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Abstract
Existing studies on relation extraction focus at the document level in a centralized training environment, requiring the
collection of documents from various sources. However, this raises concerns about privacy protection, especially
in sensitive domains such as finance and healthcare. For the first time, this work extends document-level relation
extraction to a federated environment. The proposed federated framework, called FedLCC, is tailored for biomedical
relation extraction that enables collaborative training without sharing raw medical texts. To fully exploit the models of
all participating clients and improve the local training on individual clients, we propose a novel concept of localized
context contrast on the basis of contrastive learning. By comparing and rectifying the similarity of localized context in
documents between clients and the central server, the global model can better represent the documents on individual
clients. Due to the lack of a widely accepted measure of non-IID text data, we introduce a novel non-IID scenario
based on graph structural entropy. Experimental results on three document-level biomedical relation extraction
datasets demonstrate the effectiveness of our method. Our code is available at https://github.com/xxxxyan/FedLCC.

Keywords: Federated learning, biomedical document-level relation extraction, contrastive learning

1. Introduction

Relation extraction (RE) aims to automatically de-
termine the types of relationships that exist be-
tween pairs of entities. The task is crucial for un-
derstanding and extracting knowledge from large
volumes of unstructured text, especially in domains
like biomedicine where there is a vast amount of
scientific text. In real-world applications, such as
electronic health records and discharge summaries,
data privacy is a significant concern and sharing
or replicating medical texts is subject to stringent
limitations and restrictions. However, conventional
deep learning-based approaches to RE is data-
hungry, demanding a significant amount of data
to achieve high performance. These techniques
typically rely on centralized data storage and data
sharing across various organizations, giving rise to
significant privacy concerns, particularly in sensi-
tive domains like biomedicine or finance.

To solve the above problem, federated learn-
ing (FL) (Yang et al., 2019; Jin et al., 2022) has
emerged as a promising approach, enabling collab-
orative training of models across multiple decen-
tralized devices or institutions without sharing the
raw data. In FL, as shown in Fig. 1, individual local
models are situated on local platforms (also known
as clients), and the training process is carried out
locally, allowing each client to learn from its own
data. After that, the model parameters or gradi-
ents on each client are aggregated by the central
server to update the global model, which is then
sent back to each client. Based on the updated
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global model, each client can further refine it using
their local data. This iterative process involves lo-
cal training and global model aggregation, which
continues until the desired level of convergence or
performance is achieved.

Further, real-world applications often involve in-
formation spanning beyond a single sentence, with
numerous relations expressed across multiple sen-
tences, necessitating the exploration of document-
level RE. Consequently, federated document-level
RE tasks are of great practical importance. In con-
trast to sentence-level RE, where only one sen-
tence typically involves one entity pair for classi-
fication, document-level RE tasks are more chal-
lenging. Apart from the complex scenario where a
document may involve multiple entity pairs, and an
entity pair may have multiple relationships, there
is also a common case where an entity appears in
various forms throughout the document. These dif-
ferent forms include aliases, co-occurrence words,
and coreferences, collectively referred to as "men-
tions" of the entity. An illustrative example is given
in Fig. 1, where the target entities are the chemical
"Clotiazepam" with five mentions, namely C11, C12,
C13, C14, and C15, and the disease "hepatitis" has
four mentions, i.e., D11, D12, D13, and D14. Further-
more, in this example, it is clear that these entities
are mentioned in almost every sentence, but only
the fourth sentence explicitly states that the chem-
ical "Clotiazepam" can interact with the disease
"hepatitis". Such complex and diverse semantics
emphasize the importance of capturing and under-
standing the context across sentences related to
target entities in document-level RE tasks.

To address the above challenges, this work pro-
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Figure 1: The overall framework of the proposed FedLCC for document-level biomedical relation extraction
in a federated setting.

poses a new framework called FedLCC that aims
at extracting biomedical triplets based on text data
stored on multiple devices, without the leakage of
private data. Inspired by model-contrastive feder-
ated learning (Li et al., 2021a), we propose the
concept of localized context contrast (LCC) in the
local training processes to leverage the collective
knowledge of all participating clients while ensuring
that local updates are appropriately adjusted based
on the localized context contrast among clients. At
the same time, considering that the data distribution
on each client often does not satisfy the indepen-
dently and identically distributed (IID) condition in
actual scenarios, we propose a partition method
for non-independently and identically distributed
(non-IID) data. This method is based on in graph
structural entropy and is designed specifically for
document-level RE datasets. We conduct exten-
sive experiments on three different document-level
biomedical relation extraction datasets. The results
show that FedLCC achieves significant better per-
formance under federated settings on both IID data
and non-IID data, indicating the effectiveness of
our framework, including the proposed concept of
localized context contrast.

