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Abstract
Multimodal Named Entity Recognition (MNER) models typically require a significant volume of labeled data for
effective training to extract relations between entities. In real-world scenarios, we frequently encounter unseen
relation types. Nevertheless, existing methods are predominantly tailored for complete datasets and are not equipped
to handle these new relation types. In this paper, we introduce the Few-shot Multimodal Named Entity Recognition
(FMNER) task to address these novel relation types. FMNER trains in the source domain (seen types) and tests
in the target domain (unseen types) with different distributions. Due to limited available resources for sampling,
each sampling instance yields different content, resulting in data bias and alignment problems of multimodal
units (image patches and words). To alleviate the above challenge, we propose a novel MultimOdal caUSal
INtervention Graphs (MOUSING) model for FMNER. Specifically, we begin by constructing a multimodal graph that
incorporates fine-grained information from multiple modalities. Subsequently, we introduce the Multimodal Causal
Intervention Strategy to update the multimodal graph. It aims to decrease spurious correlations and emphasize
accurate correlations between multimodal units, resulting in effectively aligned multimodal representations. Extensive
experiments on two multimodal named entity recognition datasets demonstrate the superior performance of our
model in the few-shot setting.
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1. Introduction

The proliferation of multimodal data on social me-
dia platforms has led to increased interest in var-
ious related tasks, including Multimodal Named
Entity Recognition (MNER), which utilizes multi-
modal information assistance to improve the ac-
curacy of traditional NER tasks effectively. MNER
focuses on extracting and classifying named enti-
ties from the unstructured text by leveraging mul-
timodal data, such as the text-image pair, as Fig-
ure 1 shows. This area of research has gained
considerable attention in recent years, as evident
from recent studies (Yang et al., 2022; Chen et al.,
2023). Previous studies in MNER primarily focus
on designing effective models based on extensive
training data (full training datasets) to enhance per-
formance. (Yu et al., 2020; Zhang et al., 2021; Wang
et al., 2022b). However, collecting and annotating
the vast amounts of multimodal data for MNER is
time-consuming and labor-intensive (Zhang et al.,
2018; Lu et al., 2018). Moreover, in real-world ap-
plications, a substantial portion of the data remains
unlabeled, while only a limited amount of labeled
data is typically available. In this paper, we con-
centrate on the Few-shot Multimodal Named Entity
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Recognition (FMNER) task to enhance the model’s
capability to tackle MNER tasks with limited data
and identify new relation types.

Meta-Learning has demonstrated significant suc-
cess in various few-shot tasks(Vinyals et al., 2016;
Bao et al., 2020; Yang et al., 2023a; Ma et al.,
2022b), include Few-shot Named Entity Recogni-
tion (Fritzler et al., 2019; Ma et al., 2022a), Few-shot
Image Classification (Chi et al., 2022; Wang et al.,
2022a), and more. Building upon these studies, we
utilize Meta-Learning with the Prototypical Network
(Snell et al., 2017) for FMNER. FMNER, operating
with limited text-image pairs, focuses on extract-
ing entities from unstructured text and classifying
them into corresponding entity types, which are
various unforeseen types during training. Different
from few-shot text-based NER, we require exploring
both intra-modal and inter-modal information from
multiple modalities to improve the performance of
FMNER by incorporating multimodal representa-
tions tailored to specific entity types. As Figure 1
shows, without considering multimodal fine-grained
semantic alignment, multiple occurrences of “DELL”
may receive the most attention, which may cause
the model to assign the same entity type (such
as “ORG”) to all “DELL”. By establishing the fine-
grained association between image patches and
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Figure 1: An example for multi-modal named entity
recognition. (a) and (b) indicate multiple patches of the
image. When the similarity between different modal units,
i.e., text words and image patches, exceeds a certain
threshold, it indicates a significant correlation between
them. In order to capture and represent this correlation,
we establish an edge between different modal units in
our approach, as solid lines show. Conversely, if the
similarity falls below a certain threshold, indicating a
weak correlation, we will remove the edges, as dash
lines show.

text words, we can get the multimodal fusion rep-
resentation to enhance the performance of MNER.
For instance, “Michael Dell” can be linked to (a),
while “DELL” can be connected to (b), which im-
proves the beneficial alignment between different
multimodal units.

