particular, we
adopt different training objectives for the text part
(x ∈ x′) and the prompt part (promptk,promptl ∈
x′) respectively. Thus we get two parts of loss, i.e.
Ltext and Lprompt.

3.4.1. Common Pretraining Objective

The goal of Ltext is to maintain the language capa-
bilities that the model has acquired. Thus, we fol-
lowed the original pre-trained objective function of
the model. Specifically, for encoder-only models
such as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), we adopt the masked language mod-
eling objective. For the decoder-only models such
as GPT (Radford et al., 2018b), LLaMA (Wu et al.,
2023), we adopt a next-token prediction objective.

Encoder-only Models We follow the masking
strategy and the masked language modeling ob-
jective of BERT (Devlin et al., 2019) in the text
part. Specifically, given a sequence x = {wi}, we
corrupt it into x̃ by masking 15% of its tokens at
random and then re-train the LLM parameterized by
θ to reconstruct x = {w̃i} by predicting the masked
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tokens x̃ conditioned on x̃:

Ltext(θ) = −
∑
i∈C

log pθ(w̃i = wi|x̃) (4)

where C is the index set of the masked tokens in
the sequence x.

Decoder-only Models For the decoder-only mod-
els, we follow GPT’s method (Radford et al., 2018b).
Specifically, for the sequence x = {wi}, we use a
standard language modeling objective to minimize
the following loss:

Ltext(θ) = −
∑
i∈C

log pθ(wi|wi−k, . . . , wi−1) (5)

where k is the size of the context window.

3.4.2. Information Reconstruction Objective

In order to enhance the pre-trained model’s ability
to process downstream domain-specific text, we in-
troduced the i reconstruction objective, i.e., Lprompt.
Unlike general knowledge enhancement methods
that directly integrate knowledge information into
the model, this loss function assists the model in
learning the implicit knowledge pattern in the infor-
mation from distinct sources.

Since the structure of the prompt part conforms
to the preset template (starting with an entity, fol-
lowed by linking verbs and ending with a knowl-
edge phrase), we redesign the mask strategy for
its MLM optimization. To ensure semantic in-
tegrity, we replace the token of the knowledge
phrase with the [MASK] symbol with a probability
of 30% and keep the other part of the prompt tem-
plate unchanged. Specifically, given a sequence
promptk(or promptl) = {wp

i }, we corrupt it into
˜{wp
i } by masking 30% of its tokens at random and

then re-train the LLM parameterized by θ to recon-
struct {w̃p

i } by predicting the masked tokens w̃p

conditioned on {w̃p
i }:

Lprompt(θ) = −
∑
i∈Cp

log pθ(w̃
p
i = wp

i |{w̃
p
i }) (6)

where Cp is the index set of the masked tokens in
the sequence promptk(or promptl).

3.4.3. The Total Loss

Finally, the total loss can be computed as:

L = Ltext + µLprompt (7)

where µ ∈ (0, 1) is the balancing coefficient.

4. Experiment

In this section, we present the experimental results
obtained from employing multiple model architec-
tures across various task types. These results ef-
fectively demonstrate the efficacy of the FAvPD.

4.1. Baselines and Notations
We experiment with BERT-base (Devlin et al.,
2019), RoBERTa-base (Liu et al., 2019), RoBERTa-
large (Liu et al., 2019), LLaMA-7b and LLaMA-
13b (Touvron et al., 2023), implemented by Hug-
gingface3, as our baseline and backbones.

In our comparison map, we are mainly concerned
with the following setup:

• Standard Supervised Fine-Tuning. We pri-
marily stick to Wolf et al. (2020) and apply
supervised fine-tuning to LLMs.

• Plain Adaptation. As we mentioned, the
plain adaptation methods involve an unlabeled
downstream text dataset fed back to the LLMs
for additional self-supervised training (Guru-
rangan et al., 2020). These comparisons
would manifest the effect of incorporating ex-
ternal knowledge and gold labels.