The main contributions of this work are summa-
rized as follows:

• To ensure the protection of sensitive informa-
tion, we investigate document-level biomedical
relation extraction under the federated learning
paradigm, enabling collaborative and privacy-
preserving model training that only exchanges
model parameters rather than raw data.

• To achieve and ensure the performance of fed-
erated document-level biomedical relation ex-
traction, we proposed the FedLCC framework
based on localized context contrast that con-
ducts contrastive learning in document local-
ized context to rectify the local traning of each

client.

• Since there does no exist a widely accepted
method for defining non-IID data partitions for
RE tasks in a federated learning environment,
we propose a measure for non-IID data par-
tition RE tasks based on graph structural en-
tropy, which is the first of its kind for such text
datasets.

2. Related work

RE (Xiao et al., 2022) is a task of uncovering hid-
den knowledge and extracting structured informa-
tion from unstructured text. Valuable relational in-
formation between entities often extends beyond
individual sentences in real-world scenarios. For
example, in the biomedical domain, important find-
ings and underlying rules are frequently expressed
through multiple mentions spread across sentence
boundaries, which requires advanced techniques
to handle this complex linguistic structures, namely
the document-level RE technologies (Yao et al.,
2019). The methods employed to tackle document-
level RE tasks can be divided into two main streams.
The first is graph-based approaches (Christopoulou
et al., 2019; Sahu et al., 2019) that represent the
document as a graph, where entities are nodes and
relations are edges connecting the nodes. This
representation enables the model to capture long-
range dependencies and complex relational pat-
terns, facilitating a more comprehensive under-
standing of documents. The second is transformer-
based approaches (Xu et al., 2021; Zhou et al.,
2021; Xie et al., 2022).They take advantage of pre-
trained language models (Devlin et al., 2018) to
learn rich contextual representations, which is sim-
ple yet highly effective and can yield state-of-the-art
performance. However, it is important to note that
no research attempts have been reported on deal-
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ing with document-level RE tasks in a federated
environment.

In contrast to traditional centralized machine
learning, federated learning (Yang et al., 2019;
Jin et al., 2022) is achieved by performing model
training collaboratively across decentralized data
sources while keeping the data localized. Fe-
dAvg (McMahan et al., 2017) is a baseline fed-
erated learning algorithm, which aggregates the
local model parameters by weighted averaging.
However, the effectiveness of FedAvg will signif-
icantly degrade when it is directly applied to a sce-
nario where data distributions on different clients
do not observe the IID assumption (Zhu et al.,
2021), which remains an open challenge in fed-
erated learning. Recent studies have proposed
several variants of FedAvg to address the non-IID
problem (Zhu and Jin, 2019; Ji et al., 2019) and
they mainly focus on solving heterogeneous label
distribution over multiple clients.

Most existing federated learning algorithms on
non-IID data are developed for computer vision.
With the increasing awareness of privacy protec-
tion, federated learning has received increased at-
tention also in natural language processing (Lin
et al., 2021), such as named entity recognition (Ge
et al., 2020) and knowledge graphs (Chen et al.,
2021, 2022). Little research on federated learn-
ing for RE tasks has also been reported with few
exceptions. For instance, a federated denoising
framework (Sui et al., 2020a) is proposed to sup-
press label noise in distantly supervised RE. FedED
(Sui et al., 2020b) is based on knowledge distilla-
tion to overcome the communication bottleneck in
supervised RE, while a distributed joint extraction
framework (Wang et al., 2023) is proposed for sed-
imentological entities and relations. To the best of
our knowledge, these are the only studies on RE
tasks in the federated learning setting, and all of
which are developed for sentence-level RE tasks.
Besides, there is a lack of further exploration of
non-IID problems relevant to RE tasks. This poses
an urgent demand for solutions to document-level
RE tasks in a federated learning setting, particularly
for addressing non-IID problems.

