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Abstract
Cold-start is a significant problem in recommender systems. Recently, advancements in few-shot learning and
meta-learning have inspired many to integrate these techniques into recommender systems to tackle inherent issues
like data scarcity and limited user interactions Nevertheless, we argue that recent work has a huge gap between
few-shot learning and recommendations. In particular, users are locally dependent, not globally independent in
recommendation. Recognizing the importance of these local user relationships, we present a novel Few-shot learning
method for Cold-Start (FCS) recommendation that consists of three hierarchical structures. More concretely, this first
hierarchy is the global-meta parameters for learning the global information of all users; the second hierarchy is the
local-meta parameters whose goal is to learn the adaptive cluster of local users; the third hierarchy is the specific
parameters of the target user. Both the global and local information are formulated, addressing the new user’s
problem in accordance with the few-shot records rapidly. Experimental results on two public real-world datasets show
that the FCS method could produce stable improvements compared with the state-of-the-art.
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1. Introduction

Recommender systems have become significant
tools for discovering attractive information for users.
Many prestigious approaches (Koren et al., 2009;
Rendle et al., 2009; Mnih and Salakhutdinov, 2008;
He et al., 2017; Cheng et al., 2016) have been pro-
posed and made a great breakthrough in the rec-
ommendation community. Nevertheless, we argue
that they are brittle to recommendation scenarios
with few interactions. In other words, the cold-start
problem is still an open challenge for practical rec-
ommendations.

To alleviate the cold-start problem, many re-
searchers have presented lots of work (Vartak et al.,
2017; Sedhain et al., 2017; Hu et al., 2018; Kang
et al., 2019; Li and Tuzhilin, 2020; Lee et al., 2019;
Luo et al., 2020; Pan et al., 2019). Existing meth-
ods can be roughly divided into three categories:
1) data-driven method, referring to the use of
prior knowledge and sample augmentation, which
is straightforward to understand. The represen-
tative works are the transfer learning (Hu et al.,
2018; Kang et al., 2019; Man et al., 2017; Li and
Tuzhilin, 2020; Wang et al., 2019b). 2) model-
driven method, imposing the constraints to approx-
imate the ground-truth hypothesis, such as multi-
task learning. 3) algorithm-driven method, focus-
ing on refining the existing parameters, such as
meta-learning methods (Lee et al., 2019; Luo et al.,
2020; Du et al., 2019; Pan et al., 2019; Vartak et al.,
2017). We argue that the data-driven method faces
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the high cost of collecting annotated data. The
model-driven method needs to explore the related
task for end-to-end learning. The algorithm-driven
method is a popular research field recently, which
only relies on the few-shot samples to learn the
task parameters, achieving a fast adaption for new
tasks. Thus, the few-shot based method is naturally
suitable for the recommendation where the data
is also actually long-tailed, without sufficient user
feedback. More importantly, the algorithm-driven
method is devoted to achieving the goal of param-
eter selection for target users. In this paper, we
continue this trajectory toward. The meta-learning-
based method (Lee et al., 2019; Bharadhwaj, 2019;
Luo et al., 2020) has been applied for estimating
new users’ preferences with a few consumed items.
This type of method depends on the meta-learning
technique Model-Agnostic Meta-Learning (MAML)
(Finn et al., 2017; Chen et al., 2019), which as-
sumes that all tasks (corresponding to users in
recommendation scenarios) are independent, and
then each task/user could obtain the correspond-
ing specific parameters by initializing the global
parameters.

Despite the remarkable success of the above
methods with few interactions, we argue that there
is also a huge gap between meta-learning and rec-
ommendation. Specifically, there is a local clus-
tering effect among users, differing from that the
users/tasks are independent in the meta-learning
model. The specific example is shown in Figure 1.
There are 9 users and 10 items, respectively. We
first exchange some rows of the left matrix. And
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Figure 1: Illustration of user local dependency. ×
denotes the consumed/clicked/observed item. The
left table is the original interaction matrix, and the
right is the equivalent matrix after transformation.

then, some columns are further exchanged. Finally,
the right matrix which is equivalent to the origin user-
item interaction matrix could be obtained. From the
right matrix, we can observe that u2 and u7 have
similar preferences; u1, u3 and u5 have similar pref-
erences; and u8, u6, u4, and u9 have similar pref-
erences. In this example, there are three clusters
of all users, but there is no intersection between
clusters with high probability (especially in a large
sparsity matrix). In summary, users are locally de-
pendent, not globally independent of each other.
Therefore, if we adopt the meta-learning method
into recommendation directly, the global param-
eters ( or meta-parameters) can not be learned
effectively. In light of these observations, we ur-
gently need to consider the user’s local dependent
conditions, expecting more suitable for the recom-
mendation scenarios.

