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Abstract
Recent advances in Instruction-fine-tuned Vision and Language Models (IVLMs), such as GPT-4V and InstructBLIP,
have prompted some studies have started an in-depth analysis of the reasoning capabilities of IVLMs. However,
Inductive Visual Reasoning, a vital skill for text-image understanding, remains underexplored due to the absence of
benchmarks. In this paper, we introduce Find-the-Common (FTC): a new vision and language task for Inductive
Visual Reasoning. In this task, models are required to identify an answer that explains the common attributes
across visual scenes. We create a new dataset for the FTC and assess the performance of several contemporary
approaches including Image-Based Reasoning, Text-Based Reasoning, and Image-Text-Based Reasoning with
various models. Extensive experiments show that even state-of-the-art models like GPT-4V can only archive with
48% accuracy on the FTC, for which, the FTC is a new challenge for the visual reasoning research community. Our
dataset has been released and is available online: https://github.com/SSSSSeki/Find-the-common.

Keywords: Visual Inductive Reasoning, Visual and Language Task Benchmark, IVLMs (instruction-fine-
tuned vision and language models)

1. Introduction

Given the recent advances in Large Language
Models (LLMs), researchers have attempted to
adapt them to multi-modal inputs, leading to many
impressive Instruction-tuned Vision Language
Models (IVLMs), such as MiniGPT-4 (Zhu et al.,
2023), InstructBLIP (Dai et al., 2023), LLaVA (Liu
et al., 2023), Visual ChatGPT (Wu et al., 2023),
and GPT-4V (Yang et al., 2023). IVLMs demon-
strate their excellent performance on traditional
Vision and Language tasks (Yin et al., 2023; Xu
et al., 2023b; Fu et al., 2023) and also show the
strong zero-shot generalization ability to unseen
tasks, such as writing HTMLs based on a hand-
drawing sketch and explaining the implicit meaning
of memes (Zhu et al., 2023; Liu et al., 2023).

To assess the reasoning ability of Vision
Language Models (VLMs), multiple types of tasks
have been well-established. These tasks are de-
signed to test the basic perceptual abilities of VLMs
such as object recognition as well as complex anal-
ysis such as object counting, comparison, and com-
monsense reasoning. For example, Compositional
Visual Reasoning (Johnson et al., 2017) diagnoses
the competency of VLMs to perform compositional
reasoning on images, such as counting, compar-
ing, and logical reasoning. Complementarily, Vi-
sual Spatial Reasoning (Liu et al., 2023) provides
a focused evaluation for the understanding of spa-
tial relationships in images. Another direction is
to test the ability to use external knowledge be-
yond image contents, which is proposed as Visual
Commonsense Reasoning (Zellers et al., 2019). It

What is the common regularity between four 3D
scenes?

a. The yellow object on the far right among all
yellow objects is a cylinder.

b. The red sphere is in the forefront.
c. The cube on the far left among all cubes is

green. ✓
d. The object farthest away is purple.

Figure 1: Example of the Find-the-Common task.
Given four 3D scenes and multiple choices, the
task is to perform inductive reasoning to identify the
correct statement describing the common regularity
between the 3D scenes. The choices consist of (i)
the correct choice (c), (ii) two wrong choices (a, d),
and (iii) a decoy choice to fool models (b).

requires VLMs to perform a higher-order cognitive
and commonsense understanding of the world and
to provide a rationale to justify their answers.

However, we argue that all these benchmarks
scratch one important type of reasoning skill,
namely deductive reasoning: given premises, the
model is required to derive specific conclusions
(sometimes by using commonsense knowledge) in

https://github.com/SSSSSeki/Find-the-common
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a top-down manner.
Another important type of reasoning is inductive

reasoning, which aims to generalize a group of finite
observations to induce general rules in a bottom-up
fashion (Xu et al., 2023a). In the context of vision
processing, we can define such competencies as
visual inductive reasoning, which requires under-
standing multiple visual scenes and then reason-
ing out common conclusions from those different
scenes. We argue that visual inductive reasoning
has been underexplored despite its importance,
which raises the following question: Given a set of
visual scenes, can IVLMs identify a common rule
describing these different scenes?

