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Abstract
When learning new vocabulary, both humans and machines acquire critical information about the meaning of
an unfamiliar word through contextual information in a sentence or passage. However, not all contexts are
equally helpful for learning an unfamiliar ‘target’ word. Some contexts provide a rich set of semantic clues
to the target word’s meaning, while others are less supportive. We explore the task of finding educationally
supportive contexts with respect to a given target word for vocabulary learning scenarios, particularly for improving
student literacy skills. Because of their inherent context-based nature, attention-based deep learning methods
provide an ideal starting point. We evaluate attention-based approaches for predicting the amount of educational
support from contexts, ranging from a simple custom model using pre-trained embeddings with an additional
attention layer, to a commercial Large Language Model (LLM). Using an existing major benchmark dataset for
educational context support prediction, we found that a sophisticated but generic LLM had poor performance, while a
simpler model using a custom attention-based approach achieved the best-known performance to date on this dataset.

Keywords: contextual vocabulary learning, language acquisition curriculum, attention-based model

1. Introduction

We learn the vast majority of our new vocabulary
with significant help from context. Humans acquire
the meanings of unknown words partially and in-
crementally by repeated exposure to clues in the
surrounding text or conversation (Frishkoff et al.,
2008). As part of literacy training, contextual word
learning methods can help students by teaching
them different techniques for inferring the meaning
of unknown words by recognizing and exploiting
semantic cues such as synonyms and cause-effect
relationships (Heilman et al., 2010). However, not
all contexts are equally supportive of learning a
word’s meaning. As Figure 1 shows, there can be
wide variation in the amount and type of information
about a ‘target’ word to be learned, via semantic
constraints implied by the context. Humans are
very good at ‘few-shot learning’ of new vocabulary
from such examples, but the instructional quality of
initial encounters with a new word is critical. Identi-
fying the degree and nature of supportive contexts
in authentic learning materials is an important prob-
lem to solve for designing effective curricula for
contextual word learning (Webb, 2008).

Predicting and characterizing educationally sup-
portive contexts for learning differs from other
context-based prediction tasks, such as n-gram
prediction or cloze completion. For example, some
contexts are better than others for learning because
they provide more effective support for inferring
the meaning of the target word. Generic natural
language processing models may not capture this

1) My friends, family, and I all really like tesgüino.
2) There is a bottle of tesgüino on the table.
3) Brewers will ferment corn kernels to make tesgüino.

Figure 1: These sentences have the same length
but provide very different contextual information
about the meaning of the target word, tesgüino.
We explore computational models that can quantify
the degree and nature of this target-specific edu-
cationally supportive contexts.

target-specific educational supportiveness, which
is critical in determining instructive quality in con-
textual word learning applications.

In this study, we introduce examples of predict-
ing the degree and understanding the nature of the
educationally supportive contexts with respect to
the meaning of a target word to be learned. We
show that the application of deep learning using a
model based on BERT (Devlin et al., 2019), com-
bined with an attention layer, gives the best-known
accuracy to date on an existing key benchmark
multi-sentence context dataset (Kapelner et al.,
2018). We also compared our custom models for
prediction with the generic use of a sophisticated
recent LLM and showed identifying educationally
supportive contexts was a challenging task for this
LLM. We believe our results are applicable not only
to developing educational curricula for vocabulary
instruction, but also to NLP tasks like few-shot ma-
chine learning of new words or concepts from text.
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2. Educationally Supportive Contexts

Both humans and language models use context
words to infer word meaning. In education, con-
textual word learning is an instructional method
that teaches students how to infer the meaning
of unknown words by recognizing and utilizing se-
mantic cues (Frishkoff et al., 2008; Heilman et al.,
2010). Beck et al. (1983) note that not all contexts
are equal by characterizing the supportiveness of
contexts for learning new words, distinguishing be-
tween pedagogical vs. natural. Both high- and
low-supportive contexts play important roles in op-
timizing long-term retention of new vocabulary, as
they invoke different but complementary learning
mechanisms (van den Broek et al., 2018). Ex-
posing a reader to a carefully chosen contextual
curriculum can lead to significantly better long-term
retention of new words (Frishkoff et al., 2016).

