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Abstract
Abstractive summarization commonly suffers from exposure bias caused by supervised teacher-force learning, that a
model predicts the next token conditioned on the accurate pre-context during training while on its preceding outputs
at inference. Existing solutions bridge this gap through un- or semi-supervised holistic learning yet still leave the
risk of error accumulation while generating a summary. In this paper, we attribute this problem to the limitation of
unidirectional autoregressive text generation and introduce post-processing steps to alleviate it. Specifically, we
reformat abstractive summarization to sequential generation and revision (SeGRe), i.e., a model in the revision
phase re-inputs the generated summary and refines it by contrasting it with the source document. This provides the
model additional opportunities to assess the flawed summary from a global view and thereby modify inappropriate
expressions. Moreover, we train the SeGRe model with a regularized minimum-risk policy to ensure effective
generation and revision. A lot of comparative experiments are implemented on two well-known datasets, exhibiting
the new or matched state-of-the-art performance of SeGRe.

Keywords: Abstractive summarization, Autoregressive language modeling, Reinforcement learning

1. Introduction

Abstractive summarization is a classical neural lan-
guage generation (NLG) task that aims to con-
dense a long document into a shorter text, retaining
only the salient information (Kumar and Chakkar-
avarthy, 2023; Xie et al., 2023). Recently, the ad-
vanced language modeling technologies founded
on large-scale corpora significantly boosted ab-
stractive summarization (Lewis et al., 2020; Zhang
et al., 2020a), and the approaches that formulate
the task as a sequence-to-sequence (Seq2Seq)
learning problem have achieved unprecedented
outcomes. They commonly train an autoregressive
language model (Vaswani et al., 2017) with maxi-
mum likelihood estimation (MLE), and the teacher-
forcing mechanism (Goyal et al., 2016) is together
used to ensure training efficiency and stability. How-
ever, such a model predicts each token in summary
conditioned on the exact pre-context during training
but on its preceding outputs at inference, causing
a training-inference discrepancy called exposure
bias (Bengio et al., 2015; Goodman et al., 2020),
which heavily limits summarization performance.

Substituting or augmenting the pure token-level
MLE with holistic objectives is widely used to ad-
dress this problem, which simultaneously gives up
supervised teacher-forcing by using an un- or semi-
supervised learning paradigm. Typically, reinforce-
ment learning-based methods (Tan, 2023; Pang
and He, 2021) train a model to maximize the re-
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wards defined over each candidate summary. A
similar objective can also be achieved with con-
trastive learning (Xu et al., 2022; Liu et al., 2022;
Xie et al., 2023), where a model is trained to as-
sign probability mass to candidate summaries ac-
cording to their quality. However, although whole
summaries are generated and optimized in train-
ing, which coordinates well with inference, these
methods do not change the paradigm that a model
makes predictions under erroneous pre-context. As
a result, errors are accumulated whenever gener-
ating a summary.

As depicted in Figure 1, the mentioned error ac-
cumulation (Ross et al., 2011) is inevitable under
the existing frameworks. On the one hand, there
is no guarantee that the trained model will assign
all probability to the exact token at each generation
step, no matter the training or testing. Moreover, the
autoregressive summary generation is a unidirec-
tional process that features 1) previously generated
improper tokens mislead the subsequent tokens,
causing a deviation from the reference and gradu-
ally increasing lexical and semantic discrepancies.
2) The model can do nothing to fix the already im-
proper tokens at each generation step.

In this paper, we argue that existing solutions
for exposure bias are limited due to the unidirec-
tional autoregressive paradigm, and we introduce
further post-processing steps from a global view to
address this problem. We propose a novel sum-
marization framework - SeGRe, which yields an
abstractive summary by Sequentially Generating
and Revising. Specifically, SeGRe first generates
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Ground-truth: 
manuel pellegrini won the premier league and capital one cup last season. city currently sit fourth in the league table - 12 points behind chelsea. pellegrini’s contract expires at the 

end of the 2015-16 season. city players have been impressed with vieira’s work with the youth team. pep guardiola is city’s first-choice to succeed pellegrini at the etihad.

