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Abstract
Foundation Models (FMs), such as LLaMA, BERT, GPT, ViT, and CLIP, have demonstrated remarkable success
in a wide range of applications, driven by their ability to leverage vast amounts of data for pre-training. However,
optimizing FMs often requires access to sensitive data, raising privacy concerns and limiting their applicability
in many domains. In this paper, we propose the Federated Foundation Models (FFMs) paradigm, which
combines the benefits of FMs and Federated Learning (FL) to enable privacy-preserving and collaborative
learning across multiple end-users. We discuss the potential benefits and challenges of integrating FL into
the lifespan of FMs, covering pre-training, fine-tuning, and application. We further outline potential future
research avenues in FFM, including FFM pre-training, FFM fine-tuning, and federated prompt tuning, which
allow the development of more personalized and context-aware models while ensuring data privacy. Moreover,
we explore the possibility of continual/lifelong learning in FFMs, as increased computational power at the
edge may unlock the potential for optimizing FMs using newly generated private data close to the data source.
The proposed FFM concepts offer a flexible and scalable framework for training large language models in a
privacy-preserving manner, setting the stage for subsequent advancements in both FM training and federated learning.
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1. Introduction

In recent years, Foundation Models (FMs) such as
BERT (Kenton and Toutanova, 2019), GPT (Brown
et al., 2020; Radford et al., 2019), Llama (Touvron
et al., 2023a,b), ViT (Dosovitskiy et al., 2020), and
CLIP (Radford et al., 2021) have significantly ad-
vanced the field of artificial intelligence, showcas-
ing impressive performance across a wide range
of tasks and domains. However, the optimization
of increasingly complex FMs heavily depends on
the collections of massive datasets, which intro-
duces concerns regarding training data scarcity,
computational resources, privacy, and ethical con-
siderations. Simultaneously, the prevalent trend
of advancement in edge technologies generates a
vast amount of decentralized data, creating poten-
tial resources for further optimizing and specializing
FMs. Nevertheless, due to privacy concerns, this
private data is rarely leveraged for FM optimizations.
In light of this, Federated Learning (FL) (McMahan
et al., 2017) has emerged as a pioneering approach
for decentralized and privacy-preserving machine
learning, allowing models to learn from distributed
private data sources without directly accessing the
raw data.

The intersection of these two domains presents
a unique opportunity to unlock new possibilities
in AI research and to address critical challenges
in AI model development and real-world applica-
tions. Hence, we propose the concept of Federated

Foundation Models (FFMs), a novel paradigm that
integrates FL into the lifespan of FMs. This inte-
gration addresses the challenges mentioned above
related to data scarcity, computational resources,
privacy, and ethical considerations while facilitat-
ing privacy-preserving and collaborative learning
across multiple end-users. As advancements in
edge computing enable the optimization of FMs
using FL, we further explore the possibility of con-
tinual/lifelong learning for FMs in FFMs. We also
discuss the potential benefits and challenges of inte-
grating FL into different stages of the FMs’ lifespan,
including pre-training, fine-tuning, and application,
and provide potential research directions for FFM
tasks such as FFM Pre-training, FFM Fine-tuning,
and Federated Prompt Tuning. These tasks pro-
mote the development of personalized and context-
aware models while maintaining data privacy.

In summary, this paper offers a comprehensive
examination of the prospective of FFMs, proposing
a flexible and scalable framework for training large
models in a privacy-preserving manner. We believe
our work contributes to paving the way for future
advancements in both FMs and FL, fostering the
development of more secure and adaptable large
models and FL algorithms that cater to a wide range
of applications.
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Figure 1: Federated Foundation Model: Integrating federated learning into the lifespan of foundation
models, facilitating privacy-preserving, scalable, lifelong learning, robustness, and decentralized FMs.

2. Background

2.1. Federated Learning

As concerns about user data privacy grow, there is
an increasing need for AI models to be trained on
decentralized data without sharing private informa-
tion between clients. Federated Learning (FL) has
emerged as a solution to this problem, offering a
distributed and privacy-preserving machine learn-
ing approach that enables training on decentralized
data without compromising data privacy (McMahan
et al., 2017).