Given the above considerations, we propose
a novel Few-shot learning method for Cold-Start
(FCS) recommendation. The core idea is the de-
sign of a three hierarchical structure for the user’s
local dependence problem. The FCS is also based
on the meta-learning framework that contains the
inner loop and outer loop for gradient updating.
Specifically, the first hierarchy is global parameters,
which aims to learn the meta knowledge from the
different cross-users/tasks. The second hierarchy
is the local-meta parameters to obtain the adaptive
cluster of the target user in accordance with the
whole record of the target user via a tree-like struc-
ture. After that, the originally similar user or local
dependence users have more similar local param-
eters, addressing the problem of lack of globally
shared information discussed above. The third hi-
erarchy is the specific parameters for obtaining the
optimal parameters via fine-tuning the correspond-
ing local-meta parameters. Thus, when a new user
arrives with few-shot interactions, it can obtain the
local parameters quickly, either by taking advan-
tage of the knowledge learned within the cluster it
belongs to or initiating with the global parameters
as the new cluster if it is wildly different from any
existing clusters. Subsequently, we can use the

given few-shot samples to obtain the user-specific
parameters, aiming to predict unobserved items. It
is worth noting that FCS is very suitable for online
recommendation due to the rapid update of user
parameters with meta parameters.

The main contributions are summarized as fol-
lows:

• The few-shot learning is integrated to address
the cold-start problem in the recommendation,
which can be achieved by the adaptation pa-
rameter selection, resulting in personalized
modeling.

• A novel three-hierarchical structure is well de-
signed to address the problem of the user’s
local dependent, which can be adaptive to the
sparsity and few-shot scenarios well.

• On public explicit feedback datasets, extensive
experimental results demonstrate that FCS
produces competitive performances from mul-
tiple perspectives.

2. Related Work

This paper focuses on the cold-start recommenda-
tion via meta-learning (or few-shot learning) tech-
nology. Therefore, the cold-start problem is first
discussed. Then, we introduce the background of
meta-learning briefly, subsequence summarize the
recent work of meta-learning for recommendation.

2.1. Cold-Start Recommendation
Cold-Start recommendation is a significant chal-
lenge over the decades, which has attracted huge
attention. Generally, there are three directions for
current work: data-driven methods (or data aug-
ment), model-driven methods, and algorithm-driven
methods. The data-driven methods are devoted
to integrating various related side-information to
learn the priori knowledge. For example, trans-
fer learning-based methods (Hu et al., 2018; Kang
et al., 2019; Man et al., 2017; Wang et al., 2019b)
assumes that users have similar or related pref-
erences in both domains; content-based meth-
ods incorporate the item/user content information
(McAuley and Leskovec, 2013; Ling et al., 2014;
Amplayo et al., 2018a,b) or social information (Sed-
hain et al., 2017) into a unified model. However,
they rely on the additional information which is un-
obtainable in some cases due to the privacy protec-
tion and business barrier. The model-driven meth-
ods aim at obtaining useful information from sev-
eral similar tasks, e.g., multi-task learning (Wang
et al., 2019a) constructs similar tasks and chooses
an appropriate sharing network. In essence, both
data-driven and model-driven methods can be seen
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as a data-augment process. The algorithm-based
method is a new direction, which cannot rely on ad-
ditional data while only improving the optimization
process to achieve the few-shot samples learning.
The core of these methods is the meta-learning
(Zhu et al., 2021; Lin et al., 2021; Wang et al., 2021;
Yu et al., 2021), and more details will be described
in the following subsection.