Model-generation: 
manuel1.00 pellegrini1.00 ’s0.67 future0.50 at0.40 manchester0.33 city0.29 is0.25 under0.22 scrutiny.0.20 patrick0.18 vieira0.17 is0.24 highly-respected0.22 among0.21 the0.26 city0.25 players.0.24 

city’s0.24 first-choice0.22 managerial0.21 option0.20 is0.20 bayern0.19 munich0.18 boss0.17 pep0.16 guardiola.0.15

Figure 1: Illustration of error accumulation in autoregressive generation paradigm. Footnote counts
ROUGE-1 F1 score up to each word in a summary. After the first improper word, ’future,’ was generated,
it became apparent that the overlap between the two summaries gradually decreased.

a draft summary, and after that, it re-inputs this
summary and refers to the source document to
produce polished versions with fewer errors. The
main challenge for SeGRe is to learn how to ef-
fectively refine a flawed summary within a finite
number of revisions. To tackle it, we first encode
the model-generated summary with bidirectional
attention and then, based on that, assess the de-
gree to which a refined summary improves the orig-
inal regarding semantic and lexical overlaps with
the reference. Finally, we define summary-level
revision rewards and optimize the parameters of
the SeGRe model with a regularized minimum-risk
training (Shen et al., 2016) algorithm.

The idea of our method is a bit similar to the par-
tially autoregressive model, LevT (Gu et al., 2019).
However, LevT features a non-autoregressive revi-
sion process that predicts definite actions of dele-
tion and (or) insertion on each token in a text. We
instead highlight the understanding and enhance-
ment of the generated summary rather than intro-
ducing a novel text generation pattern out of the
autoregressive scope. Moreover, although we ex-
tend attention-based components, our method re-
quires no external systems like predictors used in
LevT and can be easily integrated with any holistic
learning policy. Our contributions are as follows:

• We introduce a novel abstractive summariza-
tion paradigm, SeGRe, which performs sum-
mary generation and revision sequentially by
a single model to alleviate exposure bias.

• We implement SeGRe with a double-encoder
transformer and optimize the model through a
minimum-risk training strategy that maximizes
the expected revision reward.

• Extensive experiments are conducted on two
public datasets to test our methods. Results
show that SeGRe matches or outperforms pre-
vious state-of-the-art (SOTA) approaches in
generating human-like summaries. The re-
duced error accumulation is also evidenced in
human evaluations, where SeGRe generates
more faithful facts. Furthermore, we transfer
SeGRe to few-shot settings and show its su-
perior robustness.

2. Related Work

2.1. Language Generation
There are mainly two paradigms of language gener-
ation: autoregressive and non-autoregressive. Au-
toregressive (AR) generation (Radford et al., 2019;
Brown et al., 2020) refers to a step-by-step pro-
cess: (1) generating a token conditioned on a given
prompt or from scratch, (2) appending the newly
generated token to the tail of the sequence, and
(3) repeating this process until the EOS token (end-
of-sentence) is generated or reach the max length.
Non-autoregressive generation (Gu et al., 2019,
2018) instead refers to (iteratively) modifying a se-
quence of tokens bounded by a fixed length or sam-
pling an entire text from a certain distribution (Li
et al., 2022). AR is most widely applied in vari-
ous text generation tasks, including summarization.
However, it inevitably causes error accumulation
and fuels the exposure bias. Therefore, our SeGRe
introduces an additional revision after the autore-
gressive generation to alleviate this limitation.

2.2. Solutions of Exposure Bias
Holistic-level learning technologies, including re-
inforcement and contrastive learning, are widely
used to alleviate exposure bias.

Reinforcement learning (Tan, 2023; Roit et al.,
2023) gives a model a sequence-level view by re-
wards that commonly vary from evaluation metrics.
Early works are always based on on-policy learning
(Paulus et al., 2018), where a model generates a
sampled candidate and a greedy-search candidate
during training. It requires high computational costs
and tends to get stuck in a zero-reward region. As a
result, MLE loss is used as an assistant. Pang and
He (2021) proposed an off-policy learning method
that uses reference summary as a demonstrator.
Although it averts zero rewards, the exploring ability
is reduced.

Contrastive learning (Hadsell et al., 2006) uses
positive and negative sample pairs to train a model
to distinguish real data labels. Cao and Wang
(2021) build sample pairs by the back-translation
method and improve the faithfulness and factual-
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Figure 2: Illustration of the unidirectional autoregressive (AR) generation (a) and our SeGRe (b). The
yellow blocks refer to model-generated tokens or summaries, and the green ones are gold references.
AR produces a text token by token, while our SeGRe reaches a final summary based on the previous
version through successive iterations.

ity of the generated summaries. Xu et al. (2022)
contrast semantic similarity among source docu-
ments, candidates, and references without build-
ing negative samples. In recent years, the ranking
method has extended from contrastive learning and
achieved state-of-the-art performance in abstrac-
tive summarization. Liu and Liu (2021) first propose
a two-stage framework that trains a Roberta (Liu
et al., 2019) to rank the candidates generated by
BART at first. BRIO (Liu et al., 2022) makes a
further optimization, trains BART itself as an eval-
uation tool, and ranks the conditional probability
of candidates. A similar work was also done by
An et al. (2022). Recently, a lot of improved BRIO
variants (Xie et al., 2023; Zhao et al., 2023; Zhang
et al., 2022) were proposed in succession. All these
methods achieved surprising performance but still
inevitably suffered error accumulation caused by
autoregressive generation.