• Knowledge-enhanced LLMs. Knowledge-
enhanced LLMs (KE-PLMs) inject knowledge
(of various forms) from the considered domain.
See Section A.2 for more details.

• LLMs with the prompt. Recently, there has
been a popular method of giving external infor-
mation to large models in the form of prompts.
Therefore, in order to better demonstrate the ef-
fectiveness of FAvPD, we utilize the unified ex-
ternal information prompt in the FAvPD frame-
work as a prompt to LLaMA (Touvron et al.,
2023). Then, we evaluated the performance
of LLaMA-7b in the downstream tasks after
obtaining the prompt

• Our Method. We perform three implemen-
tations of FAvPD: FAvPD (text + knowledge),
FAvPD (text + label), and FAvPD (text + knowl-
edge + label). These notations are denoted
with various forms of data envelope. Essen-
tially, on the one hand, we attempt to justify
the necessity of a unified form of available
downstream and domain information. On the
other hand, with lateral comparison — for ex-
ample, FAvPD (text + knowledge) comparing
with knowledge-injection methods — we want
to showcase the efficacy and efficiency advan-
tages of our very simple method.

3https://github.com/huggingface/transformers
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Architecture Models Injection Datasets
Open Entity FIGER

Knowledge Label Prec. Rec. Mi-F1 Acc. Ma-F1 Mi-F1

BERT-base

Standard Supervised Fine-Tuning - - 76.37 70.96 73.56 52.04 75.16 71.63

ERNIE (Zhang et al., 2019) ✓ - 78.42 72.90 75.56 57.19 76.51 73.39
KnowBERT (Peters et al., 2019) ✓ - 78.6 71.6 75.0 57.0 79.8 75.0
K-BERT (Liu et al., 2020a) ✓ - 76.7 71.5 74.0 56.5 77.1 73.8
CoKeBERT (Su et al., 2021b) ✓ - 78.0 73.3 75.6 57.9 79.7 75.3

Adaptation (Gururangan et al., 2020) 76.44 73.63 75.01 53.46 76.92 72.64

FAvPD (Our Method) ✓ 74.15 78.05 76.05 62.17 77.72 76.77
FAvPD (Our Method) ✓ 77.64 74.21 75.89 60.92 79.96 76.90
FAvPD (Our Method) ✓ ✓ 74.99 79.36 77.11 64.12 83.26 78.81

RoBERTa-base

Standard Supervised Fine-Tuning - - 77.4 73.6 75.4 56.3 76.9 74.2

CoLAKE (Sun et al., 2020b) ✓ - 77.0 75.7 76.4 - - -
KEPLER (Wang et al., 2021c) ✓ - 77.8 74.6 76.2 62.0 81.8 77.4
CoKeBERT (Su et al., 2021b) ✓ - 76.8 74.2 75.6 62.2 82.3 77.7

Adaptation (Gururangan et al., 2020) 75.83 75.32 75.57 56.13 81.80 77.28

FAvPD (Our Method) ✓ 78.51 74.05 76.22 66.61 83.04 79.52
FAvPD (Our Method) ✓ 78.28 74.58 76.39 65.72 83.64 79.56
FAvPD (Our Method) ✓ ✓ 78.66 76.84 77.74 68.56 85.26 81.71

RoBERTa-large

Standard Supervised Fine-Tuning - - 77.55 74.95 76.23 56.31 82.43 77.83

K-Adapter (Wang et al., 2021b) ✓ - 79.30 75.84 77.53 59.50 84.52 80.42
LUKE (Yamada et al., 2020) ✓ - 79.9 76.6 78.2 61.7 82.4 77.8
CokeBERT (Su et al., 2021b) ✓ - 78.1 76.9 77.5 58.3 82.3 77.8

Adaptation (Gururangan et al., 2020) 78.86 75.63 77.21 56.31 82.66 77.75

FAvPD (Our Method) ✓ 78.73 76.21 77.45 67.14 84.31 80.02
FAvPD (Our Method) ✓ 78.29 76.52 77.40 66.79 83.83 79.88
FAvPD (Our Method) ✓ ✓ 78.22 78.26 78.24 70.16 86.84 82.01

Table 1: The Performance of FAvPD on Entity Typing Task. We designed experiments on models with three
different architectures. Injection represents the external information we combine when doing adaptive
training on the task text.