In FL, raw data remains on local clients, ensuring
data privacy and security while also enabling collab-
orative learning across multiple clients. The FL pro-
cess involves local model training, model aggrega-
tion algorithm, and global model updates. Through-
out this process, clients only share model updates,
such as weights and gradients, asynchronously,
reducing bandwidth requirements and minimizing
the risk of data leaks and breaches. A typical FL
algorithm is FedAvg (McMahan et al., 2017), which
demonstrates the FL process (see Algorithm 1).
The privacy-preserving nature of FL has led to its
widespread adoption in various applications, partic-
ularly in privacy-sensitive domains like healthcare.

However, FL still faces challenges related to het-
erogeneous data distribution. Data may be non-
independent and identically distributed (non-IID)
across clients, leading to poor model convergence
and performance. Recent work in FL has focused
on improving gradient descent to stabilize train-
ing (Liu et al., 2020; Karimireddy et al., 2020; Yu
et al., 2021); personalizing model weights to en-
hance performance on downstream tasks (Deng
et al., 2020; Tan et al., 2022; Yu et al., 2022b,a);
and employing model compression techniques
like knowledge distillation, dynamic dropout, and
adaptive pruning to reduce overfitting on non-IID
datasets and improve communication efficiency
(Jiang et al., 2022; Yu et al., 2021; Lin et al., 2020;

Algorithm 1 Federated Learning Process (FedAvg)
1: Input: Global AI model w0, clients S, commu-

nication rounds T
2: for t = 1, 2, . . . , T do
3: Server deploys global model wt−1 to clients

∈ S
4: for each client k ∈ S do
5: Client k optimizes wt−1 on local data,

producing wk
t

6: end for
7: Select a subset of clients St to communicate

with the server
8: for each client k ∈ St do
9: Client k sends local model update

∆wk
t = wk

t − wt−1 to the server
10: end for
11: Server aggregates local updates and com-

putes the new global model:

wt = wt−1 + ηt
∑
k∈St

nk∆wk
t

12: end for

Yu et al., 2021; Lin et al., 2020; Yu et al., 2022a,c;
Nguyen et al., 2023). Despite these advances,
there remains a gap between traditional model train-
ing and FL, particularly in terms of performance
when dealing with heterogeneous data distribu-
tions.

2.2. Foundation Models

Foundation Models (FMs), such as the GPT fam-
ily (Brown et al., 2020; Radford et al., 2019),
ViT (Dosovitskiy et al., 2020), CLIP (Radford et al.,
2021), and BERT (Kenton and Toutanova, 2019),
have become a driving force in AI, serving as the
basis for various downstream tasks. These models
are trained on massive datasets and demonstrate
remarkable capabilities across multiple domains.
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The lifespan of FMs typically includes pre-training,
fine-tuning, and application. Pre-training involves
unsupervised or self-supervised learning on large-
scale datasets, while fine-tuning adapts the models
to specialized tasks. For example, GPT (Brown
et al., 2020; Radford et al., 2019; OpenAI, 2023)
models learn grammar, syntax, and semantics dur-
ing pre-training, enabling them to be easily fine-
tuned for tasks such as text classification, sen-
timent analysis, translation, and summarization.
Parameter-efficient fine-tuning (PEFT) methods,
e.g., low-rank adapters (LoRA) (Hu et al., 2022),
have been proposed to reduce the memory and
compute requirements during the fine-tuning of
these large models. Recently, neural architecture
search (NAS) techniques have been employed to
discover high-performing configurations of these
adapters (Muñoz et al., 2024b,a).

In the application stage, FMs show extraordi-
nary adaptability to downstream tasks using zero-
shot learning. Prompt Engineering, an emerging
research area, explores this potential by optimiz-
ing the interaction between users and FMs through
carefully crafted prompts, thereby improving perfor-
mance on downstream tasks. Various methods for
prompt engineering have been proposed, including
prompt templates (Wei et al., 2021), prompt tun-
ing and instruction tuning (Wei et al., 2021) (Lester
et al., 2021; Han et al., 2022), automated prompt
generating (Zhou et al., 2022; Sanh et al., 2021),
and in-context learning (Min et al., 2021, 2022; Ru-
bin et al., 2021; Liu et al., 2021). These approaches
enable FMs to learn from examples or instructions
supplied as part of the input without the need for
explicit fine-tuning or labeled examples.