2.2. Meta-learning
Meta-learning, learning to learn, is to learn a model
that can be fast adapted to previously unseen
tasks with few-shot data. In principle, this can be
achieved by leveraging knowledge obtained in other
related tasks. The few-shot learning aims to learn
a model only with a small number of data, which
can be seen as a branch of meta-learning or as
the validation of meta-learning. There are many
representative works of meta-learning (Chen et al.,
2019; Finn et al., 2017; Yao et al., 2019; Antoniou
et al., 2018; Nichol et al., 2018; Oreshkin et al.,
2018; Nichol and Schulman, 2018; Bao et al., 2019;
Bertinetto et al., 2018).

The meta-learning method is naturally suitable
for the recommendation case. Therefore, using the
meta-learning technique to solve the adaptation
problem, cold-start, or sparsity problem is attract-
ing more attention in the recommendation commu-
nity (Luo et al., 2020; Du et al., 2019; Pan et al.,
2019; Vartak et al., 2017). Moreover, MAML (Finn
et al., 2017) is model-agnostic meta-learning for
fast adaptation of deep networks, which has been
widely used in recommendations for generalization
(Lee et al., 2019; Chen et al., 2018; Luo et al., 2020;
Bharadhwaj, 2019; Manqing et al., 2020; Lu et al.,
2020). In this paper, we also apply MAML as our
base framework.

3. Proposed Method

In this section, we first describe a formal problem
definition and specific notations, and then give a
detail of the FCS structure. Finally, we give the com-
plete algorithm of the meta-training process and
meta-testing process. Furthermore, we discuss the
main differences and connections between FCS
and related frameworks from the perspective of
optimization.

3.1. Problem Formulation and Notations
In this paper, the top-K recommendation problem
can be formulated as follows. There is a set of
users U and a set of items V. Nu ⊆ V denotes
the set of items that user u has previously inter-
acted with, and all user-item interactions are noted
as D = {(u, v, v−) |u ∈ U ∧ v ∈ Nu ∧ v− /∈ Nu}.

Figure 2: The specific description of dataset.

Given above interaction information, we aim to pre-
dict whether user u has potential interest in items
v ∈ V \Nu with which he has not interacted before.

For a cold-start situation, each user only has a
few historical items, such as Nu ⊆ V for user u,
where the number |Nu| = K is few, named few-
shot user in this paper. The goal is to recommend
the items for K-shot users via fast adaptation.

Similar to the standard few-shot learning set-
ting, we first divide the original user-item interac-
tions into two parts as shown in Figure 2: meta-
training set, denoted as Tmeta−train; and meta-
testing set, denoted as Tmeta−test, whose scenar-
ios are unseen during meta-training process, i.e.
Tmeta−train∩Tmeta−test =. Each meta-training task
Tu ∈ Tmeta−train

corresponds to an user u and has the corre-
sponding support DS

u and query DQ
u pairs: Tu =

DS
u ∪ DQ

u = {(u, v, v−)|v ∈ Nu ∧ v− /∈ Nu}; DS
u

and DQ
u are the user u’s support set and query

set respectively, which are obtained by dividing
the user-item interactions in each task/user ran-
domly. The support sets DS

u are used to optimize
the base learner, while query sets DQ

u are used to
optimize the meta learner. Thus, the goal of cold-
start recommendation is to learn a well-generalized
meta-learner M(·) from Tmeta−train, and then to
fast learn a base learner on new tasks Tmeta−test

which only has a few user-item interaction records.
What’s more, for clear definition, bold lower-case
letters represent vectors for clear definition through-
out the rest of this paper.

3.2. Overview of Framework
Our method contains a base-learner and a meta-
learner. The base-learner is a specific recom-
mendation network for traditional representation
and rank learning. The meta-learner is a three-
hierarchical structure, aiming to integrate the
tasks/users in a cluster-specific manner and init
the base-learner parameters in gradient based on
meta-training, so that the optimal parameters of
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specific-user can be obtained as fast as possible.
Therefore, we first describe the details of the base
learner (recommendation network) and then intro-
duce the intermediate layer of the meta-leaner (clus-
ter integrated).