To capture the effective aligned fine-grained
representations across different modalities, we
propose a novel MultimOdal caUSal INtervention
Graphs (MOUSING) for the FMNER task, as Figure
2 shows. MOUSING consists of two modules, such
as the Construction of the Multimodal Graph and
the Updating of the Multimodal Graph. Since global
representations of different modalities are unable
to capture the effective fine-grained semantic in-
formation, as Figure 1 shows, refer to (Gao et al.,
2023a), we first build the multimodal graph based
on fine-grained information of different modalities,
which utilizes each word and patch representation
as nodes in the multimodal graph when the similar-
ity between two nodes reaches a certain threshold,
an edge is established. As mentioned by (Fan
et al., 2022), FMNER faces a significant challenge
referred to as data sampling bias, i.e., the data
distribution varies between source domains and
target domains. This discrepancy can create spu-
rious connections among the multimodal graph’s
nodes, exacerbating the risk of overfitting due to
erroneous projections between the multimodal rep-
resentation and the entity type. To alleviate the
aforementioned challenge, we present a novel ap-
proach called the Multimodal Causal Intervention
Strategy (MCIS) to update the multimodal graph.
MCIS operates across different environments to
update the original graph, with the primary objec-
tive of mitigating the effects of data bias, reducing
erroneous relationship edges, and enhancing the

weight of correct edges. Specifically, we simulate
multiple training environments to perform causal in-
tervention, resulting in multiple multimodal graphs.
Furthermore, we propose a multi-view graph updat-
ing method that simultaneously updates multiple
multimodal graphs from diverse perspectives. This
approach adaptively reduces false associations be-
tween different modalities while emphasizing the
correct associations among them, thereby enhanc-
ing the weight of correct patches and words for
connecting edges and improving the generaliza-
tion of our model in target domains. Extensive
experiments on two datasets demonstrate that our
approach outperforms strong baselines on the FM-
NRE task.

Our contributions can be summarized as follows.

• We propose a novel MultimOdal caUSal
INtervention Graph (MOUSING) which builds
deeper correlations among different modali-
ties, to handle the Multimodal Named Entity
Recognition task in a multimodal few-shot sce-
nario. To the best knowledge, we are the first
to propose the FMNER task.

• We first construct a multimodal graph to inte-
grate fine-grained information. After that, Mul-
timodal Causal Intervention Strategies (MCIS)
are introduced to simulate multiple training en-
vironments to perform causal interventions, fol-
lowed by a multi-view graph update method to
improve fine-grained alignment across modali-
ties.

• Experimental results indicate that MOUS-
ING achieves state-of-the-art performance on
the two multimodal named entity recognition
datasets in the few-shot scenario.

2. Related Work

2.1. Multimodal Named Entity
Recognition

With the boosting of multimodal data from social
media platforms, many excellent works of MNER
are constantly emerging. Wu et al. (2020a) propose
a neural network that combines object-level image
information and character-level text information to
predict entities. Subsequently, UMT(Yu et al., 2020)
extends the transformer(Vaswani et al., 2017) to a
multimodal version and incorporates the auxiliary
entity span detection module. Wang et al. (2022c)
propose Image-text Alignments (ITA) to align image
features into the textual space. Wang et al. (2023)
first incorporate the transformer-based bottleneck
fusion mechanism to reduce the noise propagation.
Chen et al. (2022b) combines hierarchical multi-
scaled visual features to generate effective and
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Figure 2: The overall architecture of our Multimodal Causal Intervention Graph model MOUSING.“PLM” indicates
the pre-trained language model while “PVM” indicates the pre-trained visual model. The multimodal graph does not
undergo intervention graph generation during the testing phase. Instead, it directly updates the nodes and edges
through multi-view graph updating.

robust text representations. Chen et al. (2022a)
propose a hybrid transformer with multi-level fusion
to enhance its adaptability in various real-world sce-
narios. Zhang et al. (2021) propose a unified multi-
modal graph fusion (UMGF) approach for MNER.
However, the above MNER methods are only used
in fully-supervised scenarios and can not handle
unseen entity types. We are the first to propose
the few-shot MNER task to detect the entity type
with limited labeled data.

2.2. Few-shot Learning

Researchers propose many approaches to handle
few-shot tasks, such as Matching Network (Vinyals
et al., 2016), Meta-Learning (Ravi and Larochelle,
2017; Tian et al., 2020), and so on. Few-shot
Named Entity Recognition aims to extract entities
and classify them into the corresponding types,
which are unknown in the training process, with
a few support samples. As a typical Meta-Learning
method, the prototypical network (Snell et al., 2017)
is introduced to learn a metric space where in-
stances of a novel specific class cluster around
a single prototypical. Inspired by feature extraction
and nearest neighbors, Yang and Katiyar (2020)
propose NNShot and StructShot, which uses the
nearest neighbor to classify entities. Yang et al.
(2023b) proposes a causal intervention-based few-
shot NER method, which uses context-based and
prototype-based causal interventions to block the
spurious correlation of different entities. However,
this method is only used on unimodal data. Our
method focuses on Multimodal Named Entity De-
tection in the few-shot scenario and achieves the
alignment of fine-grained multimodal features.