In summary, the combination of Federated Learn-
ing and Foundation Models offers great opportu-
nities to revolutionize the AI landscape by lever-
aging the strengths of both paradigms. This inter-
section opens up numerous research directions
and applications in areas such as personalized rec-
ommendations, natural language understanding,
healthcare, finance, and more. As AI researchers
continue to explore Federated Foundation Models,
we expect to see innovative solutions and break-
throughs that lead to more robust, efficient, and
ethical AI systems serving the needs of individuals
and society.

3. Motivation for Federated
Foundation Models

In this section, we discuss the various challenges
that motivate the development of Federated Foun-
dation Models (FFMs), covering aspects such as
data privacy, model performance, communication
cost, scalability, deployment, personalization and
real-time adaptation, and bias reduction. As shown

in Figure 1, These existing challenges highlight
the potential advantages of combining Foundation
Models (FMs) and Federated Learning (FL) for a
wide range of applications and scenarios.
Data privacy. The widespread deployment of AI in
society generates vast amounts of data (e.g., im-
ages collected by cameras in smartphone applica-
tions, prompt dialog produced by users), presenting
potential resources for optimizing and specializing
FMs. However, privacy concerns have limited the
use of private data for FM optimization. FFMs offer
significant improvements in data privacy by incor-
porating FL, enabling FM optimization on private
data. By optimizing FM tasks (e.g., pre-training,
fine-tuning, and prompt tuning) on local data with-
out sharing raw information, FFMs comply with data
protection regulations and preserve user privacy.
This approach is particularly beneficial when sen-
sitive data, such as medical records or personal
communications, must be used to improve model
performance without compromising confidentiality.
Model performance. Combining FMs and FL pro-
vides benefits to FMs, boosting their performance.
FMs gain access to a broader range of data for
optimization tasks such as fine-tuning, prompt tun-
ing, and pre-training. This expanded data access
enables the development of more accurate and ef-
ficient AI systems better suited for users in diverse
scenarios. This combination benefits FL, as well.
FL can overcome challenges associated with Non-
IID (Non-Identical Independent Distributed) and bi-
ased data (Zhao et al., 2018) by leveraging the
advanced capabilities of FMs, leading to improved
performance across different tasks and domains.
Cost. FFMs reduce communication costs by shar-
ing only model updates between devices and the
central server, significantly saving bandwidth and
communication costs for transmitting raw data. Ad-
ditionally, FFMs can potentially reduce the labor
cost associated with collecting and managing data
in a central location, as data is generated and used
locally at edge devices. This efficiency makes
FFMs a more practical and cost-effective solution
for training and deploying FMs.
Scalability. Current FMs, especially large lan-
guage models, often face scalability limitations due
to limited computational power at the edge. Many
FMs are run centrally and provide API access for
users, which can lead to capacity constraints and
API congestion. In the near future, advancements
in computational power may enable FMs to run lo-
cally on edge devices. FL’s scalable nature makes
it an ideal framework for combining with FMs, ac-
commodating numerous devices with varying com-
putational capabilities. By integrating FL princi-
ples, FMs can leverage advancements in computa-
tional power, becoming more scalable and enabling
broader deployment and improved performance
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Table 1: Comparison of the Federated Foundation Model with Traditional FM Optimization
Federated

Foundation Model
Traditional

FM Optimization

Data Privacy Privacy-preserve ✓ Centralized Data Collection ✗

Communication
Overhead Communicate Model Updates ✓ Communicate Data to Central Server ✗