3.3. Recommendation Network
The classical recommendation network contains
Logistical Regression, Factorization Machine (Ren-
dle, 2010), Wide&Deep(Cheng et al., 2016), FFM
(Juan et al., 2016), DeepFM (Guo et al., 2017). Be-
cause our framework is model-agnostic, we could
choose an arbitrarily appropriate model to achieve
the recommendation network depending on real re-
quirements. Without loss of generality, we employ
the classical neural network of MultiLayer Percep-
tron (MLP) in this paper.

3.3.1. Embedding

The embedding module aims at handling the input
features and outputting a general representation
for given (u, v). The uniform of the phase could be
formulated as:

fΩ : (u, v)→ u,v (1)

In general, features can be divided into two types:
categorical features and continuous features. For
the continuous feature, which needs to be turned
into discrete fragments, e.g., the feature of age
becomes four fragments in accordance with the
general classification criteria: teenager, youth, mid-
dle age, and old age. For the categorical features,
we represent them by using the one-hot or binary
code, i.e., {0, 1}N , where N is the total number.
Thus, given an item v, the continnous representa-
tion can be denoted as vid = evV, where ev is
one-hot vector, and V is the embedding matrix.

According to the above operation, we can obtain
the user representation by concatenating embed-
dings, denoted as u = [utype1;utype2; . . . ; ]. Sim-
ilarly, the item representation can be denoted as
v = [vid;vtype1; . . . ; ].

3.3.2. Hidden Layer Module

According to above representation of user u and
item v, we can obtain the concatenation vector as
h0 = [u;v]. After that, the layers of MLP can be
formulated as: hn = g

(
WT

nhn−1 + bn

)
where

Wn denotes the weight matrix, bn denotes the bias
vector, g(·) is the activation function (such as Relu),
and σ(·) is the activation function of the sigmoid.
For simplicity, the hidden layer module can be de-
scribed as:

ho =M (u, v; θ,Ω) = σ
(
WT

o hn + bo
)

(2)

where all parameters of Wn are denoted as θ.

3.3.3. Loss Function

Given the sample of < u, v, v− >, we can obtain the
score of ho =M (u, v; θ), and ho− =M (u, v−; θ),
respectively. The loss function could be computed
as:

L (D; Ω, θ) =
∑

{u,v,v−}∈D

log
1

1 + exp− (ho − ho−)

(3)

3.4. Cluster Integrated
As mentioned above, the task/user is locally inde-
pendent. Thus, we need to capture the relation-
ships among different users to improve the perfor-
mance of recommendations in few-shot scenarios.
Firstly, we represent each task Tu by aggregated
over representations of all items of Tu, denoted as:

sTu =
1

|Nu|
∑
v∈Nu

v (4)

Given the representation of a task, we adopt a
hierarchical task clustering structure to locate the
cluster the task belongs. Specifically, there is a l-
layer network, each layer contains several clusters,
noted as kl, k ∈ {1, . . . ,K}. Note that, the input is
the task’s representation, and the output is the final
representation. It is believed to be cluster-specific
(Kim and Xing, 2010), encrypting the hierarchical
clustering result. The softmax of two-layer is:

pk
l→kl+1

u =
exp

(
−∥hkl

u − ckl+1∥
2

2/2
)

∑Kl+1

kl+1=1 exp
(
−∥hkl

u − ckl+1∥22/2
)
(5)

where ckl+1 is the k-th central of l + 1-layer, which
is also learnable variable. According to the above
softmax, we can compute the representation of the
next layer by:

hkl+1

u =

Kl∑
kl

pk
l→kl+1

f
(
Wkl+1

u hkl

u + bkl+1

u

)
(6)

where f(∗) denotes the activation function, i.e.,
tanh; Wkl+1

u and bkl+1

u are the weight matrix and
bias vector, respectively.