To address this issue, we propose a novel bench-
mark, termed Find-the-Common. An example is
shown in Fig. 1. Given four 3D scenes and multiple
choices, the task is to perform inductive reason-
ing to identify the correct statement describing the
common regularity between the 3D scenes. Our
contributions can be summarized as follows:

• We introduce a novel benchmark Find-the-
Common for evaluating the inductive rea-
soning capabilities of IVLMs (§2.1, §2.2).
Our dataset consists of 353 instances, each
of which provides (i) four 3D scenes con-
sisting of 2-6 objects and (ii) four multi-
ple choices, including a decoy choice that
is partially true in scenes (Fig. 1). Our
dataset has been released and is available
online: https://github.com/SSSSSeki/
Find-the-common.

• Our extensive experiments show that state-
of-the-art IVLMs, including GPT-4V, LLaVA,
and InstructBLIP, struggle to solve the FTC
task. Our detailed analysis also finds that GPT-
4V exhibit tendencies to “hallucinate”, despite
their demonstrated proficiency in text-based
inductive reasoning.

2. Benchmark: Find-the-Common

2.1. Task Definition
The benchmark focuses on the task of inductive
reasoning, which involves extracting principles from
specific instances. There are many possible design
choices for this task. Considering the challenges
brought about by the complexity and nuances in
real photographs, we choose to initiate our research
from simplified 3D object scenes. This allows us
to concentrate more on evaluating the reasoning
performance of IVLMs.

Formally, we define the FTC as follows:

• Input: (i) 3D Scenes: Four unique scenes
S1, S2, S3, S4, each containing 2-6 objects.
Each object has four attributes and takes one

Attribute Possible values
Color Red, Green, Blue, Yellow, Purple
Shape Cube, Sphere, Cylinder, Cone
Size Small, Medium, Large
Position (1,1), (1,2), ..., (7,7), (8,8)

Table 1: Attributes of objects and their possible
values.

possible value. See Table 1 for further details.
(ii) Choices: Four choices C describing possi-
ble regularities in S1, S2, S3, S4.

• Output: A rule r ∈ C that holds true for all the
given scenes S1, S2, S3, S4.

The example is given in Fig. 1. For evaluation, we
use accuracy as a performance metric.

2.2. Dataset Creation
To generate 3D scenes and multiple choices of
rules, we take a two-step approach: (i) generating
choices, and then (ii) generating scenes satisfying
the correct choice and not satisfying the wrong
choices.

Firstly, we generate four choices of rules
{c, w1, w2, d}, including one correct choice c, two
wrong choices w1, w2, and one decoy choice d.
The decoy choice is designed to be partially true
for given scenes, ensuring IVLMs to examine all
the scenes to arrive at the correct choice.

To generate choices, we first prepare 13 linguistic
templates with attribute placeholders at three levels:
(i) one-attribute rule (e.g., “All objects are [shape].”)
(4/13), (ii) two-attributes rule (e.g., “All objects are
[color] [shape].” (6/13), and three-attributes rule
(e.g., “The [position] [color] is [shape].”) (3/13). We
then randomly select one template and randomly
determine the value of each placeholder. For [posi-
tion], because it is not straightforward to represent
the absolute position as a sentence, we resort to
relative choices: “on the far left”, “on the far right”,
“forefront”, and “farthest away”. For the diversity
of choices, we ensure all the placeholders will be
filled in with different values.

Secondly, we generate two types of 3D scenes:
(i) one scene satisfying c but not d,w1, w2, and (ii)
three scene satisfying c, d but not w1, w2. This prob-
lem can be naturally formulated as a conventional
constraint satisfaction problem: finding the best
configuration (i.e. attributes) of objects that satisfy
(or unsatisfy) given rules. We thus use Answer
Set Programming (ASP), a logic-based modeling
framework for constraint satisfaction problems.

We create an ASP program so that each answer
set corresponds to one scene configuration. To
represent one object, we define a predicate, such

https://github.com/SSSSSeki/Find-the-common
https://github.com/SSSSSeki/Find-the-common
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as shape(X, S) (i.e., object X has shape S) and
then encode rules as ASP rules. Examples of ASP
rules include:

• All objects are [shape]:
r_all_SH(S) :- shape(X, S) :
obj(X)

• A [color] object exists, and all [color] objects
are [shape]:
r_all_CL_are_SH(C, S) :-
r_CL_exists(C), shape(X, S) :
color(X, C).