3. Problem Formulation

FMNER aims to extract entities from unstructured
text and classify them into the corresponding entity
types which are unseen during training with limited
labeled multimodal data. Like Yang and Katiyar
(2020), we define the FMNER setting where the
model is trained on source domains with annota-
tions Dm

S = (T m
S , ImS ) with source tag set Cm

S and
then tested on target domains Dj

Q = (T j
Q, I

j
Q) with

target tag set Cj
Q by only providing a few labeled ex-

amples per entity type, where T is the text modality,
I is the image modality, m is the m-th entity type,
j is j-th entity type, and CS ∩ CQ= ϕ. Formally, the
setting of N-way K-shot is defined as follows: given
K text-image pairs for each entity type from DQ as
input, x = (t, i)Kk=1 ∈ (TQ, IQ) and make the best
tag sequence y, where |CQ| = N .

4. Method

In this section, we propose a novel Multimodal
causal Intervention Graphs (MOUSING) model for
the FMNER task to more effectively capture the
fine-grained alignment between different modali-
ties. The overview of our framework is depicted
in Figure 2. MOUSING including the construction
of the multimodal graph and the updating of the
multimodal graph. We depict the training and test-
ing process of MOUSING in detail, as shown in
Algorithms 1 and 2.

4.1. Multimodal Graph Construction
MNER, which involves extracting text spans from
unstructured text, places a strong emphasis on
leveraging the detailed information provided by
multimodal data. To achieve this, refers to (Gao
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et al., 2021, 2023b), we construct the multimodal
graph that integrates fine-grained information,i.e.,
text words, and image patches, to facilitate a bet-
ter understanding and representation of the data,
which is shown in the upper left of Figure 2. For-
mally, the initial multimodal graph is undirected and
can be formalized as Go = (X,A), where X rep-
resents the node features and A represents the
adjacency matrix. Details of the multimodal graph
are as follows:

Node Construction. To capture the effective rep-
resentation of different modalities, we employ a
pre-trained CLIP (Radford et al., 2021) model to
derive the text embedding Et and the image embed-
ding Ei as initial node features of the multimodal
graph.

Et = CLIPT (t), ET ∈ RLt×dC ,

Ei = CLIPI(i), EC ∈ RLi×dC ,
(1)

where Lt is the length of words for each t, Li is
the length of patches for each i, dC = 768 is the
dimension of embedding, and the number of a mul-
timodal graph is L = Lt + Li. Et and Ei are the
initial node features of Go.

Edge Construction. We calculate the cosine sim-
ilarity between the features of different nodes to
capture valuable interactions between multimodal
semantic units, including intra-modal nodes and
inter-modal nodes. When the similarity exceeds
a certain threshold, δ, that indicates a significant
correlation between nodes, we establish an edge
between different modal units in our approach. Con-
versely, if the similarity falls below a certain thresh-
old, indicating a weak correlation, we will cancel
this edge. By iteratively processing all possible
pairs of nodes, we construct the initial multimodal
adjacency matrix, Ap,q, as shown in Figure 2.

Ap,q =

{
1, cos (Ep, Eq) > δ

0, cos (Ep, Eq) ≤ δ,
(2)

where p and q indicate the p-th and q-th nodes of
the multimodal graph, respectively.

4.2. Multimodal Causal Intervention
Strategy

Different from MNER, FMNER needs to detect en-
tity types in the target domain, which are invisible
during training, so it becomes crucial to enhance
the generalization ability of the model. Therefore,
multimodal graphs are inevitably biased, i.e., ex-
isting edges are spuriously associated between
nodes, which further leads to meaningless sub-
structures being spuriously associated with labels.

Figure 3: The causal structure of this task consists
of four components. G represents the feature of multi-
modal graph, C represents correct correlations between
different nodes, Y represents the target label, and B
represents bias correlations between different nodes.

As DisC (Fan et al., 2022) said, GNNs majorly uti-
lize bias substructure as shortcuts to make predic-
tions, causing a large generalization performance
degradation. Therefore, motivate by (Sun et al.,
2022; Yuan et al., 2024), we propose a novel mul-
timodal causal intervention strategy (MCIS) to ad-
dress the issue of unstable and biased correlations
caused by data selection bias in the few-shot sce-
nario. MCIS can adaptively learn stable associa-
tions between different modalities, i.e., reducing
bias associations between different nodes while
emphasizing the correct associations among them.
MCIS contains two steps: the Intervention Graph
Generation and the Multi-view Graph Updating.