According to the above cluster integration, we
could obtain the final representation of the given
task Tu, denoted as hL

u , whose representation re-
flects the similarity among tasks. Subsequently,
for each task/user Tu, the parameter gate ok is ob-
tained by fully-connected layer, donoted as:

ok = σ
(
WT

f

[
hL
u ; sTu

]
+ bf

u

)
(7)

where σ(∗) is the sigmoid function, and Wf and bf
u

are weight matrix and bias vector, respectively. In
order to simplify, we denote all trainable parameters
of this module asW = {W∗

u,Wf ,b
∗
u}.
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Algorithm 1: Meta-Training
Input: Meta-training set Tmeta−train , loss

function L
Output: θ,Ω,W

1 Randomly initialize θ,Ω,W
2 while not converged do
3 Sample a batch of users

B = {u1, u2, . . . , uB} from U
4 Construct a batch of training task from

Tmeta−train according to users B:
T = {DS

⋃
DQ} = {DS

u

⋃
DQ

u |u ∈ B}
5 for u ∈ B do
6 Compute task representation in Eqn.4
7 Compute the gate of the cluster ok in

Eqn.7
8 Update parameters of the cluster:

θk = ok ◦ θ
9 Compute the loss of specific task

Ltrain
u ← L

(
DS

u ; θk,Ω,W
)

10 Update parameters with gradient
descent (taking one step as an
example): θk,u ← θk − α∇θkLtrain

u

11 end
12 Update the meta-parameters:

θ ← θ − β
∑

u∈B∇θL
(
DQ

u ; θk,u,Ω,W
)

13 Update the embedding parameters:
Ω← Ω− β

∑
u∈B∇ΩL

(
DQ

u ; θk,u,Ω,W
)

14 Update the cluster parameters: W ←
W − β

∑
u∈B∇WL

(
DQ

u ; θk,u,Ω,W
)

15 end

3.5. Meta-training
The process of meta-training is shown in Algorithm
1. Given the training data Tmeta−train, our goal is to
learn the meta-parameters. Concretely, we sample
a batch of users from U and then construct support
set DS and a query set DQ. The support set is
used to inner-loop for specific tasks, and the query
set is used to out-loop across different tasks.

In the inner loop, we first compute each target
task-specific representation using the the record of
user in equation 4. Then, according to the cluster
integration tree network, we can obtain the gate
of task θk. Finally, we use θk to update the user-
specific parameters θk,u by gradient descent. It
is worth noting that this step can be updated to
multiple steps.

In the outer loop, we use the query set data and
learned parameters θk,u to compute the loss and
then update the meta-parameters θ. In this phase,
other global parameters are also updated.

3.6. Meta-Testing
For the cold-start users with few-shot interactions,
we also construct the support set and query set first.

(a) (b) (c)

Figure 3: An intuitive illustration of recommendation
framework.

And then, we use the global parameters as initial-
ization, and then compute the user’s cluster by the
support dataset, to obtain the specific parameters
θk; finally, we update the θk,u in accordance with
gradient descent. For the query dataset, we com-
pute their prediction score by f

(
DQ

u ; θk,u,Ω,W
)

directly, subsequently rank the score and select the
top items for recommendation.

Note that FCS can not only be trained with off-
line data set, but also be trained online with minor
modifications by using the emerging cold-start user
as the training samples.

3.7. Discussion of Related Framework
We re-examine two types of related frameworks,
i.e., transfer learning-based framework and transfer
learning-based framework, and highlight the sig-
nificance of our proposed FCS through versatile
comparisons.

1. Transfer learning framework is widely used
in the cross-domain recommendation, which
aims to learn the prior parameters from the
source domain and then translate them into
the target domain, where the user-item interac-
tions are few-shot. As shown in Figure 3(a), its
prior parameters θP are learned in the source
domain via stochastic gradient descent with
−∇L1; and then, the learned parameters will
be translated to target domain for fine-tuning
according to −∇L2. In particular, domain-
adaptive is a special case of transfer learning.
Although the prior knowledge is useful for ini-
tialization, the cross-domain task is not always
available in the real world due to the problem of
business barriers and user privacy protection.
What’s more, this type of method could not
realize the model selection for different users.

2. MAML is a meta-learning method, aiming to
learn the learning ability of the model, which
is widely used in few-shot settings. Thus,
MAML is appropriate for a cold-start scenario.
As shown in Figure 3(b), it could learn the
user/task-specific parameters θ∗u, and obtain
the new task parameters quickly in accordance
with the meta-parameters. We know that it
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doesn’t request the auxiliary knowledge, and
achieving the personalization learning. In the
other perspective, the meta-learning frame-
work is also a special case of transfer learn-
ing. The most important advantage is that
MAML uses the support set to optimize the
specific parameters, and uses the query set
to optimize meta-parameters, making meta-
parameters more generalized.