To generate a scene satisfying (or not satisying)
these rules, we use integrity constraint as follows:

• The rule “All objects must be red” must be
satisfied:
:- not r_all_SH(red).

• The rule “All red objects must be cube” must
not be satisfied:
:- r_all_CL_are_SH(red, cube).

We then randomly sample one answer set using
clingo1 and convert it back to a scene configura-
tion. We used pyrender2 to render the sampled
3D scenes. We generate 353 instances as a final
dataset.

2.3. Dataset Quality
To ensure that our visual inductive reasoning prob-
lems are consistently solvable by humans, we con-
duct a human evaluation study. We randomly sam-
ple 100 instances and ask two graduate school
students to solve them.

The inter-annotator agreement between these
evaluators indicates Cohen’s Kappa of 0.92, indi-
cating “almost perfect agreement”. The accuracy
scores of the two evaluators are 0.98 and 0.88, re-
spectively. An evaluator with an accuracy of 0.88 is
frequently fooled with decoy choices, which results
in lower accuracy.

3. Approaches

In this study, we employ three approaches to
assess the zero-shot generalization capability of
IVLMs on visual inductive reasoning:

Image-Based Reasoning Tests the models’ abil-
ity to identify common rules among scenes via uti-
lizing visual perception (Fig. 2a).

1https://potassco.org/clingo/
2https://github.com/mmatl/pyrender

Q: What is the common
regularity between four 3D

scenes?

Answer
choice

Scenes

Choice

IVLM

(a) Image-Based Reasoning

Answer
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scene2

scene3

scene4

scene1
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'pos':[8,8]             'size':1
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(b) Text-Based Reasoning
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(c) Image-Text-Based Reasoning

Figure 2: An overview of approaches.

Text-Based Reasoning Evaluates the models’
capacity to convert visual data into textual descrip-
tions for logical reasoning (Fig. 2b). Initially, four
scenes are fed together into IVLMs to generate their
scene descriptions. Then these descriptions, along
with four options and a question, are processed by
an LLM to produce the correct choice.

Image-Text-Based Reasoning Can be seen as a
combination pipeline of the above two approaches,
where the four 3D scenes are provided to models
twice (Fig. 2c). Specifically, in addition to gener-
ated scene descriptions, 3D scenes are also pro-
vided to IVLMs for predicting the final answer. The
goal is to assess the models’ proficiency in integrat-
ing visual and textual information to estimate the
correct option.

4. Experiments

4.1. Setup
To evaluate IVLMs on our Find-the-Common bench-
mark, we randomly sample 50 instances and test
them by using three baseline approaches dis-
cussed in §3. We use the following IVLMs: (i)

https://potassco.org/clingo/
https://github.com/mmatl/pyrender
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Image-Based Reasoning Approach
What is the common regularity between four 3D
scenes? Choose one correct answer from the fol-
lowing choices:
(a) The green cube is on the far left.
(b) A blue object exists.
(c) The purple cylinder is farthest away.
(d) The object in the forefront is cone.
Text-Based Reasoning Approach
Step 1:
Please analyze the provided image with 4 scenes of
objects on a flat surface. Divide each scene’s edge
into 10 equal parts to create a grid and describe
each object’s position, color, shape, and relative
size(from 1 to 4) using JSON format. The bottom
left corner should be considered the origin (0,0),
and the z-axis value is always 0. Format the de-
scription as a JSON object with keys for ’color’, ’pos’
(as an array), ’shape’, and ’size’.
Step 2:
"There are four scenes describing the same com-
mon rule. " + {question}&{choices} +" The scenes
information is below:" + {json-formatted scene de-
scriptions}
Image-Text-Based Reasoning Approach
From the given image and Json-formatted scene
description, what is the common regularity between
four 3D scenes? Choose one correct answer from
the following choices:
(a) The green cube is on the far left.
(b) A blue object exists.
(c) The purple cylinder is farthest away.
(d) The object in the forefront is cone.