3. Method

3.1. Task Definition
Given a document D containing a set of entities
{ei}ni=1, an RE task aims to extract the relations be-
tween each entity pairs (es, eo)s,o=1...n;s̸=o, where
es and eo are identified as subject and object en-
tities, respectively. Generally, one entity ei may
occur multiple times in a document, so we define
these mentioned entities as mentions {mij}

Nei
j=1.

Furthermore, a federated document-level biomed-

ical RE task can be defined as follows. Sup-
pose there are K biomedical clients {C1, ..., CK}
with respective private document data {D1, ...,DK},
the goal is to implement collaborative training on
D ≜ ∪i∈[K]Di via a central server, and guarantees
that no data on any local devices is exposed to
others.

3.2. Document-Level RE

As shown in Fig. 1, given a document D =
[x1, x2, ...xl], we first mark the spans of the entity
mentions by inserting a special entity markers “*"
at the start and end of each mention. Then the
document is fed into a pretrained language model
(PLM) to obtain the contextual embedding of textual
tokens:

H = [h1, h2, ..., hl] = PLM ([x1, x2, ..., xl]) (1)

where H ∈ Rl×d, l is the length of the input docu-
ment, and d is the hidden dimension of the PLM.
For each entity ei with its mentions {mij}

Nei
j=1, Nei

denotes the number of mentions for ei, the em-
bedding of the special token “*" at the start of one
mention is taken as the mention embedding, and it
is denoted as hmij

. Then the entity embedding is
calculated by logsumexp pooling (Jia et al., 2019)
the embedding of mentions corresponding to the
same entity, which can be expressed as follows:

hei = log

Nei∑
j=1

exp
(
hmij

)
(2)

To get a more condensed and precise represen-
tation that is useful to determine the relation for an
entity pair, we adapt the localized context pooling
(Zhou et al., 2021) to enhance the embedding of
an entity pair with an additional local context em-
bedding that is related to both entities. Specifically,
since the pretrained transformer-based language
models is used as our document encoder, the multi-
head attention matrix in the last layer of PLM is
denoted as A ∈ Rh×l×l, where h is the number
of attention heads, and Akij represents the atten-
tion from token i to token j in the k-th attention
head of the last layer. We first take the attention at
the position of the “*" symbol as the mention-level
attention, and then average the attention over men-
tions of the same entity to obtain the entity-level
attention Aei ∈ Rh×l, which denotes attention from
the i-th entity to all tokens. For each entity pair
(es, eo), we multiply the entity-level attention of es
and eo to obtain the local context that is important
to both entities. Then the localized context embed-
ding c(es,eo) ∈ Rd is calculated as follows from the
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original contextual embedding H:

q(es,eo) =

h∑
j=1

(
Aes

j ·A
eo
j

)
(3)

a(es,eo) = q(s,o)/1⊤q(es,eo) (4)

c(es,eo) = H⊤a(es,eo) (5)

The above process is illustrated on the left panel in
Fig. 1.

To get different representations for different en-
tities, localized context embedding is then fused
into the globally pooled entity embedding as follows.
z
(es,eo)
s and z

(es,eo)
o represent the context-enhanced

representations of subject es and object eo, respec-
tively.

z(es,eo)s = tanh
(
Wshes +Wc1c

(es,eo)
)

(6)

z(es,eo)o = tanh
(
Woheo +Wc2c

(es,eo)
)

(7)

To reduce the amount of parameter calculations,
we also use a grouped bilinear function for feature
combination. The entity embedding z

(es,eo)
s and

z
(es,eo)
o are both split into k equal-sized groups, then

the probability at which relation r is associated with
the entity pair (es, eo) is calculated as follows:

z(es,eo)s =
[
z1s , z

2
s , ..., z

k
s

]
(8)

z(es,eo)o =
[
z1o , z

2
o , ..., z

k
o

]
(9)

P (r | es, eo) = sigmoid
(

k∑
i=1

zis
⊺W i

rz
i
o + br

)
(10)

where W i
r ∈ Rd/k×d/k for i = 1, ..., k are the model

parameters.