Multiple studies in NLP have focused on related
tasks such as predicting a missing word (Zweig
and Burges, 2011; Shaoul et al., 2014), predicting
the meaning, substitutes, or properties of a par-
ticular word (McCarthy and Navigli, 2007; Kremer
et al., 2014; Wang et al., 2017; Pavlick and Pasca,
2017; Pilehvar and Camacho-Collados, 2019), or
measuring surprise at seeing a particular word in
the context (Peyrard, 2018). These complemen-
tary tasks focus on the word itself, rather than the
context, to learn word meaning and models of lan-
guage (Warren, 2012). Indeed, the missing-word
task forms the basis for most pre-training of large
language models (e.g., masked word prediction Pe-
ters et al., 2018; Devlin et al., 2019). A few previous
studies investigated how contextual information can
be used to infer the meaning of synthetically gener-
ated target words (Lazaridou et al., 2017; Herbelot
and Baroni, 2017). However, they also relied on
the assumption that the provided context contains
enough information to make an inference, by man-
ually selecting the training sentences for synthetic
words. In general, work in NLP typically assumes
informative contexts are given, and does not predict
or characterize the varying degrees of contextual
supportiveness with respect to a target word, espe-
cially for educational scenarios.

A handful of NLP studies have computationally
approached characterizing the supportive contexts
of curriculum materials for vocabulary learning. The
most related work to our study, Kapelner et al.
(2018), achieved their best prediction performance
using a random forest model with over 600 different
hand-specified text features on their own dataset
of multi-sentence text passages. Unlike our study,
however, they did not explore the use of deep learn-
ing frameworks for learning feature representations
automatically for enhanced prediction. The REAP
project (Collins-Thompson and Callan, 2004) used
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Figure 2: Our model consists of a pre-trained em-
bedding (red) with a masked attention block (blue)
to create attention-weighted context vectors, and a
regression block (yellow) to predict the numeric ed-
ucational supportive context score. We also tested
lexical features from Kapelner et al. (2018) (green)
as complementary additional model input.

NLP methods to identify appropriate contexts for
vocabulary learning, but focused on filtering en-
tire web pages by tagging sentences with specific
criteria, not individual prediction of supportive con-
texts. Similarly, Hassan and Mihalcea (2011) used
feature engineering and a supervised classifier to
label entire documents as “learning objects” for con-
cepts (e.g., computer science), but did not focus
on quantifying or characterizing the supportiveness
of context passages for specific target words. Our
work bridges distinct fields, exploring the first use
of deep learning for the educational supportiveness
prediction task, not only avoiding the need for ex-
tensive feature engineering, but also providing a
mechanism for interpretability, to characterize how
different cues in a particular context contribute to
information about a given target word.

3. Attention-Based Models

Our model is inspired by a prior attention-based
model that classified customer sentiment towards
particular product aspects by capturing the relation-
ship between context words and a target word (Liu
et al., 2018). In Liu et al. (2018), the attention mech-
anism was used to capture the different sentiment
polarities of context words with respect to the target
concept/aspect. They showed this approach can
be effective for sentences with multiple aspects or
complex structures. In our work, we used the atten-
tion mechanism to capture the different amounts
of contextual support of words with respect to the
target word to learn.

Our model predicts contextual supportiveness by
identifying which aspects contribute to identifying a
word’s meaning. We used pre-trained components
(red block in Figure 2) to retrieve vector represen-
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tations of contexts and the target word. For each
model, we treated the target word as an unknown
(e.g., <UNK> for ELMo or [MASK] for BERT mod-
els) token so that the model must use contextual
information to infer the meaning of the ‘unknown’
target word.

The target and context word vectors are passed
to the attention layers (blue blocks). Using an at-
tention mechanism (Luong et al.), we calculated
the weights between the masked target word and
context words (fatt) and get the attention-weighted
average of context vectors. We also explored com-
plementing our model’s representation with lexical
features added from Kapelner et al. (2018) (green
block) (see Appendix C for details) 1.