Model
Performance Diverse Data Improvement ✓ Lacks Diversity ✗

Resource
Distribution Distributed Across Devices ✓ Centralized ✗

Data
Efficiency Better with data diversity ✓

Requires more data for
similar performance ✗

Latency Distributed Computation ✗ Lower with Centralized Computation ✓

System
Complexity Distributed Coordination ✗ Centrally Managed ✓

Scalability Scalable to Many Clients ✓ Unscalable with Large Datasets ✗

Consistency Weakly Connected
Collaborative Learning ✗

Consistent Updates in
Controlled Environment ✓

Ease of
Deployment Challenging ✗ Easier ✓

across various tasks and domains.
Deployment. FFMs offer potential advantages in
deployment, particularly in reducing latency and
enhancing user experience. Running FMs centrally
with API access for users can result in latency is-
sues due to network communication between the
user’s device and the central server hosting the
model. In contrast, FFMs can be deployed and run
locally on edge devices, potentially reducing latency
by eliminating network communication. This allows
for faster response times and a more seamless user
experience when interacting with the model. How-
ever, available computational resources on edge
devices must be considered when deploying FMs
locally. As discussed in the Scalability section, ad-
vancements in computational power will be crucial
for enabling local deployment on a wide range of de-
vices, ensuring efficient and effective performance
across various tasks and domains.
Personalization and real-time adaptation. FFMs
facilitate a high degree of personalization by lever-
aging the decentralized nature of FL. By training
on diverse, user-generated data, FMs can be tai-
lored to individual preferences and requirements,
offering more personalized and context-aware so-
lutions across various tasks and domains. A key
advantage of FFMs is their ability to adapt in real-
time as new personalized data becomes available
from edge devices. This continuous learning ca-
pability ensures that the models remain up-to-date
with users’ evolving needs and preferences, fur-
ther enhancing their personalization. The focus on
personalization in FFMs leads to improved perfor-
mance and greater user satisfaction. By providing
AI solutions that dynamically adapt to user-specific
needs, FFMs enable more effective and engaging

user experiences across a wide range of applica-
tions and domains.
Bias reduction. FFMs contribute to bias reduc-
tion in AI systems by incorporating diverse data
from decentralized sources, resulting in more inclu-
sive and fair AI solutions. The models learn from
various users, increasing their awareness of the
nuances and complexities of real-world scenarios,
and leading to more informed and less biased deci-
sions across tasks and domains. Additionally, the
privacy-preserving nature of FL encourages more
users to participate in the training process, further
diversifying the data and knowledge incorporated
into FMs. This results in models better equipped to
handle and minimize biases, providing fairer and
more equitable AI solutions for all users.
Continual/Lifelong learning. FMs combined with
FL provide an ideal platform for continual lifelong
learning. This combination facilitates the continu-
ous adaptation and improvement of models by har-
nessing decentralized and diverse data sources,
leading to more versatile and effective AI systems.
As advancements in edge computing power be-
come more prevalent, the realization of continual
lifelong learning in FMs will soon be within reach.
This progress will enable AI models to learn and
grow throughout their lifespan, unlocking new pos-
sibilities for AI research and practical applications
in various domains. By embracing continual life-
long learning, FFMs can help create more adaptive,
efficient, and personalized AI systems that can dy-
namically adjust to user-specific needs and prefer-
ences, ultimately benefiting users from all walks of
life.

In summary, as detailed in Table 1, our pro-
posed FFM presents several advantages over tra-
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ditional FM optimization. Despite introducing cer-
tain challenges, FFMs exhibit significant promise in
enhancing data privacy, reducing communication
overhead, improving model performance, optimiz-
ing resource distribution, increasing data efficiency,
and providing better scalability. FFMs represent
a robust approach to address many challenges
and limitations associated with traditional, central-
ized machine learning. By incorporating Feder-
ated Learning (FL) into FM optimization, we are
poised to engender more efficient, personalized,
and privacy-conscious AI systems. This advance-
ment heralds a new era in AI research and appli-
cation, potentially making AI more equitable and
advantageous for a diverse array of users. The
integration of FL not only fortifies the foundational
aspects of machine learning but also democratizes
AI, thereby extending its benefits across a broader
societal spectrum.

4. Federated Foundation Model:
Prospective and Future Research

In this section, we discuss potential future research
directions and general challenges related to FFMs,
covering but not limited:

• Federated foundation model pre-training

• Federated foundation model fine-tuning

• Federated prompt tuning

• Federated continual (lifelong) learning

• Federated retrieval augmented generation

• General challenges

• Other future research directions

We scrutinize the distinct characteristics and pre-
requisites of these tasks, spotlighting the opportu-
nities and hurdles encountered when employing
FFMs to address real-world issues. Our aim is to
build a robust foundation for comprehending the
breadth and potential of this emerging paradigm,
thereby fostering further research and development.
As mentioned in Section 3, some tasks may not
be feasible until computational power at the edge
advances further.

4.1. Pre-training of Federated
Foundation Models

Motivation: The motivation behind Federated
Foundation Model (FFM) pre-training is to enhance
traditional Foundation Model (FM) pre-training
methodologies, harnessing Federated Learning’s
(FL) capability to utilize private data to improve
model generalization while preserving data privacy.