3. FCS is our method which is similar to MAML.
As shown in Figure 3(c), each task will be first
assigned to its cluster and obtain a local-meta
parameter θk,u. This step is tailored for recom-
mender systems, considering the local depen-
dence of users.

4. Experiments

In this section, we first describe the experimen-
tal settings, including datasets, evaluation proto-
cols, baselines, and implementation details. Sub-
sequently, we conduct extensive experiments to
respond to the following research questions:

RQ1 How is the effectiveness of FCS? Can it
provide a competitive performance compared with
baselines?

RQ2 How does the local update step affect the
performance?

RQ3 What is the performance of different ratio
of meta-training datasets?

RQ4 What is the visualization of the user cluster?

4.1. Datasets
We perform experiments on two publicly accessible
datasets: MovieLens (Harper and Konstan, 2016)
and Bookcrossing (Ziegler et al., 2005), which have
been brought into widely adopted in previous litera-
ture. For the MovieLens dataset, the user’s features
include gender, age, occupation, and zip-code,
item’s features contain itemID, and genre. For the
Bookcrossing dataset, the user’s features include
province and country; and the item’s features con-
tain itemID, publisher, and publication year. Note
that, the goal is to recommend the existing items
to existing users. Thus, we only use the itemID,
without userID as the new userID is unknown.

4.2. Evaluation protocols
To evaluate the recommendation performance in
the cold-start scenario, we divide the original
dataset into three parts randomly: meta-training,
meta-validation, and meta-testing. The valida-
tion dataset is used to choose appropriate hyper-
parameters. Without special instructions, the ratio
of the three parts is set to 70%:10%:20%. The sup-
port set of each user contains 1 or 5 items that the

target user has interacted with before, called the
1-shot or 5-shot setting.

Due to the enormous cost of ranking all items
for each user, we sample 500 items that have no
interaction with the target user, following previous
work (Park et al., 2018; Tay et al., 2018; He et al.,
2018). To evaluate the ranking accuracy and qual-
ity, we adopt two widely used metrics (Zhang et al.,
2018; Wang et al., 2019a): Hit Ratio (HR@5 and
HR@10), and Normalized Discounted Cumulative
Gain (N@5 and N@10).

4.3. Baselines
There are many classical feature-based methods,
in this paper, we only report the results on Wide
and Wide&Deep (Cheng et al., 2016), because
1) there are closed with our recommendation net-
work(MLP); 2) they represent the shallow method
and deep method, respectively. Without loss of
generality, we can also apply various existing mod-
els for further improvement due to the proposed
FCS is model-agnostic. What’s more, the exist-
ing meta-learning-based methods for recommen-
dation are also various, we select the closed meth-
ods of MAMO (Manqing et al., 2020), MetaEmb
(Pan et al., 2019), MeLU (Lee et al., 2019), and
AT-PAML (Yu et al., 2021) as our strong baselines.

4.4. Implementation Details
We implement our model in TensorFlow. The imple-
mentation of the comparison methods is from the
public codes that the authors provided in their pa-
pers or by modifying the part module in some open
source project (Wide&Deep1, MeLU2, MAML3, lstm-
tree4 and tutorial5).

We optimize the proposed FCS with the SGD
optimizer and tune the learning rate of (α and β)
in {0.01, 0.001, 0.0001} for different scenario set-
tings. The embedding size is fixed to 30. The batch
size is varied from 64 to 128. The number of local
updates is varied from two to four. The maximum
number of epochs is set to 100. The settings of
Melu and AT-PAML are the same as FCS. For the
Wide&Deep and Wide, the batch size is set to 128
and the negative sample is set to 30. All weight vari-
ables, i.e., θ,Ω, andW, are initialized with uniform
distributions of [− 0.01, 0.01] randomly.