It is important to understand why our applica-
tion of attention mechanisms for this educational
prediction task differs from generic attention-based
models (e.g., transformer-based language models).
When children learn to read, literacy strategies can
teach them to look for clues in the surrounding con-
text to infer the meaning of an unknown word. This
includes exercises to find synonyms, antonyms,
cause-effects, and other relationships. Since not
all relationships of nearby context words are equally
helpful or easy for a child to recognize, our model,
together with the extensive labeled dataset we use
for training, focuses on capturing the nuances of the
types of word-context relationships that are specifi-
cally helpful for language learners. In contrast, the
attention weights from generic self-attention layers
may capture a variety of relationships between the
words in an input text sequence, but these are not
necessarily educationally supportive relationships
that are most accessible and helpful for learning.

4. Dataset

In contextual word learning, the meaning of a tar-
get word can be determined from information in sur-
rounding sentences. To test our models in the multi-
sentence scenario, we used an existing dataset
from the only previous study, to our knowledge, on
educational supportiveness of contexts (Kapelner
et al., 2018). Those authors selected 933 words for
advanced exams such as the ACT, SAT, and GRE.
Based on these target words, they collected 67,833
contexts from the DictionarySquared database. On
average, each target word had 72.7 (σ2=20.7) con-
texts. They categorized target words into ten diffi-
culty levels, and these levels were not correlated
with annotated supportiveness scores.

This multi-sentence dataset contains over 67k
passages selected from the existing database (µ =
81 words, σ2 = 42). Second, each context con-
tains one of 933 unique target words, which were

1Codes can be found at https://github.com/
sungjinnam/contextual_informativeness

High Supportive: As with ginger, turmeric has salubri-
ous properties. It is an antiseptic, applied as a paste to
cuts and abrasions, and is taken with food to aid diges-
tion.
Target Word: salubrious
Avg. Score: 3.22
Low Supportive: With the increase in the number of
clandestine laboratory seizures throughout the country,
there has been a corresponding escalation of problems
confronting state and local agencies that are called to
the scene of these laboratories.
Target Word: clandestine
Avg. Score: 1.89

Table 1: The multi-sentence context dataset
from Kapelner et al. (2018) consists of passages
collected from the DictionarySquared database,
with crowd-sourced supportiveness ratings.

selected to range across difficulty levels. Third,
crowdworkers for the dataset annotated the educa-
tional supportiveness of context passages (with
target word included) using a four-point Likert
scale (roughly corresponding to the four categories
in (Beck et al., 1983)). Table 1 provides example
multi-passage items derived from that dataset.

5. Experiment: Finding Educationally
Supportive Contexts

We evaluated how effectively a range of models pre-
dicted the educational supportiveness of contexts.
We computed both RMSE of human vs. machine
prediction (min-max scaled), and the ROCAUC for
three binary prediction problems: predicting the
passages in the lowest 20%, median 50%, and
highest 20% of annotated supportiveness scores.
The latter high-precision setting corresponds to the
goal of the prior study (Kapelner et al., 2018). All re-
ported results are based on 10-fold cross-validation.
Each fold was randomly selected based on the tar-
get word to ensure the model did not see sentences
with the same target word during training.

5.1. Baseline Models
We used multiple baseline models for the analysis.
For simple baselines, we used a dummy model
(Base:Avg) that always predicts the average sup-
portiveness score from a fold; a linear regression
model (Base:Length) based on sentence length;
and a ridge regression model (Base:BoW) using
the co-occurrence information of context words –
The last method could be similar to mutual informa-
tion score, as it is based on word-count features.

We included the random forest model
(Base:RF_Lex) from Kapelner et al. (2018).
Thanks to data provided by those authors, our
implementation of the random forest model was

https://github.com/sungjinnam/contextual_informativeness
https://github.com/sungjinnam/contextual_informativeness
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RMSE(↓) Lower 20%(↑) 50:50(↑) Upper 20%(↑)
Base: Avg. 0.173 (0.170, 0.176) 0.500 (0.500, 0.500) 0.500 (0.500, 0.500) 0.500 (0.500, 0.500)