3. Background

Summarization is always modeled as a Seq2Seq
generation task, creating function f that is condi-
tioned on a source document X to output a sum-
mary Y :

Y ← f(X). (1)

For the abstractive paradigm, existing approaches
commonly build a model with parameter θ to fit f by
approximating the conditional probability P (Y |X)
token by token, widely known as autoregressive
text generation. Maximum likelihood estimation
(MLE) is most used to learn the autoregressive
model. It maximizes the probability mass of gold

reference assumed by the model, following inde-
pendent and identically distributed conditions, i.e.,
maxθ Pθ(Y |X) = maxθ

∏l
t=1 Pθ(yt|Y<t, X), where

l denotes the length of reference and Y<t sub-
sequence {y1, y2, · · · , yt−1}.

When it comes to training, the teacher-forcing
algorithm (Goyal et al., 2016) is always used, which
minimizes the sum of the negative log-likelihoods
(NLL) of each token in the summary Y :

Lnll(θ) = −
l∑

t=1

logPθ(yt|Y<t, X). (2)

Though it ensures stable MLE learning, such a
trained model depends heavily on the exact pre-
ceding content, and it is prone to suffer error accu-
mulation during inference once any improper token
is generated in previous steps.

From the probabilistic perspective, a model
learns to sample the next token at timestep t from
the distribution P (·|Y<t, X), while its goal at infer-
ence is to sample from P (·|Y ′

<t, X). This gap is
the so-called exposure bias. SOTA approaches
fix it by learning the model to adjust the probabil-
ity mass P (Y ′|X) according to the quality of Y ′,
where Y ′ refers to a candidate summary. However,
the fact is unchanged that a token y′t is sampled
from P (·|Y ′

<t, X) during inference, and the error
accumulation problem is thus still.

Calibrating the flawed distribution P (·|Y ′
<t, X)→

P (·|Y<t, X) before sampling - y′t ∼ P (·|Y<t, X) is
rational to address this problem. However, cali-
bration requires a global perception of the context,
which contradicts the unidirectional nature of au-
toregressive generation. Moreover, calibrating at



742

each step is also time-consuming. In this paper,
we formulate abstractive summarization as a two-
stage task for trading between performance and ef-
ficiency, namely generation and revision. As shown
in Figure 2 (b.3), after generating a draft summary,
the model re-inputs and rewrites it by consulting the
source document. Therefore, we unfold the condi-
tional probability of reference summary P (Y |X):

P (Y |X) = P
(
Y 0|X

)
P
(
Y |Y 0, X

)
→ P

(
Y 0|X

) N∏
i=1

P
(
Y i|Y i−1, X

), (3)

where N counts the number of revisions. Y 0 is a
draft, Y N is ideally the reference, and Y i denotes
the refined versions.

4. Method

4.1. Architecture
We implement SeGRe with a Transformer-based
encoder-decoder model shown in Figure 3. It has
two encoders with bidirectional attention and one
decoder with unidirectional attention. To speed
up learning, we start our model with a pre-trained
single-encoder Transformer, and both encoders
share identical initial parameters.

The architecture of SeGRe is very similar to
GSum (Dou et al., 2021). However, encoders of
GSum are independent and connect to the decoder
orderly by cross-attention layers (i.e., parallel en-
coders). SeGRe instead adapts series encoders,
where the second encoder relies on the output of
the first to encode the input text, similar to a Trans-
former decoder without a sequence mask. Besides,
GSum uses the second encoder to encode guid-
ance words, while SeGRe’s second encoder is
used to encode the candidate summary. Mathemat-
ically, SeGRe models the following non-normalized
probabilities (logits) during generation and revision,
respectively:

P̄ (y0t |X) = Dθ(E
1
θ (X), y0<t)

P̄ (yit|Y i−1, X) = Dθ(E
2
θ (E

1
θ (X), Y i−1), yi<t)

, (4)

where E1
θ , E

2
θ are the first and second encoders,

and Dθ is the decoder. Then, the token yit is sam-
pled from the distribution softmax(P̄ ).

4.2. Learning
To facilitate our illustration, we cast the problems
of abstract summary generation and revision to
a unified process of sequential iterations. During
each iteration, the model draws a candidate Y i−1

from the previous outputs1, estimates its quality,

1At the first iteration, i.e., the generation stage, the
input is empty.

Figure 3: The architecture of SeGRe model.

and produces a new one Y i. The learning objective
is to make the refreshed candidate Y i as close to
the reference Y as possible. For this purpose, we
view a candidate from semantics and lexis aspects
and define corresponding rewards.