Algorithm 2 General FFM Optimization process
1: Input: Global AI model w0, clients S, commu-

nication rounds T
2: Server initialize global model w0

3: for t = 1, 2, . . . , T do
4: if Public data available then
5: Server optimize wt−1 on public data
6: end if
7: Server send global model wt−1 to partici-

pate clients ∈ S
8: for each client k ∈ S do in parallel
9: Client k optimizes wt−1 on local data,

producing wk
t

10: end for
11: Select a subset of clients St to communicate

with the server
12: for each client k ∈ St do
13: Client k sends local model update

∆wk
t = wk

t − wt−1 to the server
14: end for
15: Server aggregates local updates and com-

putes the new global model:

wt = wt−1 + ηt
∑
k∈St

nk∆wk
t

16: end for

Introducing FL to FM lifespan allows for the FM to
access a broader range of knowledge spectrum
from private parties, mitigating overfitting on pub-
lic data, and potentially enabling more generalized
and context-aware FMs, while still benefiting from
centralized data.
Goal: Enhance FM pre-train methodologies via FL,
and allow FMs to foster a deeper understanding of
data representations from private data, thereby en-
hancing the model’s capability to generalize across
various tasks and domains.
Procedure Overview: As shown in Algorithm 2
and Figure 2, FFM pre-training is structured in two
phases: centralized pre-training on public data,
and federated pre-training on private data. these
phases interact via an adaptive switching mech-
anism, enabling the model to alternate between
centralized pre-training (if the centralized public
data is available) and federated pre-training.

4.2. Federated Foundation Model
Fine-tuning

Motivation: Traditional FM fine-tuning typically in-
volves an offline deployment where the model is
fine-tuned on private data, and subsequently iso-
lated. This isolation precludes collaboration among
end-users, potentially limiting the FM’s efficacy, es-
pecially when the local private data is limited and
biased.
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Figure 2: Federated Foundation Model tasks: The FFM centralized optimization process aggregates local
models and updates them using public data. Private clients download up-to-date global model parameters
from the server, optimize the FM locally on their tasks, and send the optimized model back to the server.

Goal: Leverage the collaborative learning feature
of FL, enabling end-users with similar downstream
tasks to collaboratively fine-tune FMs while pre-
serving data privacy, thus potentially achieving en-
hanced performance on downstream tasks.
Procedure Overview: Similar to FFM pre-training,
FFM fine-tuning follows the same procedure in Al-
gorithm 2, FFM fine-tuning builds upon FFM pre-
training phase. It employs an adaptive switching
mechanism to alternate between centralized fine-
tuning on public datasets for benchmark tasks and
federated fine-tuning on private data for local tasks.
As depicted in Figure 2, various fine-tuning strate-
gies can be adopted with FFM. These include, but
are not limited to, (1) direct fine-tuning of the FM
backbone, and (2) Parameter Efficient Fine-tuning
(PEFT) of a lightweight adapter head, while keeping
the FM backbone frozen.

4.3. Federated Prompt Tuning
Motivation: Incorporating FL into prompt engineer-
ing presents a promising avenue for enhancing the
performance of FMs while maintaining data privacy.
Specifically, FFMs can assist in utilizing sensitive
data for crafting prompt templates and soft prompt
tuning, which in turn, enables more accurate and
personalized prompt conditioning for tasks.
Goal: Collaboratively develop more effective and
adaptable prompts without compromising the pri-
vacy of sensitive data.
Procedure Overview: This subsection primarily
explores automated prompt (soft prompt) methods
like prompt tuning (Lester et al., 2021), which re-
fines the input prompt to better the model’s out-
put. As illustrated in Figure 2 and the general FFM
optimization process in Algorithm 2, within feder-
ated prompt engineering settings, end-users can
collaboratively train auto-prompt models (prompt
generator components in Figure 2) on their local
private data and tasks, sharing the learned auto

prompt models without disclosing the sensitive data.
This collaborative endeavor facilitates the creation
of more effective and adaptable prompts, thereby
enhancing the overall performance of FMs on down-
stream tasks.