Base: Length 0.173 (0.170, 0.176) 0.511 (0.505, 0.517) 0.507 (0.500, 0.514) 0.502 (0.495, 0.509)
Base: BoW 0.201 (0.199, 0.204) 0.643 (0.630, 0.656) 0.599 (0.588, 0.610) 0.585 (0.575, 0.595)

Base: RF_Lex 0.157 (0.154, 0.159) 0.736 (0.729, 0.743) 0.698 (0.691, 0.705) 0.680 (0.669, 0.692)
Base: GPT-3.5 0.290 (0.288, 0.291) 0.541 (0.536, 0.546) 0.540, (0.537, 0.544) 0.546, (0.542, 0.551)

Base: ELMo 0.152 (0.146, 0.159) 0.768 (0.757, 0.779) 0.729 (0.721, 0.737) 0.705 (0.696, 0.715)
Ours: ELMo+Att 0.153 (0.149, 0.156) 0.770 (0.760, 0.780) 0.727 (0.720, 0.734) 0.701 (0.689, 0.713)

Ours: ELMo+Att+Lex 0.152 (0.149, 0.155) 0.789 (0.779, 0.799) 0.746 (0.739, 0.754) 0.725 (0.719, 0.731)
Base: BERT 0.139 (0.136, 0.142) 0.807 (0.797, 0.817) 0.764 (0.757, 0.772) 0.751 (0.739, 0.763)

Ours: BERT+Att 0.138 (0.136, 0.140) 0.816 (0.806, 0.825) 0.777 (0.770, 0.785) 0.768 (0.757, 0.778)
Ours: BERT+Att+Lex 0.145 (0.142, 0.149) 0.822 (0.814, 0.831) 0.782 (0.775, 0.788) 0.773 (0.765, 0.781)

Table 2: Average RMSE (lower is better(↓)) and binary classification results (ROCAUC, higher is
better(↑)) with the multi-sentence context dataset (Kapelner et al., 2018). Adding the attention block
(+Att) to the BERT-based model performed significantly better than the baseline and ELMo-based models.
Adding lexical features from the original paper (Kapelner et al., 2018) (+Lex) further increased prediction
performance. Numbers in parentheses are the 95% confidence interval. Numbers in bold indicate the
best-performing model for each evaluation criterion.

able to replicate the reported R2 scores (e.g., 0.179
vs. 0.177), using lexical features of contexts. The
model used lexical features, including 600+ hand-
specified features, such as n-gram frequencies
from Google API, Coh-Metrix (McNamara et al.,
2014), and sentiment analysis results (Crossley
et al., 2017), psycholinguistic (Crossley et al.,
2016). More details about the model and lexical
features can be found in Appendix A.

We also used pre-trained language models. We
used ELMo (Base:ELMo) (Peters et al., 2018) and
BERT (Base:BERT) (Devlin et al., 2019) to pre-
dict the educational supportiveness scores without
the additional attention block (i.e., without the blue
blocks from Figure 2). These baselines are ex-
pected to perform better than the simple baselines.

We included a commercial LLM GPT-3.5 (Ope-
nAI, 2023) baseline model (GPT-3.5) for compar-
ison. Our input prompt carefully used the same
description language for each rating level given to
human raters in (Kapelner et al., 2018). It also in-
cluded few-shot demonstration examples showing
sample passages for each possible supportiveness
rating, as well as a secondary task of evaluating
whether expert knowledge might be required to fully
understand the passage, to properly calibrate for
typical non-expert users of the system (see Ap-
pendix D for details).

5.2. Results
Overall prediction results are shown in Table 2. The
sentence-length baseline (Base:Length) showed
near-random classification performance, since the
contexts were long enough and less correlated to
the number of words. The co-occurrence base-
line model (Base:BoW) showed significantly better
performance than Base:Length, but not better
than the pre-trained baselines. The previous best-

known prediction model on this dataset (RF_Lex)
did significantly better than the simple baselines,
but not as well as the deep learning-based models.

Despite significant work on prompt engineering
and the use of few-shot examples, we obtained
weaker results than expected using the commercial
LLM (GPT-3.5). It is possible that further prompt
refinements or the use of more powerful models
might result in much better accuracy. However,
the results provide evidence that obtaining good
educational supportiveness prediction results with
this dataset is a non-trivial challenge for even a
sophisticated general-purpose LLM.