Semantics Rewards To ensure faithfulness, a
summary should be logically entailed in the source
document (Dreyer et al., 2023), and semantic rea-
soning is used to detect this relation (Roit et al.,
2023). Even so, researchers observed that human
tends to write summaries with hallucinatory words
to keep abstractiveness (Maynez et al., 2020) de-
spite contradicting summary-document entailment.
To echo these insights, we take the reference sum-
mary as standard to coordinate the relationship
between a candidate and the source document.
We introduce a relation recognition function S(·, ·)
and assess a candidate on the semantics level:

Ms(X,Y, Y i) = 〈S(X,Y ),S(X,Y i)〉, (5)

where 〈·, ·〉 distinguishes the gap between two re-
lations. Further, we reward the model according
to the gain that a revised candidate surpasses the
original on Ms:

Rs(Y
i, Y i−1) = Ms(X,Y, Y i)−Ms(X,Y, Y i−1).

(6)
Lexis Rewards From the lexis view, we encour-

age a candidate, after revising, to contain more
tokens overlapped with the reference. To this end,
we reward the model using the function:

Rl(Y
i, Y i−1) =

|({Y i} − {Y i−1}) ∩ {Y }|
|{Y }|

, (7)

where {·} denotes a token set and | · | the set size.
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Learning Objective Finally, we mix the two types
of rewards with a balance coefficient ξ ∈ (0, 1):

R(Y i) = ξRs(Y
i, Y i−1)+(1−ξ)Rl(Y

i, Y i−1), (8)

and the overall learning objective for SeGRe is to
maximize the following expected reward:

N∑
i=1

max
θ

EY i∼Pθ(·|Y i−1,X)[R(Y i, Y i−1)]. (9)

4.3. Training Strategy
As we learn SeGRe with a maximum expected re-
ward objective, the infinite sampling space makes
the expectation in Eq.9 untraceable. Predominant
studies adopt the Monte Carlo approach to ad-
dress this problem, which approximates the real
distribution with empirical samples. We follow this
idea and further use a minimum-risk training (Shen
et al., 2016) algorithm to train our model. At each
revision, k candidates Y i

(1), · · · , Y
i
(k) are sampled

from Pθ(·|Y i−1, X) using beam-search (Vijayaku-
mar et al., 2016), and the model is trained to mini-
mize an expected reward (ER) loss:

Ler(θ) = −
k∑

t=1

r(Y i
(t))

Pθ(Y
i
(t)|Y

i−1, X)∑k
t=1 Pθ(Y i

(t)|Y i−1, X)
.

(10)
Relation Recognizing Another challenge we

encounter is the instantiation of function S. Given a
pair of document and summary (X,Y ), the second
encoder of SeGRe can be used to encode their
correlation:

S(X,Y ; θ) = MeanPool(E2
θ (E

1
θ (X), Y )). (11)

Although parameter-efficient, dynamically learned
parameters θ cause the observation of S to vary
sharply as training progresses. Following Zhang
et al. (2022) lessons, we introduce momentum-
based parameterization to address this. In detail,
we build ζ-parameterized S(·, ·; ζ), which is initial-
ized by θ and updated with the moving average:

ζ ← µζ + (1− µ)θ, (12)

where µ is a momentum coefficient to coordinate
the synchronization rate of two types of parameters.
Based on this, Eq.5 is reformulated as:

Ms(X,Y, Y i) = −‖S(X,Y ; ζ)−S(X,Y i; ζ)‖ (13)

Offline Training To save the computational costs
of generating candidates, we use offline samples
during training. A pre-trained summarizer is first
fine-tuned with MLE and proceeds to generate k
candidate summaries for every document in the
training set. Each of these candidates, coupled

with the source document, forms a {X,Y i−1} pair
used for the model training. Note that the generated
candidates share varying degrees of errors, and
the ones closer to the reference simulate the drafts
that have been revised more times. This nature
facilitates the training to focus on only one iteration
without considering the multi-turn reward. However,
simply training towards revision is not guaranteed
to retain the functionality of generation. Following
(Liu et al., 2022) and (Zhao et al., 2023), we add
a regularization term in Eq.9, and the overall loss
function is then:

L(θ) = Ler(θ) + λLnll(θ). (14)

4.4. Inference Time
At inference, the model initially conditions only an in-
put source document to generate a draft summary,
which is then utilized as an additional condition for
the subsequent revision. Once the number of revi-
sion steps (N ) exceeds 1, the candidate produced
from the preceding revision is taken as the input for
the next. Beam-search with the width k is employed
whenever generating a summary.