4.5. Experimental Results
In this subsection, we will report the comparison
results to answer the above questions in detail and

1https://github.com/cheungdaven/DeepRec
2http://github.com/hoyeoplee/MeLU
3https://github.com/cbfinn/maml
4https://github.com/stanfordnlp/treelstm
5https://github.com/AntreasAntoniou/HowToTrainYourMAML
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Table 1: Experimental results on two public datasets in various scenarios (1-shot and 5-shot) using metrics
such as HR and NDCG. The bolded values indicate the optimal values; the underlined values denote the
suboptimal values.

Methods MovieLens Bookcrossing
(1-shot) HR@5 HR@10 N@5 N@10 HR@5 HR@10 N@5 N@10

Wide 0.3902 0.4584 0.4457 0.4839 0.5441 0.5733 0.6633 0.6803
Wide&Deep 0.4081 0.4800 0.5017 0.5419 0.5953 0.6228 0.7108 0.7262
MetaEmb 0.8524 0.8775 0.8846 0.9075 0.7872 0.8151 0.8517 0.8671

MAMO 0.8761 0.9090 0.9017 0.9449 0.7802 0.7931 0.8426 0.8561
AT-PAML 0.8890 0.9165 0.9183 0.9500 0.7666 0.7824 0.8386 0.8547

MeLU 0.8854 0.9169 0.9194 0.9545 0.7705 0.7852 0.8385 0.8464
FCS 0.8944 0.9180 0.9384 0.9402 0.8068 0.8377 0.8657 0.8826

Methods MovieLens Bookcrossing
(5-shot) HR@5 HR@10 N@5 N@10 HR@5 HR@10 N@5 N@10

Wide 0.4336 0.4993 0.5109 0.5479 0.5726 0.6169 0.6937 0.7188
Wide&Deep 0.4791 0.5546 0.5481 0.5904 0.6098 0.6499 0.7207 0.7437
MetaEmb 0.9237 0.9535 0.9478 0.9647 0.8347 0.8576 0.8828 0.8956

MAMO 0.9332 0.9469 0.9587 0.9689 0.7911 0.8209 0.8542 0.8701
AT-PAML 0.9345 0.9438 0.9576 0.9660 0.8054 0.8301 0.8704 0.8792

MeLU 0.9411 0.9454 0.9607 0.9631 0.8074 0.8283 0.8655 0.8770
FCS 0.9405 0.9502 0.9595 0.9737 0.8589 0.8986 0.8901 0.9125

summarize some insights.

4.5.1. Performance Comparison (RQ1)

The performance comparison results on two
datasets concerning top-k metric are shown in Ta-
ble 1.

We can observe that the proposed method FCS,
achieves the best performance on two datasets
with all evaluation metrics, which illustrates the su-
periority and effectiveness. More concretely, Com-
pared to the Wide&Deep and MeLU, we can see
that MeLU performs better on two datasets, which
demonstrates the benefits of the appropriate op-
timization. Furthermore, compared to MeLU and
FCS, we can observe that FCS makes a stable
margin improvement, which further demonstrates
the important rule of user local dependencies.

Note that the relative improvements of FCS vary
among two datasets and different few-shot settings.
For MovieLen dataset, there is a relatively small
improvement to baselines, while for the Bookcross-
ing dataset, there is a larger margin gain than the
traditional baselines and MeLU. It can be explained
that the Bookcrossing dataset is more sparsity than
MovieLens, containing more users and items than
MovieLens. It also implies that the features of items
are more widely distributed, resulting in less shared
information across different tasks. There is an inter-
esting phenomenon that FCS in a 1-shot setting still
shows significant improvement results compared

to MeLU. In the 1-shot setting, the representation
of the task is equal to the single item. Thus, MeLU
only uses a single item to calculate specific param-
eters, resulting in a worse performance. However,
the cluster-integrated module of FCS helps to make
full use of the related samples (including similar
users and similar items), extending the samples for
specific parameter learning. Therefore, FCS has
the advantage of alleviating the cold-start problem.

4.5.2. Impact of local update step (RQ2)

To investigate the impact of the local update step
on recommendation performance, we conducted
several experiments on the Bookcrossing dataset
with the 5-shot setting, and the results are shown
in Figure 5. The step varies from {2,3,4}. We can
observe that a small step in the inner loop is not
sufficient to determine the optimal value. By in-
creasing the step, the model has more capacity to
obtain the more appropriate specific parameters.
However, according to MAML(Antoniou et al., 2018;
Finn et al., 2017; Nichol and Schulman, 2018), with
the increase of step, it suffers from two issues:

• we need to store more parameters, which im-
poses a considerable computation and mem-
ory burden.