Architecture Models Injection Datasets
Knowledge Label Re-TACRED TACREV

RoBERTa-large

Standard Supervised Fine-Tuning - - 84.9 76.0

LUKE (Yamada et al., 2020) ✓ - 90.3 80.6

Adaptation (Gururangan et al., 2020) 88.2 78.3

FAvPD (Our Method) ✓ 90.5 81.7
FAvPD (Our Method) ✓ 90.7 82.0
FAvPD (Our Method) ✓ ✓ 90.7 82.1

Table 2: The Performance of FAvPD on Relation Extraction Task. We use Micro-F1 as our evaluation
metric. TACREV is the abbreviation of the TACRED Revisited dataset.

4.2. Datasets and Metrics
We evaluate our method on two entity typing tasks,
i.e., Open Entity (Choi et al., 2018) and FIGER (Ling
et al., 2015). Further, we evaluate our method on
a relation extraction task, i.e., Re-TACRED (Sto-
ica et al., 2021) and TACRED Revisited (Alt et al.,
2020). The statistics of these three datasets are
shown in Table 5. To speed up the adaptation pro-
cess, we sample part of the data from the training
set as the corpus for the prompted data envelope.
As shown in Table 6, to provide a rough estimation
of data complexity, we enumerate the size of adap-
tation data x′ required in the phase of adaptive pre-
training; note this includes the sample number of
input sentences x, prompted knowledge promptk
and prompted label promptl.

Metrics Generally, we follow the prior work’s eval-
uation metrics on the above datasets: precision,

recall, and micro-F1 for Open Entity and TACRED,
and accuracy, loose macro/micro (Ling and Weld,
2012) for FIGER. Besides, we further demonstrate
the efficiency advantage of FAvPD. In that, we
mainly concerned with the following items: (i)-the
convergence speed and (ii)-the quantity of extra
data acquired to attain a decent performance.

4.3. Results and Discussion

The results shown in Table 1 verify the effectiveness
of the FAvPD framework. The implementations of
FAvPD have achieved the best F1 Score among
those baselines implemented on the BERT-base.
Compared with standardized fine-tuning, FAvPD
exceeds the baseline by 3.55 of F1-Score for Open
Entity and 7.18 for FIGER, which demonstrates our
method effectively solves the domain discrepancies.
Besides, FAvPD also outperforms Plain Adaptation
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Methods Settings Injection Datasets
Knowledge Label MedQA-USMLE MedMCQA

ChatGPT (OpenAI, 2022)

Zero-shot

- - 57.00 44.70
OPT-6.7b (Zhang et al., 2022) - - 27.34 28.64
Galactica-6.7b (Taylor et al., 2022) - - 30.16 30.48
LLaMA-7b (Touvron et al., 2023) - - 27.10 24.30
LLaMA-7b with prompt - - 26.71 25.89
Standard Supervised Fine-Tuning

PEFT*

- - 27.34 32.37
Adaptation (Gururangan et al., 2020) 27.73 35.81
FAvPD on LLaMA-7b (Our Method) ✓ 31.26 40.59
FAvPD on LLaMA-7b (Our Method) ✓ 29.85 39.44
FAvPD on LLaMA-7b (Our Method) ✓ ✓ 32.68 42.58

Table 3: The Performance of FAvPD on Question Answering Task. Accuracy Score Reported. PEFT*
indicates we apply LoRA (Hu et al., 2022a) tuning (100M trainable parameters) to LLaMA-7b Architecture.

by a large margin, showing the important impact
of prompted knowledge and prompted labels. Fur-
ther, FAvPD outperforms the knowledge-enhanced
LLMs, which proves that LLM can efficiently cap-
ture domain-related knowledge in the process of
FAvPD.