4.2.1. Intervention Graph Generation

We present a multimodal causal view of the union of
the model-training process and the model-detection
process behind the task. Here we formalize the
causal view as a multimodal causal graph by in-
specting the causalities among four variables: the
feature of a multimodal graph G, correct correla-
tions between nodes of the graph C, bias corre-
lations between nodes of the graph B, the target
label Y . Figure 3 illustrates causal relationships
between different variables in our task, detailed
descriptions are as follows.

C← G→ B. A multimodal graph, G, consists of
correct edges, C, and biased edges, B, for efficient
detection of entity types.

C → Y . It means that the causal variable C,
which is the sole endogenous parent, determines
the generation of the true label Y . For instance,
C consists of edges that are effective for correctly
classifying entity types, which precisely explains
why the label is assigned as Y , as the edge be-
tween Dell and the patch (a) shows in the Figure
1.

B → Y. It indicates that spurious correlations
between B and Y are due to the presence of bias
edges among nodes. That is edges that have high
similarity but interfere with entity type identification.
For example, due to the deviation in data collection
under the few-shot setting, there are spurious cor-
relations between the multimodal representation
and the ground truth label, as the edge between
Dell of Miachael Dell and the patch (b) shows in
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the Figure 1.
According to Figure 3, our model makes de-

tection based on both C and B. As (Fan et al.,
2022) said, GNNs majorly utilize bias substruc-
ture as shortcuts to make predictions, which can
quickly achieve low loss and lead to model over-
fitting, i.e., B → Y. Hence, we propose the multi-
modal causal interventions strategy to block B→ Y
and strengthen C→ Y. In this respect, we simulate
multiple training environments to perform causal
intervention resulting in multiple multimodal graphs
based on the same original graph.

P (Y = y | do(G = G)) =
∑
E

P (E = E | G = G)),∑
G′

P
(
Y = y | E = E,G = G′)P (

G = G′) , (3)

where do(.) represents generate different interven-
tion graph, E indicates the specific environment E
from E , G′ indicates the specific multimodal graph
from G, and y from Y indicates the ground truth
label of current graph.

Specifically, to capture stable multimodal repre-
sentations and reduce the influence of biased cor-
relations, we employ distinct training environments
to simultaneously train a pair of GNNs, denoted as
G1 and G2, based on the same graph.

Ĝ1 = G1(Go, θ1), Ĝ2 = G2(Go, θ2), (4)

where Go is the initial multimodal graph from sec-
tion 4.1; the θ1 and θ2 are parameters of G1 and G2,
respectively; Ĝ1 ∈ RL×d and Ĝ2 ∈ RL×d are out-
puts of G1 and G2, respectively. d is the dimension
of hidden representation from GNNs.

4.2.2. Multi-view Graph Updating

We further design a multi-view graph updating ap-
proach to simultaneously update multiple multi-
modal graphs from diverse perspectives. This ap-
proach enhances the fine-grained alignment across
modalities and improves the generalization of our
model in target domains. In other words, multi-view
graph updating adaptively reduces bias associa-
tions between different nodes while emphasizing
the correct associations among them in the few-
shot setting. We update the multimodal graph from
V different views to capture robust representations
of multimodal graphs.

Simv
e = cos(wv ⊙ Ĝe, wv ⊙ Ĝe), (5)

Sime =
1

V

V∑
v=1

Simv
e , (6)

where wv ∈ Rd×z represents parameters of the v-th
linear layer, z is the dimension of projection, V is
the hyperparameter, and e ∈ {1, 2} is the graph of
different environment.

We then update the multimodal adjacency matrix.
(Ae)

′
= γAe + (1− γ)Sime, (7)

where γ is used to balance the original graph repre-
sentation and the newly learned graph knowledge.

Following (Wu et al., 2020b), we obtain l + 1-th
node features based on the l-th layer of multimodal
GNNs.
X l+1

p|e = U(X l
p|e,

∑
q∈N(p|e)

M(X l
p|e, X

l
q|e, (A

l
p,q|e)

′),

(8)
where p indicates current node, N(p) represents
the set of neighbor nodes of p node, M represents
the function of aggregating neighborhood informa-
tion for p, and U indicates the function of updating
p by aggregated information.