Based on 95% confidence intervals, all ELMo-
and BERT-based models performed significantly
better than the other baseline models. For our
custom model, we found that adding the atten-
tion block alone (BERT+Att) provided marginal
gains over the BERT baseline. The complemen-
tary model (BERT+Att+Lex) that concatenated
attention-weighted context vectors with lexical fea-
tures, performed significantly better than all base-
line models, giving the best overall performance on
all three binary prediction tasks.

6. Conclusion

Our custom models tuned for predicting the ed-
ucational supportiveness of contexts performed
significantly better than the off-the-shelf commer-
cial LLM, and our deep learning frameworks sig-
nificantly improved over the prior best prediction
model from (Kapelner et al., 2018) that used large
numbers of engineered features. Beyond educa-
tion scenarios, we believe our results also motivate
further research on educational supportiveness pre-
diction as an important additional benchmark task
for general LLM evaluation suites.
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7. Discussion and Limitations

First, a more complete model for predicting edu-
cationally supportive contexts would include per-
sonalized and user group-oriented components
such as users’ background knowledge of the tar-
get concept or L1 vs. L2 learner profile. However,
such models can be challenging to learn and eval-
uate. For example, individual differences in word
knowledge (Borovsky et al., 2010) or language pro-
ficiency (Elgort et al., 2018) may result in different
levels of processing linguistic information.

Second, our attention-based model still has room
to improve. Like many ML models, our model tends
to make centralized predictions, over-predicting the
low-scored contexts and under-predicting the high-
scored contexts. This might be related to the en-
coder models’ limited vocabulary size compared
to distinctive vocabulary, semantic cue usages in
low— or high-scored contexts, or the location of
the target word that would affect the amount of
nearby context. In future work, we will systemati-
cally investigate characteristics of the less accurate
predictions, including the role of pre-trained NLP
models’ limited vocabulary size, difficulty process-
ing grammatically complex or incorrect sentences,
or variability between different semantic clue types.

Third, we focused on developing a more capable
model for predicting the amount of educationally
supportive contexts in vocabulary learning. In a fu-
ture study, qualitative or quantitative evaluations of
the model, including 1) analyzing attention weights
of contextual words with anecdotal examples and
2) comparing different contextual word types’ at-
tention weights in scale with synthetic sentences
with similar sentence structures, would provide an
in-depth analysis of model behaviors.

Lastly, we believe our approach would have
broader NLP implications. For example, the at-
tention weights for the context words can be useful
by providing more detailed explanations of specific
semantic clues for language learners. Further eval-
uations on the quality of the attention weights will
be beneficial to designing interactive applications
for literacy. Our model could also be used in appli-
cations like curriculum learning (e.g., use our model
to decide more/less informative training materials
to design the training curriculum for NLP models to
learn about new concepts), reinforcement learning
(e.g., use our model as a reward model for tun-
ing the larger generative model to provide more
context-rich output), and information retrieval (e.g.,
use our model to rank more informative context on
top for the query).

Ethics Statement

This study only investigated datasets and pre-
trained language models developed for the English
language. Since our model is based on pre-trained
models like ELMo, BERT, and GPT-3.5, our re-
sults may also inherit different biases, including
gender, race, culture, or word frequency, from these
base models. Further studies using non-English
datasets, accounting for more inflected languages’
complex grammatical rules, or semantic biases as-
sociated with different cultures, would be a valuable
future extension of this research.
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words’ politeness, age of acquisition, and mean-
ingfulness of context words (Crossley et al., 2016;
Kolb, 2008).

During the training of the ELMo- and BERT-
based models, we fine-tuned the pre-trained mod-
els. Because of the differences in the number of
trainable parameters of each pre-trained model, we
used different learning rates for each ELMo-based
(1e−3) and BERT-based (3e−5) model. Other
hyper-parameters remained constant across mod-
els (batch size: 16, iteration: 3). The dimension of
the ReLu layer was 256. The dimensions for the

attention block layers were the same as those of
the pre-trained embeddings (ELMo: 1024, BERT:
768).