3.3. Local Training
During the local training, each client independently
trains the model using its local data. Here we take
the k-th client as an example to introduce this pro-
cedure, which is the same for the rest clients. In
round t, client k first receives the global model pa-
rameters Θk from the master server and then uses
the local document data to train the RE model in-
troduced in Section 3.2, and its classification loss
function LBCE is calculated as follows:

LBCE = −
∑
r

(yr · log (P (r | es, eo))+

(1− yr) · log (1− P (r | es, eo)))
(11)

Since there is always feature drift among these
local clients in federated training, we propose an
additional loss called the localized context contrast
loss LLCC to update the parameters of local mod-
els. It enables the relevant context, crucial for deter-
mining the relations in the document, to be better
located during each round of model update. Specif-
ically, a loss function similar to the NT-Xent loss
(Chen et al., 2020) is modified to rectify the local
updates by adjusting the agreements of localized
context learned from the local and global models.
It is mainly based on the idea of contrastive learn-
ing. For each sample on client k, suppose that
Lt is the localized context learned by the global
model on the server during the t-th communication
round, Lt

k is the localized context learned by the
local model on client k, and Lt−1

k is the localized
context learned by the same client in the t − 1-th
round, then the goal is to simultaneously reduce
the distance between Lt and Lt

k and increase the
distance between Lt

k and Lt−1
k , where L = c(es,eo)

is calculated by Eq. (5). The localized context con-
trast loss function is calculated as follows, where
τ is the temperature parameter and sim(·, ·) is the
cosine similarity function.

LLCC = − log
exp

(
sim

(
Lt

k, L
t
)
/τ

)
exp

(
sim

(
Lt

k, L
t
)
/τ

)
+ exp

(
sim

(
Lt

k, L
t−1
k

)
/τ

)
(12)

Overall, the final local training loss is defined as
the combination of the classification loss and the
localized context contrast loss:

L = LBCE

(
Θt

k; (es, eo; r)
)
+

µLLCC

(
Θt

k;Θ
t−1
k ;Θt; (es, eo)

) (13)

where µ is a hyper-parameter to control the weight
of localized context contrast loss.

3.4. Model Aggregation
Suppose Csel is the set of participating clients in the
t-th communication round. Once the clients have
completed local training, the trained model param-
eters on each client will be uploaded to the server
for global model aggregation. This aggregation pro-
cess generates a new global model that captures
the collective knowledge from the distributed clients
by taking an average of all trained local model pa-
rameters. The model parameters are calculated as
follows:

Θt+1 =
1

n

∑
k∈Csel

Θt
k (14)

where n is the number of participating clients and
Θt

k is the trained parameters by minimizing Eq. (13)
on the local data of client k in round t. Subse-
quently, the global model finalizes the aggregation
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process and send the updated model back to each
client for the next round of model update. Algorithm
1 lists the main steps of the entire procedure.

Algorithm 1 The FedLCC Framework
Require: the number of local clients C;

the client selection fraction F ;
the number of communication rounds T ;
the local batch size B
the local epoch E;
the learning rate η;
the coefficient of comparison µ;

1: Initialize Θ0 on the central server
2: for round t = 0, 1, 2, ..., T − 1 do
3: n← max(C × F, 1)
4: Csel ← (random set of n local clients)
5: for each client k ∈ Csel in parallel do
6: Θt

k ← LocalTraning(k,Θt)
7: end for
8: Θt+1 ← 1

n

∑
k∈Csel

Θt
k

9: end for

10: function LocalTraining(k,Θt)
11: Θt

k ← Θt

12: B ← (split Dk into batches of size B)
13: for epoch i = 0, 1, 2, ..., E do
14: for batch b ∈ B do
15: LBCE ← Eq.(11)
16: LLCC ← Eq.(12)
17: L ← LBCE + µLLCC

18: Θt
k ← Θt

k − η∇L (Θt
k, b)

19: end for
20: end for
21: return Θt

k

22: end function

3.5. Non-IID Data Partition for
Documents

Considering that real-world data distributions can
be remarkably diverse due to variations in context,
language, or user behavior, we design a new non-
IID data partition strategy based on the structural
entropy of graphs (Solé and Valverde, 2004) to
verify the proposed algorithm. To the best of our
knowledge, this is the first of its kind for partitioning
document data in a federated learning environment.
The partition method proposed in this work is partly
inspired by the idea of building an edge-oriented
graph neural model for biomedical document-level
RE (Christopoulou et al., 2019). Through the calcu-
lation of the graph structural entropy for the estab-
lished graph, which somewhat measures the com-
plexity of the graph and the distribution of structure,
we can use it to assess the complexity of RE in

each document sample:

H = −
∑
i

pi log (pi) (15)

where H represents the calculated graph structural
entropy, pi is the probability of each different de-
gree value in the graph, which can be calculated
by the adjacency matrix of the graph. In contrast
to most existing work focusing on heterogeneous
label distribution over the clients, this work uses
the above complexity to achieve the division of a
given dataset into different data distributions.

More details of the proposed non-IID data parti-
tion method can be found in Section 4.2.

4. Experimental settings

4.1. Dataset

We conduct experiments on three publicly available
document-level biomedical RE datasets and their
statistics are listed in Table 1.

CDR (Chemical-Disease Reactions) dataset (Li
et al., 2016) is a document-level dataset con-
structed by utilizing PubMed abstracts. It primarily
revolves around a binary classification task, which
aims to identify induced relation from chemical en-
tity to disease entity.

CHR (CHemical Reactions) dataset (Sahu et al.,
2019) is created by distant supervision. If two chem-
ical entities have a relation in Biochem4j, they will
be regarded as positive instances in the dataset;
otherwise as negative.

GDA (Gene-Disease Associations) (Piñero et al.,
2016) aims to identify gene and disease concepts
interactions at the document level, but with a much
more massive scale. It is constructed through dis-
tant supervision and we further divide the training
set into a training set and a development set in a
ratio of 8 to 2.

Data Count Train Dev Test
CDR #Document 500 500 500

#Pos pairs 1038 1012 1066
#Neg pairs 4202 4075 4138

CHR #Document 7298 1182 3614
#Pos pairs 19652 3188 9584
#Neg pairs 34713 5666 16580

GDA #Document 23353 5839 1000
#Pos pairs 36079 8762 1502
#Neg pairs 96399 24362 3720

Table 1: Statistics of the document-level biomedical
RE datasets.
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Figure 2: Statistical visualization of the partitioned data for each client under the non-IID scenario based
on graph structural entropy.

Hyperparameter Value
number of local clients C 10
client selection fraction F 1
number of communication rounds T 50
local batch size B 3
local epochs E 1
optimizer Adam
learning rate η 0.000025
coefficient of comparison µ 0.1
temperate of comparison τ 0.5

Table 2: Hyperparameter configuration.

4.2. Implementation Details

In our experiments, we adopt the Huggingface’s
Transformer (Wolf et al., 2019), which is initialized
with the pretrained cased SciBERT (Beltagy et al.,
2019), a BERT model trained on multi-domain cor-
pora of scientific publications. For a fair compari-
son, we implemented our method and all baselines
in the same experimental settings and all hyperpa-
rameters are listed in Table 2. We set the number
of local clients (C) to 10 for all datasets, other pa-
rameters are also set the same. Since the client
selection fraction F , local batch size B and number
of local epochs E directly influence the number of
secure local updates per round, we tested different
values for analysis in the experiments.

As for the data partitioning, in the IID scenario,
the training data of each dataset is randomly shuf-
fled and evenly divided into C portions. In the non-
IID scenario, for each dataset, we first calculate the
graph structural entropy of all samples for the train-
ing data to obtain the upper and lower bounds of its
value, and the divide the value interval into C equal
parts. The corresponding document samples are
divided according to the division of the numerical
intervals, and the number of samples contained on
each client may be different. Figure 2 shows the
client data distribution and statistical information
of each dataset. These dataset partitioning opera-

tions simulate the scenario where each hospital or
institution is treated as a local client and the cen-
tral server is located in a trusted third party. The
non-IID setting also simulates the imbalance in the
number of training samples for each client in reality.

4.3. Compared Algorithms
In centralized training, we compare our model as
depicted in Section 3.2 with the following state-of-
the-art models:

• GCNN (Sahu et al., 2019): A labeled edge
graph convolutional neural network model that
leverages multi-instance learning with bi-affine
pairwise scoring to predict the relations in a
document.