We capture the final node features according to
features of the last layer and a multi-layer percep-
tron FM .

rp|e = FM (XL
p|e, θM ), (9)

where L is the number of layer and θM represents
the parameters of MLP.

4.3. Prototype-based CRF Decoder
Similar to Snell et al. (2017), we leverage Meta-
Learning based on the prototypical network to han-
dle FMNER. In each batch, we randomly sample
a few instances as query set, Q, and other K
instances as support set S, where |Q| = 1 and
|S| = 5. Sm denotes the set of instances labeled
with m-th entity type 1. Each prototype is the mean
vector of the embedded support points belonging
to its class:

cm =
1

|Sm|
∑

(xk,yk)∈Sm

Ge(xk), (10)

where Ge means operations of the multimodal
graph with the e-th environment to get final node
features r. x is the text-image pair, (t, i).

The prototypical networks produce a distribution
over classes for each word of xq ∈ Q based on
a softmax over distances to the prototypes in the
embedding space:

p(yw = m|xq, Ge) =
exp(−d(Ge(xq), c

m))∑
m′ exp(−d(Ge(xq), cm

′))
,

(11)
where d calculates the euclidean distance and w is
the word from the text of xq.

We employ Cross-Entropy loss, CE, to calculate
classification loss.

LCRF = CE(D(P |G1), y) + CE(D(P |G2), y), (12)

where P is the sequence of predicted probability for
words of xq, y is the target label, and D indicates
the CRF decoder.

1Note that the entity type is from theCS during training,
and the entity type is from the CQ during test.
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4.4. Overall Loss Function
We calculate the KL Loss used as a constraint to
increase the distribution dissimilarity of node fea-
tures between the two graphs, which is shown in
Eq. (13).

LKL = −DKL(FM (Ĝ1, θ
′
M )∥FM (Ĝ2, θ

′
M )), (13)

where DKL represents the calculation of KL diver-
gence.

The overall loss function Lfinal is as follows,

Lfinal = λLCRF + (1− λ)LKL, (14)

where λ is a hyperparameter used to balance the
effects of different losses.

Algorithm 1 Training Process of MOUSING
Input: Source domain data Dm

S , Max iterations T
for each epoch.

Output: Learned two GNN networks (Ĝ1, Ĝ2), mul-
tiple MLPs, and CRF Decoder D.

1: Initialization: iteration t = 0; Initialize (Ĝ1, Ĝ2),
MLPs, and D.

2: for sampled minibatch X ∈ Dm
S and iterations

≤ T do
3: Build the initial multimodal graph, Go, in-

cluding X, i.e., Et and Ei by Eq. (1), and the
adjacency matrix A by Eq. (2).

4: for e ∈ {1, 2} do
5: Ge = Ge(Go, θe) by Eq. (4);
6: for v in range {0, V } do
7: Calculate Simv

e as by Eq. (5);
8: end for
9: Calculate Sime by Eq. (6);

10: Updated (Ae)
′ by Eq. (7);

11: Update node features by Eq. (8);
12: Calculate the final node feature rp|e by

Eq. (9);
13: Random sample one instance as the

query set, Q;
14: Random select five instances as the sup-

port set,S;
15: Construct the prototypical for the m-th

entity type by Eq. (10).
16: end for
17: Get the output of query by Eq. (11);
18: Calculate the LCRF by Eq. (12).
19: end for
20: Calculate the LKL by Eq. (13).
21: Calculate the Lfinal by Eq. (14).
22: Update all parameters by backpropagation to

reduce Lfinal.

5. Experiments

5.1. Datasets
Based on the Zhang et al. (2021) guidelines, we uti-
lize two publicly available Twitter datasets, Twitter-

Algorithm 2 Testing Process of MOUSING
Input: Target domain data Dj

Q.
Output: The predicted label for each entity.
1: Initialization: Initialize (Ĝ1, Ĝ2), MLPs, and D

by trained parameters.
2: for sampled minibatch X ∈ Dj

Q do
3: Random sample one instance as query

set,Q;
4: Random select five instances as support

set,S;
5: Calculate the prototypical representation for

each entity type by (10);
6: Get the query data output by Eq. (11);
7: Get the predicted label by the trained CRF-

decoder D.
8: end for

2015 (Zhang et al., 2018) and Twitter-2017 (Lu et al.,
2018), for FMNER. The statistics of the different
datasets are presented in Table 1. Considering that
Twitter-2015 and Twitter-2017 datasets share the
same four entities, we randomly select two entity
types for training and others for testing. Therefore,
each dataset has 6 splits for FMNER. We conduct
our main experiments on the 2-way 5-shot setup.
For six different data splits, the number of each
entity should be consistent with Table 1.