To further demonstrate the effectiveness of our
approach, we conduct experiments on RoBERTa-
base architectures. As shown in Table 1, we ob-
served similar experimental results. FAvPD based
on RoBERTa-base architecture makes a further im-
provement compared with FAvPD based on BERT-
base. Our method outperforms most knowledge
injection methods, showing its incredible effective-
ness and efficiency. Notably, in FIGER, FAvPD
exceeds the baseline by 12.26 of accuracy and
7.51 of F1 score.

We conduct a further experiment on the archi-
tecture of a large version of Roberta. The results
shown in Table 1 and Table 2 verify the effective-
ness of the FAvPD framework in RoBERTa-large
architecture. In the experiment of FAvPD based
on RoBERTa-large, we achieved state-of-the-art
results for Open Entity and FIGER. Specifically,
FAvPD achieved 78.24 of F1-Score for Open Entity
and 86.84 of F1-Score for FIGER, showing that
our method is also helpful for large models with
rich knowledge. For the relation extraction task,
FAvPD exceeds the baseline by 5.8 of F1-Score for
Re-TACRED and 6.1 for TACRED Revisited.

To further verify the generalizability of our method
on larger parameter scale models, we implement
our method on the LLaMA-7b (Touvron et al., 2023)
model and evaluate it on two medical question an-
swering datasets, i.e. MedQA-USMLE (Jin et al.,
2020) and MedMCQA (Pal et al., 2022). As shown
in Table 3, we achieved FAvPD in combination
with the method of Parameter-Efficient Fine-Tuning
(PEFT), and the accuracy exceeded the baseline
by 5.34 and 10.21, respectively.

4.4. Low Resource Costs and High
Efficiency

In addition to achieving significant performance
improvements, FAvPD also enjoys low resource
costs. In this section, we will analyze the efficiency
advantages of FAvPD from multiple dimensions:
data cost, computing power cost, and time cost.

4.4.1. Computational Speedup

To demonstrate that our approach is faster and
lighter than knowledge injection frameworks, we
analyze the scale of the training corpus and time
consumption. As shown in Table 4, we conclude
that FAvPD requires only 1% of the corpus than
the typical knowledge injection frameworks while
achieving superior performance. For the last col-
umn from this table, FAvPD generally costs orders
of magnitude less computational resources. To
name a few, FAvPD only requires 1 NVIDIA 2080Ti
within 1 hour. If converted to FLOPs, it is at most
1% of other methods.

This is, in particular, in sharp contrast to the prior
knowledge-injection frameworks, as shown in Ta-
ble 4. Overall, the above results demonstrate that
FAvPD enjoys improvement in both performance
efficacy and training efficiency compared to prior
work.

4.4.2. Convergence Rate

To qualitatively analyze the influence of FAvPD
on LLM in the fine-tuning stage, we meter the F1
Score throughout the training process. As shown
in Figure 3, FAvPD further accelerates the con-
vergence rate on the downstream tasks. Overall,
FAvPD achieves optimal results with fewer fine-
tuning steps.

4.5. Transferability Assessment
In addition to superior performance on downstream
tasks, we also measure the effect of FAvPD by
transferability, and the results show that FAvPD
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Model Statistics of
Corpus and Knowledge

Computational
Consumption (FLOPs) Computational Consumption Details

ERNIE
(Zhang et al., 2019)

4500M subwords,
140M entities 9.30× 1018 8 NVIDIA 2080Ti GPUs for 24 hours

CoLAKE
(Sun et al., 2020b)

26M examples,
3M entities 1.53× 1019 8 32G NVIDIA V100 GPUs for 38 hours

K-Adapter
(Wang et al., 2021b)

5.5M sentences,
1M examples 1.94× 1019 4 16G NVIDIA V100 GPUs for 4 days

LUKE
(Yamada et al., 2020)

3.5B words,
11M entities 5.81× 1020 16 NVIDIA Tesla V100 GPUs for 30 days

FAvPD(Ours) 10K sentences,
26K entities 4.84× 1016 1 NVIDIA 2080Ti GPU within 1 hour