• LSR (Nan et al., 2020): A latent structure re-
finement model empowers the relational rea-
soning across sentences by automatically in-
ducing the latent document-level graph.

• DocRE-HGNN (Shi et al., 2021): A heteroge-
neous GNN-based framework that encodes
the document with temporal convolutional net-
works and utilizes graph transformer networks
to generate semantic paths.

• MGSN(Liu et al., 2021): A multi-granularity
sequential network based on the accumulation
of both document-level information and entity-
level information.

In the federated training manner, we compare the
proposed FedLCC with the following algorithms:

• FedAvg (McMahan et al., 2017): In FedAvg,
the parameters of local models are combined
by taking their weighted average, with each
weight being determined by the size of the
corresponding local dataset.

• FedAtt (Ji et al., 2019): A layer-wise attention
mechanism is utilized during model aggrega-
tion, enabling it to automatically attend to the
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weights of the relation between the central
global model and the local models of different
clients.

5. Results and analysis

5.1. Comparative Results

Method P R F1
Centralized Training

GCNN 52.8 66.0 58.6
LSR - - 64.8
DocRE-HGNN - - 64.4
MGSN 69.0 66.7 67.8
Our 63.00 74.11 68.10

Federated Training (IID)
FedAvg 69.57 60.23 64.55
FedAtt 66.83 64.63 65.71
FedLCC 69.56 65.85 67.66

Federated Training (Non-IID)
FedAvg 64.05 62.01 63.01
FedAtt 65.93 61.35 63.56
FedLCC 65.54 65.67 65.60

Table 3: Results on CDR.

Method P R F1
Centralized Training

MGSN 78.5 73.4 75.9
GCNN 84.7 90.5 87.5
Our 89.03 91.13 90.07

Federated Training (IID)
FedAvg 90.78 90.82 90.80
FedAtt 90.88 90.47 90.68
FedLCC 91.84 92.14 91.99

Federated Training (Non-IID)
FedAvg 88.62 90.91 90.23
FedAtt 89.44 90.93 90.18
FedLCC 89.18 93.22 91.15

Table 4: Results on CHR.

Table 3, Table 4 and Table 5 present the results
of FedLCC against baselines on three real-world
biomedical document-level datasets. By comparing
the results between centralized training and feder-
ated training, we can see that FedLCC effectively
guarantees the performance in federated scenar-
ios and mostly achieves competitive results against
other baselines. In Table 3, the results of central-
ized training are better than those of federated train-
ing on the CDR dataset. This can be attributed to
the fact that there is a relatively limited amount of
data in each client due to the small size of the CDR
dataset, making it vulnerable to overfitting by the lo-
cal models. Nonetheless, federated training offers

Method P R F1
Centralized Training

DocRE-HGNN - - 81.6
LSR - - 82.2
Our 82.26 87.35 84.73

Federated Training (IID)
FedAvg 81.37 86.95 84.07
FedAtt 82.97 87.55 85.20
FedLCC 83.17 86.55 84.83

Federated Training (Non-IID)
FedAvg 78.83 86.02 82.27
FedAtt 80.27 85.89 82.98
FedLCC 82.62 86.09 84.32

Table 5: Results on GDA.

Figure 3: Convergence plots for FedLCC and other
baselines for each dataset under non-IID scenario
that use the structural entropy of the graph.

the distinctive benefit of safeguarding privacy, and
our approach effectively reduces the performance
gap compared to other methods. In Table 4 and
Table 5, where the dataset size and the number
of samples per client are relatively large, the re-
sults of federated training are unexpectedly better
than those of centralized training. Actually, in some
cases where each client has sufficient data, dis-
tributed training under the federated setting can be
seen as an ensemble, which can potentially outper-
form centralized learning with a single model. Ad-
ditionally, it is worth noting that in our experiments,
the parameters for centralized training directly fol-
low those used in the federated settings without
specific fine-tuning. We surmise that this may also
contribute to what we observed.

By comparing the performance across datasets
and taking into account the sample size of each
dataset, we can conclude that our algorithm is more
advantageous on small datasets. Meanwhile, it
demonstrates that the incorporation of localized
context contrast is highly beneficial for federated
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Figure 4: F1 score vs. communication rounds on the three datasets with various F (client selection
fraction).

training, enabling efficient fusion of sample infor-
mation from each client. From the convergence
profiles of the algorithms under comparison on the
three non-IID datasets shown in Fig. 3, we can
see that our algorithm maintains high performance
while having a relatively fast convergence speed.