Entity Twitter-2015 Twitter-2017
Train Dev Test Train Dev Test

Person 2217 552 1816 2943 626 621
Location 2091 522 1697 731 173 178

Organization 928 247 839 1674 375 395
Misc. 940 225 726 701 150 157
Total 6176 1546 5078 6049 1324 1351

Table 1: Statistics on two datasets.

5.2. Implementation Details

We use PyTorch as a deep learning framework to
develop the few-shot MNER. The maximum length
of the text is 128, the number of image patches
is 9, and the batch size is 6. The learning rate,
dropout rate, and trade-off parameter are set to
5e-3, 0.15, and 2, respectively. The convergence
time of the model is almost 30 minutes for all six
experimental settings. The weight parameters for
trainable parameters are 6.4M, and the total weight
parameters are 434.02M. Performance is evalu-
ated by the Micro-F1 score on the test dataset, and
the predicted entity is correct if the entity type and
position match the gold-standard entity. We use
the BIO mode by default to allow a fair comparison
with previous studies.
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Modality Model Twitter-2015
Per+Loc Per+Org Per+Others Loc+Org Loc+Others Org+Others Avg.

BERT 17.99 13.33 15.43 14.85 13.71 17.61 15.49

TNER
ProtoBERT 18.52 22.26 20.71 15.89 14.80 17.83 18.34
RoBERTa 20.11 16.73 17.71 16.25 17.56 21.16 18.25

ProtoRoBERTa 20.51 19.41 19.52 20.19 18.57 23.53 20.29
NNshot 18.65 27.24 28.21 20.81 28.78 25.90 24.93

Structshot 18.66 30.41 28.37 24.87 31.13 29.05 27.08

MNER

UMT 18.57 21.43 24.24 17.14 14.22 24.26 19.98
UMT-CLIP* 28.57 22.23 31.25 27.27 12.46 22.50 24.05

UMGF 20.00 17.77 24.94 17.20 16.23 25.71 20.31
UMGF-CLIP* 23.30 21.73 32.21 22.50 20.54 22.31 23.76
ProtoUMGF 23.33 25.39 27.14 25.10 18.65 26.34 24.33

ProtoUMGF-CLIP* 23.79 20.30 31.88 23.45 20.85 22.46 23.78
HVPNet 24.97 23.81 26.09 14.38 21.14 19.35 21.62

ProtoHVPNet 19.35 29.13 37.20 21.43 17.03 16.74 23.48
MOUSING 34.86 28.43 35.32 30.10 36.62 27.99 31.22

Modality Model Twitter-2017
Per+Loc Per+Org Per+Others Loc+Org Loc+Others Org+Others Avg.

BERT 14.29 20.69 15.39 9.04 12.55 12.03 13.99

TNER
ProtoBERT 12.60 23.26 14.03 21.95 18.67 15.87 17.73
RoBERTa 20.59 15.39 22.73 11.76 16.44 13.14 16.68

ProtoRoBERTa 21.21 24.10 23.14 23.36 17.51 19.67 21.50
NNshot 24.27 29.82 25.29 23.23 23.82 22.78 24.86

Structshot 25.41 29.39 22.89 24.45 24.20 27.22 25.59

MNER

UMT 24.00 16.76 12.50 20.59 17.54 17.39 18.13
UMT-CLIP* 33.32 25.02 13.34 22.58 20.02 13.04 21.22

UMGF 24.24 17.65 14.63 22.43 23.73 13.04 19.29
UMGF-CLIP* 19.18 19.28 11.27 15.52 24.11 27.27 19.44
ProtoUMGF 20.41 16.00 26.12 24.62 23.18 19.23 21.59

ProtoUMGF-CLIP* 18.20 21.36 11.77 14.04 14.17 22.18 17.07
HVPNet 32.50 16.28 16.67 18.23 14.07 25.41 20.53

ProtoHVPNet 29.05 24.94 24.29 13.16 17.18 16.21 20.81
MOUSING 34.12 28.10 27.14 24.12 24.85 25.79 27.35

Table 2: Performance of different competitive uni-modal and multimodal approaches in terms of F1 for
FMNER on Twitter-2015 and Twitter-2017. “*” indicates that the reproducible results of different models
are achieved by using CLIP instead of the original image encoder.