Table 2: Prompt examples for baseline approaches.

InstructBLIP (Dai et al., 2023), a smaller IVLM;
(ii) LLaVA, which combines a vision encoder with
an LLM (Liu et al., 2023); and (iii) GPT-4V(ision)3,
an extremely large IVLM. See Table 2 and Ta-
ble 7 for further details of prompts and model pa-
rameters. Additionally, we use Chain-of-Thought
(CoT) prompting without any few-shot demonstra-
tions (Kojima et al., 2022) (henceforth, Zero-shot
CoT) in Image-Based Reasoning. We use Accu-
racy for evaluation. To ensure the reliability of our
results, we conduct each experiment five times and
calculate the average accuracy and the standard
deviation.

4.2. Results
The results are shown in Table 3. Overall, it shows
that InstructBLIP, LLaVA and GPT-4V all struggle

3gpt-4-1106-vision-preview.
https://openai.com/research/
gpt-4v-system-card

Approach Model Acc.std
Image-Based GPT-4V 45.63.9
Image-Based LLaVA 30.83.4
Image-Based InstructBLIP 22.42.9
Text-Based GPT-4V 46.54.4
Text-Based LLaVA 12.61.7
Text-Based InstructBLIP -
Image-Text-Based GPT-4V 46.84.2
Human - 91.5

Table 3: Accuracy of the FTC.

Approach Model Acc.std
Image-Based GPT-4V 44.45.3
Image-Based LLaVA -
Image-Based InstructBLIP -

Table 4: Impact of Chain of Thought (CoT).

with our benchmark in comparison to human. In-
structBLIP, as a relatively smaller IVLMs, has a
near-random chance accuracy, and GPT-4V has
some more improvement, yet there is a huge gap
to the human baseline. This suggests that the cur-
rent way of visual instruction fine-tuning does not
provide a strong zero-shot generalization ability for
visual inductive reasoning.

Table 4 shows that CoT does not enhance the
accuracy for all models, despite the effectiveness
in the NLP domain (Wei et al., 2022; Kojima et al.,
2022). It also shows that InstructBLIP and LLaVA
are unable to comprehend CoT instructions, failing
to generate reasoning processes.

4.3. Analysis
To obtain further insights, we manually examine
the reasoning process of GPT-4V CoT for all 50 in-
stances. We observe object hallucination in 82.0%
of them (41/50). The object hallucination error can
be categorized into three types: (a) recognizing ob-
jects that do not exist in a scene, (b) missing objects
that should have been recognized, and (c) incor-
rectly recognizing the attributes of objects, such as
position and color.

Table 5 shows examples of these cases, e.g.,
(a) shows that GPT-4V says “All four scenes have
at least one red object”, but the third scene does
not have a red object. Regardless of hallucination,
GPT-4V’s inductive reasoning over each scene’s
description is accurate. This leads to the following
question: is the main source of error the lack of the
basic perception skills needed for visual inductive
reasoning?

To further investigate the reasoning capabilities
of IVLMs, we conduct a series of extra experiments

https://openai.com/research/gpt-4v-system-card
https://openai.com/research/gpt-4v-system-card
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Example (a): Recognizing objects that do not
exist in a scene

Example (b): Missing objects that should have
been recognized

Let’s analyze the four 3D scenes step by step based
on the given choices:
(a) The cube farthest away among all cubes is green.
- In the first scene, the cube farthest away is red.
- In the other three scenes, the cube that’s farthest
away is green.
- This means the statement is not consistently true
across all scenes.
(b) A red object exists.
- All four scenes have at least one red object. So, this
statement is true for all scenes.
(c) The cylinder on the far left among all cylinders is
purple.
- In the third scene, the cylinder on the far left is purple.
- In the fourth scene, the cylinder on the far left is red.
(...omitted due to space limitation...)
From the above analysis:
The only statement that holds true across all four
scenes is (b) "A red object exists."