Table 4: Comparison of our method and Knowledge Enhanced LLMs. The above “FLOPs" results are
inferred estimates based on relevant hardware data reported in other work and are not our reproducible
results. The reference data shows that the computing power of NVIDIA RTX 2080 Ti is 13.45TFLOPS, and
the computing power of NVIDIA Tesla V100 is 14TFLOPS. By default, the GPU uses peak performance
and a utilization of 100%

Figure 3: Variation of Micro-F1 Score with
training steps during fine-tuning. The upper
curve indicates the implementation of FAvPD
(text+knowledge+label). The down curve indicates
the implementation of standardized Fine-tuning.
The arrow indicates the moment when the high-
est Micro-F1 Score is reached.

can effectively improve the transferability of the
model. Transferability measures how well a model
performs when transferring from a pre-training task
to a downstream task. FAvPD aims to improve
the transferability of LLMs, to perform better in the
downstream task. In this work, we use the Loga-
rithm of Maximum Evidence (LogME) (You et al.,
2021) as our assessment. LogME takes the last
layer features of the LLM and labels as input and
outputs the transferability score of the LLM. A pre-
trained model with a higher LogME value will likely
have better transfer performance. As shown in Fig-
ure 4, plain adaptation slightly improves the trans-
ferability of LLM. In contrast, FAvPD significantly
improves the transferability performance of LLM.

Figure 4: The LogME Score Analysis for
BERT-base on Open Entity (The higher the
LogME, the stronger the transferability). The
notations of Std. Standard Supervised Fine-
Tuning (SFT), PlainAda, FAvPD(K), FAvPD(L) and
FAvPD(KL) indicate implementation of Standard
Supervised Fine-Tuning, Plain Adaptation(text),
FAvPD(text+knowledge), FAvPD(text+label) and
FAvPD(text+knowledge+label), respectively.

5. Conclusion

Domain discrepancies between downstream tasks
and pre-training corpora can significantly impact
the performance of LLMs. We address this issue
by proposing a lightweight and fast adaptation so-
lution for language models and unifing the employ-
ment of external knowledge, domain-specific text
and ground-truth labels. The proposed framework,
dubbed FAvPD, is extensively validated as effec-
tive on many NLP tasks and highly versatile. In this
study, we mainly focus on concept-proving the va-
lidity of FAvPD on the empirical side. Besides, we
hope to explore further in the future the theoretical
reasons behind its high efficiency in the adaptive
tuning stage.
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Limitations

In this work, in much resemblance to the main-
stream domain tuning or knowledge injection
methodologies, FAvPD generally trades in gener-
alizability to obtain much higher training efficiency
and better performance, adapted for each specific
domain. In the future, we hope to develop further
on this line towards multi-domain generalization.
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A. Appendix

A.1. Dataset Details
We present the downstream task dataset statis-
tics in Table 5. Further, as shown in Table 6, we
show the number of samples for the training set, the
number of entity links, and the number of reference
labels during the FAvPD process.

Dataset Train Dev Test
Open Entity 2, 000 2, 000 2, 000

FIGER 2, 000, 000 10, 000 563
TACRED 68, 124 22, 631 15, 509

Table 5: Dataset statistics for Adaptation and fine-
tuning.

Dataset Adaptive
Sentences

Entity
Annotation

Label
Information

Open Entity 2, 000 2, 649 1, 914
FIGER 8, 267 22, 306 22, 033

TACRED 13, 012 26, 580 13, 012

Table 6: Dataset statistics for Adaptation and fine-
tuning.

A.2. Knowledge Enhanced LLMs
Baselines

We compare our method with Knowledge En-
hanced PLMs (KE-PLMs) based on the different
backbones, i.e., BERT-base, RoBERTa-base, and
RoBERTa-large.

• BERT-base: ERNIE (Zhang et al., 2019),
KnowBERT (Peters et al., 2019), K-BERT (Liu
et al., 2020a), CokeBERT (Su et al., 2021b).