5. Experiments

5.1. Datasets
We use two public open-domain datasets to evalu-
ate our method. CNN/DM (Hermann et al., 2015;
Nallapati et al., 2016) is a widely used news summa-
rization dataset that treats the associated highlights
as summaries. XSum (Narayan et al., 2018) is an
extremely abstractive dataset also in the news do-
main that contains a one-sentence summary for
each article from BBC.

5.2. Comparison Methods
BART (Lewis et al., 2020) is a pre-trained Trans-
former model with a denoising objective and is
widely used for abstractive summarization. PE-
GASUS (Zhang et al., 2020a) is another widely
used pre-trained model with gap sentence gener-
ation and masked language modeling pre-training
objectives. GSum (Dou et al., 2021) is an abstrac-
tive summarization model guided by extraction re-
sults with an identical double-encoder architecture
as ours. GOLD (Pang and He, 2021) is an off-
policy reinforcement learning method using the ref-
erence summary as a demonstrator. SeqCo (Xu
et al., 2022) is a contrastive learning method that
enforces the semantic similarity between reference
and candidate. BRIO (Liu et al., 2022) is a con-
trastive learning method that assigns probability
mass to candidate summaries according to their
quality. SimMCS (Xie et al., 2023) is a multi-level
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contrastive learning method improved from BRIO
and achieved state-of-the-art on both CNN/DM and
XSum. SLiC (Zhao et al., 2023) is essentially a
variant of BRIO, calibrating PEGASUS with types
of contrastive losses. MoCa (Zhang et al., 2022) is
improved from BRIO, introducing online candidate
sampling.

5.3. Implementation Details
In the following experiments, we use BART as the
backbone and start our model from the public fine-
tuned versions bart-large-cnn2 (on CNN/DM) or
bart-large-xsum3 (on XSum). As for hyperparam-
eters, we set ξ = 0.5, µ = 0.5, and λ = 0.05. We
train our model on 4 NVIDIA RTX 3090 GPUs for
100K steps with a batch size of 16. The AdamW op-
timizer (Loshchilov and Hutter, 2019) with a noam
learning rate schedule is used. The initial learn-
ing rate lr is 2e-3, and its value is updated as
lr∗ = lr ·min(S−0.5,S ×W−1.5), whereW denotes
the warmup steps, is set to 3,000, and S accumu-
lates the current number of learning rate updates.
The beam width k held for beam search decoding
(Vijayakumar et al., 2016) is set to 16. The default
number of revisions N on each draft is set to 3.

Metrics Following conventions, we use ROUGE-
F1 scores (Lin, 2004) to evaluate the lexical overlap
between the model-generated summary and the
reference. Also, we use BERTScore (Zhang et al.,
2020b) and BARTScore-F (Yuan et al., 2021) to
evaluate their semantic similarity.

5.4. Main Results
We have the following observations from the au-
tomatic evaluation results in Table 1. 1) SeGRe
outperforms the base model BART by a large mar-
gin on both datasets, proving the superiority of
our learning scheme over plain supervised fine-
tuning after pre-training. 2) SeGRe shows better
scores compared to the similar double-encoder
Transformer - GSum. On the one hand, GSum
needs an additional system to predict guidance sig-
nals. Besides, it suffers further discrepancy other
than exposure bias since the quality of guidance
in training differs from in inference. On the con-
trary, our SeGRe needs no extra systems, and
the model takes identical behavior, whether during
training or inference. 3) Based on ROUGE stan-
dards, SeGRe achieves a new SOTA on XSum and
matches the recent best performance on CNN/DM.
Moreover, SeGRe shows the best BERTScore and
BARTScore on both datasets. It is also worth noting
that BRIO, SLiC, and SeGRe have similar training
loss functions that can be unified as the format

2https://huggingface.co/facebook/bart-large-cnn
3https://huggingface.co/facebook/bart-large-xsum

Model Scale R-1 R-2 R-L BS BaS

CNN/DM

BART 406M 44.16 21.28 40.90 87.95 -3.91
PEGASUS 568M 44.17 21.47 41.11 85.07† -3.80†

GSum 473M 45.94 22.32 42.48 - -
GOLD - 45.40 22.01 42.25 - -
SeqCo - 45.02 21.80 41.75 - -
BRIO 406M 47.78 23.55 44.57 89.14† -3.62†

SimMCS 406M 48.16 24.08 44.65 89.20 -3.58
SLiC 2B 47.97 24.18 44.88 - -
MoCa 406M 48.88 24.94 45.76 - -

SeGRe 608M 48.96 24.13 44.93 89.32 -3.25

XSum

BART 406M 45.14 22.27 37.25 89.63† -3.64†

PEGASUS 568M 47.21 24.56 39.25 89.68 -3.89
GSum - 45.40 21.89 36.67 - -
GOLD - 45.85 22.58 37.65 - -
SeqCo - 45.65 22.41 37.04 - -
BRIO 568M 49.07 25.59 40.40 89.10† -3.79†

SimMCS 568M 49.39 25.73 40.49 90.23 -3.77
SLiC 2B 49.77 27.09 42.08 - -
MoCa 568M 49.32 25.91 41.47 - -

SeGRe 608M 49.42 27.20 42.50 92.13 -3.61

Table 1: Automatic evaluation results. †: the re-
sults of our reproduction. The best results are in
bold. The previous best results are highlighted
with underline. Scale means the number of model
parameters. R-1/2/L: ROUGE-1/2/L F1 scores. BS:
BERTScore. BaS: BARTScore-F .