B. Computing Resource for Training

For this study, we used a single NVIDIA 2080 TI
GPU with Intel i7 CPU. For the multi-sentence con-
text dataset, it took approximately 30 minutes per
fold. We used pre-trained versions of ELMo (Peters
et al., 2018) and BERT (Devlin et al., 2019) from
TensorFlow Hub https://tfhub.dev/. Our
ELMo-based model with attention block had about
426k trainable parameters, while the BERT-based
counterpart had about 7.3M trainable parameters.

C. Model Structure

The input for the attention layers (blue blocks in
Fig. 2) is the target word and context tokens vec-
tor. Using a multiplicative attention mechanism (Lu-
ong et al.), we calculated the relationship between
the token that replaced the target word and con-
text words (fatt). We used softmax to normalize
the output of the attention layer. The output of
the softmax layer masked non-context tokens as
zero, to eliminate the weights for padding and the
target word (att.mask). The masked attention out-
put was then multiplied with the contextual vectors
from the pre-trained model to generate attention-
weighted context vectors. We also explored com-
plementing our model’s representation with lexical
features from Kapelner et al. (2018) (green block)
by concatenating their features with our attention-
weighted context vectors (BERT+Att+Lex in Table
2). The regression layers (yellow blocks) used an
average pooling result of attention-weighted con-
text vectors. The layers comprised a ReLU layer
and a fully connected linear layer that estimated
the score of educational supportiveness on a con-
tinuous scale. We used root mean square error
(RMSE) as a loss function. We compared the use
of pre-trained versions of ELMo (Peters et al., 2018)
and BERT-Base (12 layers, 768 dimensions) (De-
vlin et al., 2019) models from TensorFlow Hub in
developing our model.

To avoid overfitting, we selectively updated the
pre-trained models’ parameters: for ELMo-based
models, we updated parameters that determine the
aggregating weights of LSTM and word embedding
layers; for BERT-based models, we updated the
parameters for the last layer.

D. GPT Parameters and Prompt

We used the OpenAI gpt-3.5-turbo-0613
model with the following parameters:
temperature=0, max_tokens=2500,

https://tfhub.dev/
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top_p=1, frequency_penalty=0, pres-
ence_penalty=0.
The prompt contains few-shot learning examples
for the main educational supportiveness prediction
task as well as instructions for two ancillary tasks:
(1) a binary ’accessibility’ prediction task of labeling
passages that likely require subject-specific exper-
tise or not, to be accessible to student readers,
and (2) an explanation of what context words
contributed clues to the target word meaning, with
relative weights. The prompt also included batch
format instructions so that multiple passages (for
this study, ten) could be evaluated with a single
API call.

You are an assistant who is a lin-
guistic expert, but is not a sub-
ject matter expert for any other
subject. I will give you 10 tar-
get word-passage pairs. Each target
word-passage pair is in the format
below:

target word ||| passage

Below is an example:

abrogate ||| But the fight against
parental notification is really only
one example of many attempts to wa-
ter down traditional values and even
abrogate the original terms of Amer-
ican democracy. Freedom prospers
when religion is vibrant and the
rule of law under God is acknowl-
edged. When our Founding Fathers
passed the First Amendment, they
sought to protect churches from gov-
ernment interference. ...

For each target word-passage pair,
quantify how useful the passage is
for learning the complete and cor-
rect definition of the target word
contained in the passage.

Output your prediction as a real
number on the following scale:

+4 Very Helpful. After reading
the passage, a student will have a
complete and correct understanding
of what the target word means.

+3 Somewhat Helpful. After read-
ing the passage the student will
have some idea of the meaning of the
target word.

+2 Neutral. After reading the pas-

sage it neither helps nor hinders
a student’s understanding of the
word’s meaning.

+1 Bad. This passage is mislead-
ing about the target word meaning,
too difficult, or otherwise inappro-
priate.

After the prediction score, output
"Expertise required" if the language
in the passage contains vocabulary
or acronyms that require expert
knowledge, or "Accessible" if no
specialized domain language is re-
quired to understand the passage.