• RoBERTa-base: CoLAKE (Sun et al., 2020b),
KEPLER (Wang et al., 2021c), CokeBERT (Su
et al., 2021b).

• RoBERTa-large: K-Adapter (Wang et al.,
2021b), LUKE (Yamada et al., 2020), Coke-
BERT (Su et al., 2021b).

A.3. Experimental Setup
A.3.1. Entity Typing

We evaluate our method on Open Entity (Choi et al.,
2018) and FIGER (Ling et al., 2015) for entity typing
tasks. Open Entity is a collection of about 6,000
sentences with fine-grained entity type annotations,
which describe appropriate types for the role the
target entity plays in the sentence. FIGER is a
much larger dataset with 2M data and more fine-
grained classification with 113 types. To fine-tune
our models for entity typing, we apply the entity

features to the classification layer by adding the
special token “$” before and after the labeled entity.
To evaluate the model performance, we adopt the
evaluation metrics of previous work, i.e., precision,
recall, micro-f1 score for Open Entity and accuracy,
loose macro, loose micro (Ling and Weld, 2012)
score for FIGER.

A.3.2. Relation Extraction

We evaluate our method on TACRED (Zhang et al.,
2018) for the relation extraction task. TACRED is a
large-scale relation extraction dataset with 106,264
examples built over newswire and web text. To
fine-tune our models for relation extraction, we ap-
ply the entity features to the classification layer by
adding the special token “$” before and after the
first entity and adding the special token “#” before
and after the second entity. To evaluate the model
performance, we adopt the evaluation metrics of
previous work, i.e., micro-precision, micro-recall,
and micro-f1 score for TACRED.

A.4. TACRED Result
As mentioned in the Experimental Setup, we fol-
lowed the setting of the previous work and used the
original Tacred dataset to conduct the experiment.
Fig 7, Fig 8 and Fig 9 are the experimental results
under the same setting.

However, we did not put the relevant results in
the main part of this paper because we found in
subsequent work that the tacred dataset contained
annotation errors. This problem was also discov-
ered by Alt et al. (2020) and Stoica et al. (2021).
Here are more details:

• TACRED is one of the most widely used RC
datasets. Each instance includes a natural
sentence sequence, the types and spans of
the entity mentioned, and the relation held be-
tween the entities or no relation label if no re-
lation was found.

• TACREV (TACRED Revisited (Alt et al., 2020))
is a dataset revised from TACRED, which has
the same training data as the original TACRED
and extensively relabeled development and
test sets.

• Re-TACRED (Stoica et al., 2021) is another
completely re-annotated version of the TA-
CRED dataset through an improved crowd-
sourcing strategy. They re-define relation la-
bels to make them more clear and intuitive and
re-annotate the full TACRED dataset.

We use the Re-TACRED and TACREV datasets
instead of the TACRED dataset for the following
reasons: The TACRED dataset itself has major
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quality issues, with more than 50% of the most
challenging sentences in the validation and test
sets being mislabeled and causing an average 8%
drop in model performance in the F1-score.

A.5. An Example of the Hyperparameters
In this section we provide some hyperparameters
to facilitate readers to reproduce. Below is an ex-
amples of hyperparameters we use. For the same
set of experiments, we use exactly the same hyper-
parameters. The following are the hyperparame-
ters used by Roberta in experiments on the Figer
dataset:

Model Hyperparameters
• SEED: 120
• TRAIN_EPOCH: 3
• TRAIN_BATCH_SIZE: 64
• EVAL_BATCH_SIZE: 16
• GRADIENT_ACCUMULATION_STEPS: 2
• LEARNING_RATE: 1e-5
• ADAM_BETA_1: 0.9
• ADAM_BETA_2: 0.98
• ADAM_EPSILON: 1e-6
• WARMUP_PROPORTION: 0.1
• WEIGHT_DECAY: 0.01
• MAX_GRAD_NORM: 0.0
• MAX_SEQ_LENGTH: 128
• LOGGING_STEPS: 100
• EARLYSTOP_PATIENCE: 10