Model R-1 R-2 R-L Dist

SeGRe

SeGRei=0 46.19 22.27 43.69 0.60
SeGRei=1 47.69 23.92 44.68 0.03
SeGRei=2 48.76 24.13 44.93 0.01
SeGRei=3 48.71 24.12 44.89 0.01
SeGRei=4 48.74 24.12 44.91 0.01

SeGRe - w/o Ler

SeGRei=0 44.16 21.28 40.90 0.62
SeGRei=1 45.28 22.63 40.96 0.59
SeGRei=2 44.68 21.32 40.57 0.58
SeGRei=3 44.30 22.38 41.34 0.59
SeGRei=4 44.78 21.06 40.00 0.59

Table 2: Ablation study results on CNN/DM. Foot-
note i denotes the number of revision iterations.
Dist: Levenshtein distance. w/o: without.

of Eq.14. Except for a marginal number of addi-
tional parameters, the most difference lies in the
learning scheme of summary-level objectives. Our
method emphasizes effective revision after unidi-
rectional summarization, which is the main reason
for SeGRe’s advanced performance.

5.5. Ablation Study
The differences between our SeGRe and the tra-
ditional baseline mainly lie in holistic learning and
the revision mechanism. We first would like to ex-
plore each of their functionality. Besides, whether
multi-time revisions contribute to generating high-
quality summaries is worth knowing, too. We dis-
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System Summary

Reference RBS has racked up £50billion in losses since it was bailed out by taxpayers. State-back giant warned that it faces
’another tough year’ to come. Lurched to a £446million loss for the first three months of the year.

Draft
state-backed giant lurched to a £446million loss for the first three months of the year. Comes after RBS was forced to put
aside £856million to cover lawsuits and fines still being decided. It includes an extra £334million for its part in rigging the
foreign exchange market with other banks.

SeGRei=1

RBS has racked up £50billion in losses since it was bailed out by taxpayers. The state-backed giant lurched to a
£446million loss for the first three months of the year. It warned that it faces another ’tough year’ in a statement last night.
The bank was forced to put aside £856million to cover lawsuits and fines.

SeGRei=2
Since receiving a bailout from taxpayers, RBS has racked up £50 billion in losses. The state-backed giant has issued a
warning, stating that it anticipates facing another tough year. A loss of £446 million for the first quarter of this year.

Reference Hungarian national Evelin Mezei, 12, has been found safe and well. She had gone missing from the Stratford area in
London last night. Evelin had been seen on CCTV footage with an unknown man.

Draft
Evelin Mezei, a 12-year-old Hungarian national, was spotted with the man at around 10.30pm yesterday. She was last
seen by her mother in East London, Scotland Yard said. But the youngster, who came to the UK six months ago, was
traced this morning.

SeGRei=1
Evelin Mezei, 12, went missing in Stratford, London, last night. She was seen on CCTV footage with an unknown man
on a city street. The Hungarian national was found safe this morning. Her mother was last seen with the man’s mother.

SeGRei=2
Evelin Mezei, a 12-year-old Hungarian girl who went missing from the Stratford area in London last night, has been found
safe and well. CCTV footage showed Evelin with an unknown man before her disappearance.

Table 3: Case study on CNN/DM. Content in blue is unfaithful or irrelevant to the reference. The draft is
produced by SeGRei=0, and we use red to mark the keywords (vs. the source document) it omits. After
being revised, the factuality and abstractiveness of the draft are improved.

Dataset Model ECE Acc Conf

CNN/DM
BART† 0.4097 0.3711 0.7365

BRIO-Mul† 0.2719 0.4271 0.6652
SeGRe 0.2633 0.4309 0.6485

XSum
BART† 0.2369 0.4688 0.6990

BRIO-Mul† 0.1423 0.4744 0.5881
SeGRe 0.1348 0.4805 0.5530

Table 4: Calibration analysis results. ECE: ex-
pected calibration error. Acc: accuracy. Conf: con-
fidence. †: the results reported in (Liu et al., 2022).

cuss these issues in the ablation study and list the
experimental results in Table 2.