5.3. Baselines

To ensure a comprehensive comparison, we thor-
oughly evaluate our model against various ap-
proaches based on unimodal and multimodal base-
lines. The first group is the text-based NER (TNER)
approach: 1) BERT (Devlin et al., 2019) is the
competitive baseline for NER. 2) ProtoBERT (De-
vlin et al., 2019) exploits the Prototypical Network
based on BERT to solve TNER in the few-shot set-
ting. 3) RoBERTa (Liu et al., 2019) is an improve-
ment of BERT. 4) ProtoRoBERT (Liu et al., 2019)
combines the Prototypical Network with RoBERTa.
5) NNshot (Wang et al., 2019) applies simple fea-
ture transformations on the features before nearest-
neighbor classification in the few-shot TNER task.
6) Structshot (Wang et al., 2019) adds an additional
Viterbi decoder based on the NNShot. The second
group is competitive multimodal approaches for
MNER: 1) UMT (Yu et al., 2020) extends Trans-
former to a multimodal version and incorporates
the auxiliary entity span detection module. 2)

UMGF (Zhang et al., 2021) constructs the multi-
modal graph and further stacks multiple multimodal
fusion layers to learn node representations. 3) Pro-
toUMGF utilizes the Prototypical Network based on
UMGF. 4) UMT-CLIP, UMGF-CLIP and ProtoUMGF-
CLIP use the CLIP model as a visual and text en-
coder. 5) HVPNet (Chen et al., 2022b) incorporates
hierarchical multi-scaled visual features to gener-
ate an effective and robust textual representation
for reducing error sensitivity. 6) ProtoHVPNet ex-
ploits the Prototypical Network based on HVPNet.
7) MOUSING is our model, which builds deeper cor-
relations among different modalities by Multimodal
Causal Intervention Graph, to handle the FMNER
task.

5.4. Main Results
To verify the effectiveness of our model, we report
the results of different splits for entity types and over-
all average results on all entity types, as Table 2
shows, where “Per+Loc” means using “Person” and
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“Location” entities to train and the rest of the enti-
ties to testing. The other five groups of experiments
are the same as above. Our experimental results
consistently demonstrate the superior performance
of our model MOUSING, compared to both TNER
and MNER methods across various entity types
in both datasets. This notable improvement can
be attributed to several key factors. First, we lever-
age a multimodal graph to explore multimodal fine-
grained information that is suitable for named en-
tity recognition. Secondly, the Multimodal Causal
Intervention strategy in MOUSING facilitates the
establishment of correlations and alignment of fine-
grained features between different modalities. This
capability allows the model to capture highly effec-
tive multimodal representations. It demonstrates
the superiority of our model over other models in
handling the challenges of limited labeled data and
the image modality is crucial for achieving high
performance in the few-shot MNER task.

5.5. Ablation Experiments

Variants Precision Recall F1
w/o Image 26.59 26.96 26.72

w/o Intervention 24.94 25.09 25.00
w/o Multi-view 26.12 25.75 25.72

w/o MICS 19.36 19.11 19.06
w/ Random Intervention 29.99 30.69 30.24
w/ Gaussian Intervention 30.30 30.75 30.47

MOUSING (Ours) 32.89 33.70 33.18

Table 3: Average results for MOUSING ablation
experiments overall splits. “w/” indicates “with” and
“w/o” indicates “without”.

We perform ablation experiments on the MOUS-
ING model to assess the effectiveness of differ-
ent modules and report the average results on all
splits in Table 3. We first remove the image modal-
ity (w/o Image) and only leverage the text modal-
ity to accomplish MOUSING. The performance of
our model drops dramatically, showing that image
modality is critical for detecting named entities in
the few-shot setting. When we remove the causal
intervention module (w/o Intervention), spurious
correlations between different nodes in the multi-
modal graph interfere with the training process, re-
sulting in poor model performance. It demonstrates
that constrained interventions are able to control
the distribution of features in the graph to more ef-
ficiently obtain causal representations in the case
of two inconsistent distributions. We also remove
the Multi-view module (w/o Multi-view) to verify the
utility of Multi-view updating in Multimodal Graphs.
As Table 3 shows, our model performs poorly. It
shows that updating multimodal graphs from multi-
ple perspectives can preserve more correct edges

and reduce spurious edges. When we remove the
Multimodal Causal Intervention Strategy (MCIS)
module (w/o MCIS), i.e., simultaneously removing
the Intervention module and Multi-view module, the
model has the worst performance. It indicates that
our MCIS has excellent effectiveness for FMNER.
We also replaced causal interventions with random
interventions (w/ Random Intervention) and Gaus-
sian interventions (w/ Gaussian Intervention). The
model underperforms MOUSING, indicating that
the causal intervention is effective.