5.2. Multi-client Parallelism
We further conduct experiments to analyze how
varying the fraction values will influence the gen-
eralization performance of the proposed FedLCC
algorithm. The fraction indicates the proportion of
the local clients participating in federated training in
each round of communication. In our experiments,
we configure it to take on values of 0.1, 0.3, 0.5,
and 1.0, respectively. With a fixed count of 10 local
clients for all datasets, we calculate the specific
number of selected clients by multiplying the total
number of local clients by the given fraction.

In Fig. 4, we visualize the F1 score perfor-
mance for each dataset in the IID scenario. Dif-
ferent curves represent different configurations of
FedLCC, each employing various client selection
fractions. We find that an increased number of
clients participating in the training process leads to
better F1 scores, despite that some datasets exhibit
fluctuations in their curves. Moreover, increasing
the degree of multi-client parallelism can help ac-
celerate convergence, as it allows for the utilization
of a greater amount of data in each training round.
Nonetheless, it is important to highlight that as the
proportion of clients increases, the consumption of
time and computing resources also increase. Con-
sequently, when determining the client fraction, it
is crucial to consider these factors, including the
expected performance.

5.3. Various Local Client Computation
Another critical factor that should be investigated
in federated training is the local client computation,
i.e., the number of epochs in local updating, since

B E FedAvg FedAtt FedLCC
3 1 8 9 5
9 1 10 10 7
15 1 13 12 9
3 5 7 5 2
9 5 9 8 3
15 5 11 10 4

Table 6: The number of communication rounds
required to achieve an F1 value of 80% on the CHR
dataset, fixing C to 1.0.

the actual computing power of each client may be
limited. Actually, local client computation is calcu-
lated by |Dk|

B E, which means it is controlled by the
local epoch number E and the local batch size B.
Dk is the size of private data in client k. That is
to say, a large number of local epochs, a smaller
batch size, or both will incur more client computa-
tion. We conduct experiments in the IID scenario
on the CHR dataset, and fix the client selection
fraction F to 1.0 while varying the local batch size
B with {3, 9, 15} and local epochs E with {1, 5}.
Table 6 lists the number of communication rounds
required for each algorithm to achieve an F1 value
of 80%. The results reveal that optimizing compu-
tation per local client by adjusting both B and E
yields favorable results for all methods. Notably,
our method exhibits faster convergence towards
the targeted F1 value compared to other baseline
methods.

6. Conclusion and Future Work

In this paper, we propose a privacy-preserving
biomedical document-level RE framework through
federated learning, namely FedLCC, which is based
on contrastive learning within the localized context
of documents. In addition, we design a non-IID data
partition strategy for document datasets based on
graph structural entropy. We perform comprehen-
sive experiments and analysis on three benchmark
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datasets under IID and non-IID scenarios. The ex-
perimental results demonstrate the effectiveness
of our proposed framework. We also analyze the
impact of multi-client parallelism and client compu-
tation on the training of our federated framework.
Increasing the number of participating clients in
each training round can improve performance but
also increase communication costs. Similarly, re-
ducing the local batch size and increasing local
epochs accelerates model convergence but also
incurs additional communication costs. In this work,
we only explore these influencing factors. In the
future, we aim to explore federated RE in more
realistic scenario with less communication cost.
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10. Appendices

Method Dev-Ign F1 Dev-F1
Centralized Training

Our 59.55 61.64
Federated Training (IID)

FedAvg 50.82 51.95
FedAtt 52.03 53.22
FedLCC 55.56 56.34

Table 7: Results on DocRED.
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To further verify the generalization capability of
the framework, we conducted additional experi-
ments on the document-level relation extraction
dataset, DocRE, as suggested by one of the re-
viewers. As the DocRE dataset format differs from
that of medical datasets, and since the test data
is not publicly available, we conducted direct ver-
ification of the IID scenario on the validation set
of the dataset. The results, illustrated in Table 7,
demonstrate that the proposed FedLCC algorithm
exhibits less performance degradation compared
to other algorithms.
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