Alright, let’s break this down step by step.
(a) A sphere exists.
In the first image, there’s a purple sphere. In the
second image, there’s no sphere. In the third image,
there’s a blue sphere. In the fourth image, there’s no
sphere. This option is not consistent across all four
images.
(b) A cone exists, and all cones are yellow.
In the first image, there are two yellow cones. In the
second image, there’s one yellow cone. In the third
image, there’s one yellow cone. In the fourth image,
there are two yellow cones. This option is consistent
across all four images. Every scene has a cone, and
all cones are yellow.
(...omitted due to space limitation...)
There are no red cubes in any of the images. Given
the breakdown, the only statement that remains con-
sistently true across all four 3D scenes is: (b) A cone
exists, and all cones are yellow.

Table 5: Examples of object hallucination made by GPT-4V.

Approach Acc.
Image-Text-Based 92.5
Text-Based 74.0

Table 6: GPT4-V performance with ground truth
scene description.

on GPT-4V wherein scene descriptions generated
by IVLMs are substituted with scene descriptions
derived from ASP. As shown in Table 6, adding
ground-truth scene description to the Image-Text
reasoning approach greatly improves the model’s
accuracy over human baseline, up to 92.5%. This
is a 16.5% increase compared to using only Text-
Based reasoning approach.

This result highlights the importance of image
information for describing scenes. Even when text
descriptions are accurate, image information still
greatly helps the model’s reasoning. However,
without ground-truth scene description, the perfor-
mance of the Image-Text-Based approach (46.8%)
is not much better than the Text-Based approach
(46.5%). This suggests that if the text descriptions
don’t match the images or are misleading, the VLMs
might not be able to use the additional information
from the images effectively.

5. Conclusions

In this paper, we introduce a unique benchmark
Find-the-Common well-tailored to assess the vi-
sual inductive reasoning of IVLMs. Our findings
show that IVLMs, even the top-performing GPT-4V,
encounter difficulties, and failures of GPT-4V can
be largely attributed to object hallucination.

Our study also underscores the importance of
accurate scene information in enhancing model
performance and the crucial role of effective in-
teraction between images and text prompts in in-
creasing accuracy. Additionally, smaller models like
InstructBLIP and LLaVA show deficiencies in han-
dling complex reasoning tasks, indicating a need
for further optimization in model design.

All of these findings inspire the following for our
future work. First, given the challenges with mul-
tiple visual scenes and hard-to-perceive objects,
refining the dataset with a well-designed hierarchy
complexity will better evaluate VLMs’ adaptability
and comprehension. And then, considering the
object hallucination tendencies observed, a poten-
tial direction for improvement in the future may lie
in training regimes that emphasize precise visual
reasoning over textual inference.

6. Limitations

While our study offers insights into GPT4-V’s be-
havior on visual tasks, some limitations exist: (a)
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Dataset Nature: The way our dataset was curated
may not fully represent real-world complexities. Fu-
ture studies should ensure a broader spectrum of
image types and scenarios. such as expanding the
Find-the-Common task with more realistic images
collected from real-world scenarios or generated
by diffusion models. (b)Inductive pattern complex-
ity: In the future, we should explore more complex
patterns to deeply assess the inductive reasoning
abilities of IVLMs. (c) Bias and Fairness of dataset:
Our study relied on two master’s students to test
data quality, using their average scores as a hu-
man baseline. This approach may not sufficiently
represent human performance on our tasks and
may not robustly evaluate the dataset’s quality.
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9. Appendices

9.1. Hyperparameters
The hyperparameters used in our experiments are
shown in Table 7.

Model Hyperparameters
InstructBLIP num_beams = 5 max_new_tokens

= 500, min_length = 10, top_p
= 0.9, repetition_penalty = 1.5,
length_penalty = 1.0, temperature =
1

GPT-4V temperature = 0.7, max_tokens =
100, top_p = 1.0, frequency_penalty
= 0.0, presence_penalty = 0.0

LLaVA do_sample = True, temperature
= 0.2, max_new_tokens = 1024,
use_cache = True, stopping_criteria
= [stopping_criteria]

GPT-4 temperature = 0.7, max_tokens
= 1000, top_p = 1.0, fre-
quency_penalty = 0.0, pres-
ence_penalty = 0.0

Table 7: Hyperparameter settings.
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