After outputting the prediction,
output the list of at most 5 context
words, not including the target word,
that give a student the most sig-
nificant clues about the meaning of
the target word. For each context
word, assign a score from 0 to 100
that indicates how strongly it gives
evidence about the meaning of the
target word.

Do not include the reasonings be-
hind your choice of context words,
just output the context words.

Below are four examples of an in-
put with its corresponding output:

User - "bifurcate ||| ... The AAA
International Arbitration Rules are
even more explicit, stating that the
tribunal "may in its discretion di-
rect the order of proof, bifurcate
proceedings, exclude cumulative or
irrelevant testimony or other evi-
dence, and direct to the parties to
focus their presentations on issues
the decision of which could dispose
of all or part of the case." ..."

Assistant - "target_word: bifur-
cate
Score: +1
Accessibility: Accessible
Context words: AAA International Ar-
bitration Rules (20), tribunal (10),
order of proof (10), proceedings (5),
case (5)"

User - "bifurcate ||| The parties
will invariably want to bifurcate
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the issues of costs and attorneys
fees (if applicable) and the amount
of any punitive damages from the
primary arbitration. They may also
wish to consider bifurcating lia-
bility and damages, though such a
request, if granted, will probably
create a substantial hiatus between
arbitration phases. ..."

Assistant - "target_word: bifur-
cate
Score: +2
Accessibility: Accessible
Context words: parties (10), issues
(10), costs (10), attorneys fees
(10)"

User - "bifurcate ||| ... In
birds, the auditory nerve contacts
nucleus magnocellularis (NM). Axons
emanating from neurons in NM bifur-
cate and innervate nucleus laminaris
(NL) on both sides of the brain. NL
neurons have symmetric dorsal and
ventral dendrites. The dorsal den-
drites receive input from ipsilat-
eral NM while the ventral dendrites
receive input from contralateral NM.
..."

Assistant - "target_word: bifur-
cate
Score: +3
Accessibility: Expertise required
Context words: auditory nerve(20),
nucleus magnocellularis(30), neu-
rons(15), nucleus laminaris(25)"

User - "bifurcate ||| First, the
pastor needs to integrate their ser-
mon preparation and personal Bible
study. In the past, it has been ar-
gued by some that a pastor should
bifurcate their personal Bible study
from their sermon preparation. I
wholeheartedly disagree with this
counsel because a preacher needs to
preach from their life in Scripture.
..."

Assistant - "target_word: bifur-
cate
Score: +4
Accessibility: Accessible
Context words: pastor(10), sermon
preparation(15), personal Bible
study(15), preacher(10)"

Figure 3: Residual of LLM predicted scores as a
function of average human rating for multi-sentence
contexts.

Your response should be a list of
10 items corresponding to the list
of 10 word passage pairs given in
the input.

The format of each item should fol-
low the example response below:

target_word: bifurcate
Score: +3
Accessibility: Expertise required
Context words: auditory nerve (20),
nucleus magnocellularis(30), neu-
rons(15), nucleus laminaris(25)

When assuming expertise in subject matter for
the agent that rates contextual informativeness, the
prompt changed the role of the system to the follow-
ing: Assistant is a linguistic expert
that analyzes the informativeness of
a passage in helping readers learn
the complete and correct definition
of the target word in the passage

E. Additional GPT Results

Figure 3 shows the residual plot of RMSE as a func-
tion of human rating. The GPT model tended to
have overly conservative predictions, overpredict-
ing supportiveness for passages rated low-quality
by humans, and underpredicting supportiveness
for high-quality passages.

We also examined how prediction errors were
connected with the need for subject area expertise,
as marked by the ’accessibility: expertise required’
label assigned by the LLM. Overall, 1.176% of pas-
sages were marked as ’Expertise required’ with
highly technical language. For passages where
the LLM underpredicted supportiveness, this frac-
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tion was 1.103%, while for passages where the
LLM overestimated supportiveness, the fraction
was 1.970%. This discrepancy suggests the need
for further refinement of the prompt design to im-
prove the LLM’s calibration of what contexts require
subject expertise, and how expertise should be fac-
tored into a realistic prediction for the target user
population (typically non-expert students).
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