We provide more hyperparameter settings in
GitHub, https://github.com/Hyatio/FAvPD.
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Dataset Open Entity FIGER TACRED
Model P R Mi-F1 Acc Ma-F1 Mi-F1 P R Mi-F1
Vanilla Fine-Tuning 76.37 70.96 73.56 52.04 75.16 71.63 67.23 64.81 66.00
Plain Adaptation (text) 76.44 73.63 75.01 53.46 76.92 72.64 69.26 63.82 66.43
ERNIE (Zhang et al., 2019) 78.42 72.90 75.56 57.19 76.51 73.39 69.97 66.08 67.97
KnowBERT (Peters et al., 2019) 78.6 71.6 75.0 57.0 79.8 75.0 71.1 66.8 68.9
K-BERT (Liu et al., 2020a) 76.7 71.5 74.0 56.5 77.1 73.8 68.1 66.1 67.1
CokeBERT (Su et al., 2021b) 78.0 73.3 75.6 57.9 79.7 75.3 71.0 66.9 68.9
FAvPD (text+knowledge) 74.15 78.05 76.05 62.17 77.72 76.77 71.84 65.38 68.46
FAvPD (text+label) 77.64 74.21 75.89 60.92 79.96 76.90 71.50 66.02 68.65
FAvPD (text+knowledge+label) 74.99 79.36 77.11 64.12 83.26 78.81 71.19 67.85 69.48

Table 7: The Performance of FAvPD on Entity Typing and Relation Extraction Task (BERT-base Architec-
ture).

Dataset Open Entity FIGER TACRED
Model P R Mi-F1 Acc Ma-F1 Mi-F1 P R Mi-F1
Vanilla Fine-Tuning 77.4 73.6 75.4 56.3 76.9 74.2 70.8 69.6 70.2
Plain Adaptation (text) 75.83 75.32 75.57 56.13 81.80 77.28 71.89 68.84 70.33
CoLAKE (Sun et al., 2020b) 77.0 75.7 76.4 - - - - - -
KEPLER (Wang et al., 2021c) 77.8 74.6 76.2 62.0 81.8 77.4 71.5 72.5 72.0
CokeBERT (Su et al., 2021b) 76.8 74.2 75.6 62.2 82.3 77.7 71.3 71.0 71.1
FAvPD (text+knowledge) 78.51 74.05 76.22 66.61 83.04 79.52 70.52 70.74 70.63
FAvPD (text+label) 78.28 74.58 76.39 65.72 83.64 79.56 71.49 70.74 71.11
FAvPD (text+knowledge+label) 78.66 76.84 77.74 68.56 85.26 81.71 74.71 67.88 71.13

Table 8: The Performance of FAvPD on Entity Typing and Relation Extraction Task (RoBERTa-base
Architecture).

Dataset Open Entity FIGER TACRED
Model P R Mi-F1 Acc Ma-F1 Mi-F1 P R Mi-F1
Vanilla Fine-Tuning 77.55 74.95 76.23 56.31 82.43 77.83 70.17 72.36 71.25
Plain Adaptation (text) 78.86 75.63 77.21 56.31 82.66 77.75 72.12 70.56 71.33
K-Adapter (Wang et al., 2021b) 79.30 75.84 77.53 59.50 84.52 80.42 69.39 74.59 71.89
LUKE (Yamada et al., 2020) 79.9 76.6 78.2 61.7 82.4 77.8 70.4 75.1 72.7
CokeBERT (Su et al., 2021b) 78.1 76.9 77.5 58.3 82.3 77.8 71.6 73.0 72.2
FAvPD (text+knowledge) 78.73 76.21 77.45 67.14 84.31 80.02 73.12 70.53 71.80
FAvPD (text+label) 78.29 76.52 77.40 66.79 83.83 79.88 71.46 72.36 71.91
FAvPD (text+knowledge+label) 78.22 78.26 78.24 70.16 86.84 82.01 71.96 72.39 72.17

Table 9: The Performance of FAvPD on Entity Typing and Relation Extraction Task (RoBERTa-large
Architecture).
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