5.6. Hyperparameters Setting
We conduct experiments for different hyperparam-
eters, including V of Eq. (6), δ of Eq. (2), γ of Eq.
(7), L of Eq. (9), and λ of Eq. 14. The experimental
results are shown in Figure 4.

1) We investigate the effect of the number of
different perspectives on the update of multimodal
causal intervention graphs for multimodal graphs
and text graphs, that is, setting V ∈ {1, ..., 10} in Eq.
(6). As Figure 4 (a) shows, MOUSING achieves the
best performance when V is 6. When the value of V
is smaller, the model cannot adequately capture the
fine-grained alignment between different modalities,
when the value of V is larger, excess perspectives
will bring redundant information to the model.

2) In Figure 4 (b), the experimental results re-
garding δ of Eq. (2) are presented. Increasing δ
from 0.35 to 0.55 consistently improves the model’s
performance, suggesting that a larger δ introduces
redundant information that interferes with the detec-
tion of named entities. However, when δ increases
from 0.55 to 0.85, the model’s performance sharply
declines, indicating that valuable information in the
multimodal graph is lost at higher δ values.

3) L represents the representation of nodes up-
dated with different layers of GNNs. When the
number of layers of GNN is 1, the model achieves
the best performance. As the number of GNN lay-
ers increases, the model tends to learn more dense
node connections, resulting in more redundant in-
formation.

4) We verify the value of γ, as Figure 4 (d) shows.
When the value of γ is between 0.1 and 1, the per-
formance of the model keeps fluctuating, reaching
the best performance when γ is 0.8. When γ is
smaller than 0.8, the update amplitude of the new
graph is too large, resulting in unstable model per-
formance. When γ is larger than 0.8, the update
amplitude of the new graph is too small, and the
update is too slow.

5) We test the value of λ ranges from 0.1 to
0.9, the model’s performance fluctuates continu-
ously, with the best performance achieved at λ=0.7.
When the λ is smaller, the model focuses on envi-
ronment generation and neglects constraints of the
the CRF loss function. Therefore, the effectiveness
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Figure 4: Hyperparameters experiments. F1 comparisons of V for MOUSING.

of the model is constantly fluctuating and unstable.
When the λ is larger, the model neglects the envi-
ronment generation, which leads to the overfitting
of the model.

Figure 5: Case study example and the visualization
of the adjacency matrix.

5.7. Cases study
To illustrate our model can effectively construct the
fine-grained alignment between different modali-
ties, we exhibit an example as Figure 5 shows. We
visualize adjacency matrices of the original multi-
modal graph and the updated multimodal graph via
MCIS, respectively, as Figure 5 (b) and Figure 5
(c) show. It can be seen that the initial multimodal
graph establishes strong associations between “is,
and” and all image patches, so this association can-
not assist in text prediction, as Figure 5(b) shows.
After updating our model, the new graph weakens
invalid associations and strengthens beneficial as-
sociations between patches and words, such as the
association between image patches and “Baby Jas-
mine”, which will more effectively assist the model
in making a detection. The comparative results for
the case studies are shown in Figure 5(d), where
our model performs the best.

6. Conclusions

We propose a novel MultimOdal caUSal INterven-
tion Graphs (MOUSING) model for multimodal
named entity recognition in the few-shot scenario.
MOUSING first builds the multimodal graph based

on fine-grained information from different modali-
ties. We then leverage the Multimodal Causal In-
tervention Strategy (MCIS) to strengthen collect
edges and weaken spurious edges to improve the
performance of FMNER. Extensive experiments
conducted on the two datasets demonstrate that
our approach outperforms strong baselines on the
FMNRE task. We provide a new direction for re-
lated tasks of MNER in the few-shot setting. We
will explore more multimodal tasks with multimodal
causal intervention graph in future work. In future
work, we will explore more multimodal tasks with
multimodal causal intervention graph model, such
as multimodal relation extraction, multimodal event
extraction, and multimodal parsing.

Limitations

Our work overcomes the severe data bias impact
in the few-shot MNER setting, which effectively de-
creases the spurious correlations and emphasizes
accurate correlations between multimodal units, re-
sulting in effectively aligned multimodal representa-
tions. Empirical experiments demonstrate that our
method weakens the influence of biased data in the
few-shot setting. However, there are still some limi-
tations of our approach, which can be summarized
as follows:

• Due to the limitation of the existing MNRE
datasets, we only experiment on two modali-
ties. We will study more modalities in future
work.

• Our model does not consider applications on
other multimodal tasks, such as multimodal
relation extraction and multimodal image-text
retrieval. We will study more multimodal tasks
in the future.
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