@inproceedings{duan-etal-2024-alleviating,
title = "Alleviating Exposure Bias in Abstractive Summarization via Sequentially Generating and Revising",
author = "Duan, Jiaxin and
Lu, Fengyu and
Liu, Junfei",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.66",
pages = "739--750",
abstract = "Abstractive summarization commonly suffers from exposure bias caused by supervised teacher-force learning, that a model predicts the next token conditioned on the accurate pre-context during training while on its preceding outputs at inference. Existing solutions bridge this gap through un- or semi-supervised holistic learning yet still leave the risk of error accumulation while generating a summary. In this paper, we attribute this problem to the limitation of unidirectional autoregressive text generation and introduce post-processing steps to alleviate it. Specifically, we reformat abstractive summarization to sequential generation and revision (SeGRe), i.e., a model in the revision phase re-inputs the generated summary and refines it by contrasting it with the source document. This provides the model additional opportunities to assess the flawed summary from a global view and thereby modify inappropriate expressions. Moreover, we train the SeGRe model with a regularized minimum-risk policy to ensure effective generation and revision. A lot of comparative experiments are implemented on two well-known datasets, exhibiting the new or matched state-of-the-art performance of SeGRe.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="duan-etal-2024-alleviating">
<titleInfo>
<title>Alleviating Exposure Bias in Abstractive Summarization via Sequentially Generating and Revising</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiaxin</namePart>
<namePart type="family">Duan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fengyu</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junfei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Abstractive summarization commonly suffers from exposure bias caused by supervised teacher-force learning, that a model predicts the next token conditioned on the accurate pre-context during training while on its preceding outputs at inference. Existing solutions bridge this gap through un- or semi-supervised holistic learning yet still leave the risk of error accumulation while generating a summary. In this paper, we attribute this problem to the limitation of unidirectional autoregressive text generation and introduce post-processing steps to alleviate it. Specifically, we reformat abstractive summarization to sequential generation and revision (SeGRe), i.e., a model in the revision phase re-inputs the generated summary and refines it by contrasting it with the source document. This provides the model additional opportunities to assess the flawed summary from a global view and thereby modify inappropriate expressions. Moreover, we train the SeGRe model with a regularized minimum-risk policy to ensure effective generation and revision. A lot of comparative experiments are implemented on two well-known datasets, exhibiting the new or matched state-of-the-art performance of SeGRe.</abstract>
<identifier type="citekey">duan-etal-2024-alleviating</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.66</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>739</start>
<end>750</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Alleviating Exposure Bias in Abstractive Summarization via Sequentially Generating and Revising
%A Duan, Jiaxin
%A Lu, Fengyu
%A Liu, Junfei
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F duan-etal-2024-alleviating
%X Abstractive summarization commonly suffers from exposure bias caused by supervised teacher-force learning, that a model predicts the next token conditioned on the accurate pre-context during training while on its preceding outputs at inference. Existing solutions bridge this gap through un- or semi-supervised holistic learning yet still leave the risk of error accumulation while generating a summary. In this paper, we attribute this problem to the limitation of unidirectional autoregressive text generation and introduce post-processing steps to alleviate it. Specifically, we reformat abstractive summarization to sequential generation and revision (SeGRe), i.e., a model in the revision phase re-inputs the generated summary and refines it by contrasting it with the source document. This provides the model additional opportunities to assess the flawed summary from a global view and thereby modify inappropriate expressions. Moreover, we train the SeGRe model with a regularized minimum-risk policy to ensure effective generation and revision. A lot of comparative experiments are implemented on two well-known datasets, exhibiting the new or matched state-of-the-art performance of SeGRe.
%U https://aclanthology.org/2024.lrec-main.66
%P 739-750
Markdown (Informal)
[Alleviating Exposure Bias in Abstractive Summarization via Sequentially Generating and Revising](https://aclanthology.org/2024.lrec-main.66) (Duan et al., LREC-COLING 2024)
ACL