• The meta-parameters will shrink and vanish as
the number of gradient steps grows, making



7192

0.3 0.4 0.5 0.6 0.7
Ratio of meta-training users

0.4

0.5

0.6

0.7

0.8

0.9

1.0
HR

@
5

MeLU
FCS

0.3 0.4 0.5 0.6 0.7
Ratio of meta-training users

0.4

0.5

0.6

0.7

0.8

0.9

1.0

HR
@

10

MeLU
FCS

0.3 0.4 0.5 0.6 0.7
Ratio of meta-training users

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ND
CG

@
5

MeLU
FCS

0.3 0.4 0.5 0.6 0.7
Ratio of meta-training users

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ND
CG

@
10

MeLU
FCS

Figure 4: Impact of different ratios of users in meta-training.
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Figure 5: The performance comparisons of differ-
ent local update steps.

meta-learning difficult. Therefore, we need
to trade off the recommendation performance
and computation efficiency.

4.5.3. Effect of cold-start users (RQ3)

To investigate the performance of FCS on different
ratios of meta-training datasets, we extend sev-
eral comparison experiments on the Bookcross-
ing dataset under 5-shot settings. We select
r%, 10%, and (90 − r)% of all users to build the
meta-training tasks, meta-validation tasks, and
meta-testing tasks, respectively. r is varied from
{30, 50, 70}. The results are shown in Figure 4.

We find the FCS achieves an excellent perfor-
mance compared with MeLU on different ratios of
users in terms of all top-n ranking metrics. In gen-
eral, the performance of both MeLU and FCS im-
proves as the proportion of meta-training tasks in-
creases, which illustrates the importance of labeled
data. The results are also consistent with meta-
learning assumptions, i.e., the more tasks given
in the meta-training phase, the more sufficient pri-
ori knowledge can be learned. Another interesting
finding is that the lifting rate of the two methods is
different. The lifting rate of MeLU is faster and the
curve is steeper, while for FCS that is slower and
its curve is more gentler. These results show that
FCS is more robust and performs well under a few
tasks.

4.5.4. Visualization of user cluster (RQ4)

In the section of the introduction, we discuss that
there is a local clustering effect of users in original

data distribution. In this subsection, we will visual-
ize the clusters of users learned by FCS to further
provide a more intuitive understanding. To this end,
we first restore the intermediate results of the inte-
grated target task’s representation, i.e.,

[
hL
u ; sTu

]
,

on MovieLens and Bookcrossing datasets under
1-shot setting. Then, we use the t-SNE (van der
Maaten and Hinton, 2008) tools to visualize the
representation vectors, results are shown in Figure
6. We can observe clearly that the representation
vectors of users/tasks are generally grouped into
several clusters on two datasets. This supports
our assumption that users are locally dependent.
Therefore, FCS captures the features of user-local
dependent relationships, yielding a significant im-
provement in the few-shot scenarios.

5. Conclusion

In this paper, we propose a novel Few-shot learn-
ing method for Cold-Start (FCS) recommendation.
Firstly, we argue that the cold-start recommenda-
tion is a typical few-shot learning problem, where
each user has few records and there are also many
new users arriving. Secondly, considering the ef-
fect of user local clusters, we design a novel three
hierarchical structure, i.e., global-meta parameters,
local-meta parameters, and specific parameters,
which could alleviate the problem of user locally de-
pendent well. It is worth noting that FCS is very suit-
able for online recommendation due to the rapid up-
dating of user parameters with meta-parameters in
meta-testing phases. What’s more, FCS is model-
agnostic, which implies that it is easy to extend
by replacing the existing recommendation module.
Extensive experiments conducted on two public
real-world explicit feedback datasets demonstrate
that the proposed method produces significant im-
provements compared with state-of-the-art meth-
ods from multiple perspectives. For the future work,
this insight has extremely high scalability for other
related tasks, such as representation learning.
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