4.4. Federated Continual (Lifelong)
Learning

Motivation: FMs exhibit a significant limitation due
to their dependency on pre-trained offline knowl-
edge. For example, ChatGPT’s knowledge is up-
to-date only until 2021. With the anticipated in-
crease in computational power, FM optimization
at the edge may become feasible. FFMs can un-
lock the possibility of continual and lifelong learning
from newly generated private edge data. With its
scalability and privacy-preserving nature, FL can
harness decentralized power to optimize FMs us-
ing emerging private data at the edge, which can
serve as a valuable resource for model optimiza-
tion. Furthermore, federated continual and lifelong
learning could lead to a more efficient utilization of
resources. Institutions would no longer necessitate
retraining models from scratch with the availabil-
ity of new data. Through FL, incremental model
improvements can be attained, thus diminishing
the time and computational resources requisite for
model training and refinement.
Goal: Employ FL to harness the computational
power at the edge, unlocking the potential for con-
tinual and lifelong learning of FMs on newly gen-
erated private data at the edge. This approach
also aims to keep FMs updated with contemporary
knowledge while preserving data privacy.
Procedure Overview: As delineated in Sec-
tions 4.1 and 4.2, establishing an online federated
server is essential to facilitate the continuous com-
munication between the server and edge end-users.
The FM is updated at the edge based on the newly
generated private data and regularly synchronizes
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with the online server.

4.5. Federated Retrieval Augmented
Generation

Motivation: Federated Retrieval Augmented Gen-
eration (FRAG) seeks to extend the advantages of
Retrieval Augmented Generation (RAG) by leverag-
ing decentralized data across various clients while
ensuring privacy preservation. This amalgamation
aims to furnish more current and precise responses
in a privacy-conducive manner.
Goal: Integrate FL with the RAG framework to
bolster the performance of Language Model Gen-
erators (LMGs) in crafting responses, utilizing both
centralized and decentralized data sources.
Procedure Overview: In the FRAG framework,
the procedure unfolds in several distinct phases
to ensure both effective data retrieval and privacy
preservation. During the retrieval phase, a query
is initiated from a user end, which triggers data
retrieval from both a centralized server and local
databases of clients within a federated network.
This query is shared among clients in a privacy-
preserving manner, enabling local clients to fetch
relevant private data at the edge. Following the data
retrieval, the generation phase commences where
each client independently generates a response
based on the retrieved data and the initial query.
The responses from all clients are then aggregated
in a privacy-preserving manner, ensuring no sensi-
tive information is exposed during the process. Fi-
nally, an aggregated response, which encapsulates
the collective intelligence of the federated network
while preserving user privacy, is relayed back to the
user. This structure allows for a more informed and
accurate response generation in a decentralized
and privacy-preserving environment.

4.6. Challenges

Despite the benefits associated with FFM, sev-
eral substantial challenges persist. This subsec-
tion enumerates and discusses these general chal-
lenges.
Model Size: The substantial size of FMs, such as
GPT (OpenAI, 2023) and Llama (Touvron et al.,
2023b), presents a significant challenge for opti-
mization FMs at the edge, especially when consid-
ering the resource-constraint edge devices in FL
settings.
Data Quality: The effectiveness of FM pre-training
and fine-tuning, including self-supervised pre-
training, is heavily contingent on data quality as
highlighted in (Gunasekar et al., 2023). Ensur-
ing high-quality data in private federated settings,
where data sharing is restricted, presents a notable
challenge in filtering out toxic and redundant data.