The Effectiveness of Holistic Learning Note
that SeGRei=0 - w/o Ler represents a SeGRe
variant that lacks the revision objective (i.e., only
learned with MLE), and SeGRei=0 means our
method drops the revision stage. Of the two,
SeGRei=0 performed better. We attribute this to
the effectiveness of mini-risk training in reducing
exposure bias. Also, once giving up revision, our
method only differs from RL-based GOLD and CTL-
based BRIO in the set of holistic objectives (re-
wards). SeGRei=0 show the worst results, indicat-
ing that the reward function presented in Eq.6 is
more effective when performed with revision.

The Effectiveness of Revision We are inter-
ested in the effectiveness of revision regarding
whether an additional revision stage contributes
to improving the summaries’ quality and whether
more times revisions are recommended. To ex-
plore these problems, we first use the normalized
Levenshtein distance (Levenshtein et al., 1966) as

one of the metrics of revision effectiveness:

Dist(Y, Y i) =
1

N

∑ Distance(Y, Y i)

max(|Y |, |Y i|)
, (15)

where Distance(·, ·) denotes Levenshtein distance.
Then, two insights can be drawn from Table 2.
Firstly, we see from the lower part of the Table
that revision is useless without holistic learning.
Secondly, the revision is only effective in a limited
number of times. According to the Levenshtein
distance, the impacts of revision are hard to distin-
guish after three times, and the summaries’ quality
is even worse. However, from another aspect, it
also proves that our method has a determined di-
rection of good summaries within finite steps.

5.6. Calibration Analysis
To verify whether the proposed method effectively
reduces the exposure bias, we follow BRIO (Liu
et al., 2022) and analyze the expected calibration
error (ECE). Table 4 shows calibration results on
CNN/DM and XSum testing sets. We use the ter-
com toolkit 4 to label the SeGRe-generated sum-
maries to align with BRIO works, and the number
of buckets is set to 10. These results demonstrated
that our model is calibrated on a similar level as
BRIO.

5.7. Case Study
To intuitively estimate the degree to which SeGRe
alleviates exposure bias, we sample two cases from

4http://cs.umd.edu/~snover/tercom/

http://cs.umd.edu/~snover/tercom/
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Figure 5: Novel n-grams on CNN/DM (left) and
XSum (right) datasets.

the CNN/DM test set and display the outputs from
SeGRe in Table 3. The typical cause of exposure
bias can be found in the draft summaries, i.e., ir-
relevant or hallucinatory content. At revision times,
the model encodes the candidate summary with
bidirectional attention. It allows the model to mod-
ify unsatisfied statements after understanding an
entire summary and comparing it with the source
document. Cases in Table 3 revealed that hallu-
cinatory facts can be fixed during this procedure.
More than that, benefiting from maximum expected
rewards learning, the model can generate novel
tokens not in the previous candidate during revi-
sion. It helps to improve the abstractiveness of the
final summary, which is emphasized in abstractive
summarization. We detailly discuss this feature in
section 6.

6. More Analyses

Few-shot Performance Based on the findings in
our ablation study, we believe that the revision
mechanism introduced in SeGRe makes the model
more sensitive to the candidate’s quality and can
improve flawed candidates within a finite number of
rewrites. Therefore, we conduct experiments in few-
shot settings to confirm our assumptions. Following
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Figure 6: The performance of SeGRe with increas-
ing λ on CNN/DM (left) and XSum (right) datasets.

previous studies, we train SeGRe on CNN/DM by
varying the number of training examples from 10
to 10,000 and compare SeGRe with the baseline
BART and the RL-based GOLD to make the results
convincing. According to Figure 4, SeGRe shows
a remarkable few-shot learning capability. SeGRe
goes ahead more over the baseline as the training
samples increase.

Abstractiveness Since we measure the incre-
ment of novel words using lexis rewards Rl, our
case study proves the effectiveness of this set-
ting from a textual aspect. Here, we further under-
stand the abstractiveness of the generated sum-
mary through quantitative analysis. According to
previous works (Xie et al., 2023) and (Liu et al.,
2022), we rate the percentage of novel n-grams
that appear in the generated summary but not in
the source document in Figure 5. It can be seen
that no matter whether in moderately or extremely
abstractive scenarios, our SeGRe can generate
more novel n-grams than the baseline. Consid-
ering the automatic evaluation and case study re-
sults, we conclude that the summaries produced
by SeGRe are human-like on both abstractiveness
and semantic levels.

The Decide of λ Value To find an optimal factor
λ that incorporates the holistic learning objective
into the plain MLE, we perform a grid search in
{0.1, 1, 10, 100, 200}. The search process is visu-
alized in Figure 6. Notably, the performance of
SeGRe shows a similar trend with varying λ on
both datasets. It seems that a too-small factor sup-
presses holistic learning efficacy. Further, once
λ reaches the magnitude of hundreds, varying its
value makes inconspicuous effects. We finally set
λ to 100 without distinguishing datasets.