Computational Cost: Optimizing FMs entails sub-
stantial computational cost (Meng et al., 2023). In
FL environments, collaborative optimization of FMs
at the edge necessitates high hardware specifica-
tions for edge clients (Meindl and Moser, 2023;
Malandrino and Chiasserini, 2021).
Communication Cost: The routine sharing of
model updates, encompassing model weights and
gradients, incurs significant communication over-
head (Ángel Morell et al., 2022; Almanifi et al., 2023;
Mohammadi et al., 2021; WANG et al., 2019) be-
tween clients and the server in FL environments.
Data Heterogeneity: In FL, data is often non-
identically distributed (non-IID) across clients (Zhao
et al., 2018; McMahan et al., 2017), which could
adversely affect the convergence and performance
of the optimization process.
Security Attacks: Although FL inherently pre-
serves privacy, ensuring robust privacy guarantees
in FFM, especially against sophisticated security
attacks, remains vital (Lyu et al., 2022; Zhang et al.,
2022b; Liu et al., 2022).
Scalability: With the escalating scale of deploy-
ment, efficiently managing collaborative training
and sharing model updates becomes increasingly
challenging (Díaz and García, 2023; Zawad et al.,
2022; Kołodziej and Rościszewski, 2021).
Asynchronous Training: As the number of clients
increases, efficiently aggregating updates from a
large number of asynchronous clients and ensur-
ing consistent performance scaling is challeng-
ing (Wang et al., 2022; Chen et al., 2021).
Non-Stationary Data Distributions: The perpet-
ually evolving nature of the user data suggests
that data distributions may shift over time (Zhang
et al., 2022a). Ensuring robust model performance
amidst such changes is a significant challenge.
Resource Constraints: The resource-constrained
edge devices could impede the optimization pro-
cess of FMs at the edge.
Global Model Synchronization: Achieving global
model synchronization across all participants while
accommodating local updates and ensuring model
stability is a nuanced challenge.
Evaluation Metrics: Establishing robust metrics
to evaluate the performance, privacy, and other
crucial aspects of the FFM process is pivotal.

4.7. Other Future Research Directions
In addition to the potential FFM tasks and general
challenges discussed earlier, we outline several
potential future research directions below.
Advancement in Edge Hardware: Supporting
the substantial computational and resource require-
ments of FM optimization in FL-edge scenarios ne-
cessitates significant advancements in edge hard-
ware.
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Private-preserve Training Data Process: The
success of self-supervised pre-training largely
hinges on data quality. In the context of FFM, where
private data at FL-edge clients remains inaccessi-
ble, and only the data owner can access it, devising
private-preserving training data processing meth-
ods is crucial. This is to ensure data quality at the
edge, where preprocessing is challenging. Recent
works, such as (Gunasekar et al., 2023; Li et al.,
2023), propose automatic training data filters to
evaluate and enhance data quality, addressing a
critical aspect of data processing in FFM.
Collaborative Model Compression: Designing
specialized model compression methods, like net-
work pruning and quantization, for heterogeneous-
resource edge clients is essential to efficiently uti-
lize the resources at edge clients. It also helps
reduce the size of FMs without sacrificing perfor-
mance. This is particularly critical for environments
with limited computational resources.
Neural Architecture Design: The design of com-
putational and hardware-efficient neural network
architectures is a promising direction to explore,
aiming to address the resource constraints and per-
formance requirements in FFM deployment.
Collaborative Self-supervised Learning: Self-
supervised learning has been a dominant approach
for FM pre-training. Developing specialized collab-
orative self-supervised learning methods can effec-
tively harness decentralized computational power
in FL-edge environments.
Collaborative Parameter Efficient Fine-tuning:
Designing collaborative parameter-efficient fine-
tuning (PEFT) methods is crucial for fine-tuning
FMs in FL scenarios, especially given the limited
and heterogeneous resource capacities of edge
clients.
Robust Model Fusion Algorithms: Creating ro-
bust algorithms for model fusion is vital to ensure
the effective aggregation of model updates from
different clients while preserving data privacy and
model performance.
Federated Multi-task Learning: Exploring feder-
ated multi-task learning can facilitate the simultane-
ous optimization of multiple learning tasks across
a federated network, leveraging the collective data
and computational resources to improve model per-
formance across various domains.

5. Conclusion and discussion

In this paper, we introduced the concept of Feder-
ated Foundation Models (FFMs), which integrate
Federated Learning (FL) into the lifespan of Foun-
dation Models (FMs). We discussed FFM tasks,
general challenges and potential future research
directions. It is important to note that the advance-
ment of computation at edge users is crucial for

the widespread adoption of FFMs, and we be-
lieve that such advancements will be realized in
the near future. As the field of FFM continues to
grow, we anticipate the emergence of numerous
related research areas, including improved privacy-
preserving techniques, the integration of FFM with
emerging technologies like IoT and edge comput-
ing, and the exploration of FFM in various appli-
cation domains such as healthcare, finance, and
manufacturing. Additionally, we foresee advance-
ments in adaptive model compression methods for
FFM local institutions, communication efficiency
research, specialized FL algorithms for efficient
updates and aggregation of FFM models, and se-
curity attack research. Overall, FFM represents a
promising research area in the age of FMs, with the
potential to address various challenges in privacy,
scalability, and robustness across diverse domains.
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