The Impact of Beam Width Note that the learn-
ing objective of SeGRe is to maximize the expected
revision reward calculated over the candidates sam-
pled from Pθ(·|Y i−1, X). There is a gap between
this objective and our training implementation. Dur-
ing training, we are inspired by the Monte Carlo
(MC) algorithm and use k candidates to represent
the infinite searching space. Intuitively, a larger
beam width (k) used in beam search is more ade-
quate to approximate the expected distribution and,
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Model R-1 R-2 R-L

SeGRe 46.34 22.27 42.71

SeGRe-R 46.15 22.24 42.21
SeGRe-B 45.68 21.25 41.59
SeGRe-S 45.72 21.66 42.03

Table 5: The performance of SeGRe and its vari-
ants on a CNN/DM subset.

Dataset R-1 R-2 R-L BS BaS

CNN/DM 48.18 24.07 44.69 89.02 -3.18
XSum 49.42 26.33 41.90 92.16 -3.54

Table 6: The performance of SeGRe with a substi-
tuted reward function.

in turn, better summarization performance. To val-
idate this hypothesis, we train our model on both
datasets while using different beam widths of 4,
8, 16, 32, and 64 to sample candidates. Figure 7
displays the evaluation of each resulting version.
Unsurprisingly, increasing the beam width can in-
deed boost the model’s performance. But the gain
of ROUGE scores reduces since the k is over 16.
We set k to 16 to save computational costs.

Reward Function’s Designing We conducted
comparison experiments to explore if there are bet-
ter choices for reward design. Now that the rewards
introduced in our method consider lexics and se-
mantics aspects, we individually substituted the
original lexics reward to ROUGE-1 F1 score or the
original semantics reward to BERTScore, with the
other settings unchanged. The resulting models
are named SeGRe-R and SeGRe-B, respectively.
Also, we substituted both rewards simultaneously
and got the model SeGRe-S. It is worth noting that
ROUGE-1 F1 and BERTScore are commonly used
in previous works (e.g., BRIO-like models), serving
as a scoring function. We contrasted the original
SeGRe model and its three variants on a subset

of CNN/DM, including 20,000/1,000 training/test
samples. The results are shown in Table 5. We
draw the following three conclusions: 1. Substitut-
ing the original lexics reward function to ROUGE-1
F1 score affects little on model performance. 2.
Substituting the original semantics reward function
to BERTScore clearly damages the performance.
It may be because this setting gives up restrain-
ing the meaning of the second encoder’s outputs.
3. Due to the problem raised in ”2,” substituting
the design of both reward functions leads to a sub-
optimal SeGRe-S model compared with the original
version.

7. Conclusion

In this paper, we focus on improving the existing
pattern of alleviating exposure bias in abstractive
summarization. Specifically, we introduce SeGRe,
which integrates the functions of generation and re-
vision in a single model and produces human-like
summaries. We demonstrate the advanced per-
formance of our method through extensive experi-
ments and further unveil the factors that may affect
SeGRe’s performance through empirical analyses.
We plan to embed subtly learned summarization
models into SeGRe in future works to further extend
our method.

8. Limitations

We omitted to consider the synonyms issue when
designing our lexis reward function. One reason is
that we follow previous studies and mainly evalu-
ate the summarization performance with ROUGE
scores, which are insensitive for synonym words.
To reach higher scores, the introduced lexis reward
only needs to encourage the model-revised sum-
maries to contain more reference tokens without
considering their synonyms. Although it does not
hinder our SeGRe from achieving advanced evalu-
ation results, we focus on the synonyms issue in
improving real-world applications. Here, we look up
WordNet (Miller, 1995) to get a synonym set {Y ∗}
for the reference words {Y } and further reward our
model once a revised summary contains the words
in {Y ∗}. The evaluations of the resulting model
are shown in Table 6. It seems that the mentioned
strategy makes little effort to improve summaries’
semantic quality and reversely damages lexical
quality (ROUGE scores). Besides, looking up lexi-
cons is time-consuming and contextually unaware.
Therefore, dealing with synonyms is still a limitation
of our current method, and we will leave this issue
as one of our future directions for a deeper study.



748

9. Acknowledgements

We sincerely appreciate the anonymous reviewers
for their valuable suggestions and approval. This
work is supported by the Changsha Science and
Technology Major Special Project (No.kh2202006).

10. Bibliographical References

Chenxin An, Ming Zhong, Zhiyong Wu, Qin Zhu,
Xuanjing Huang, and Xipeng Qiu. 2022. Colo: A
contrastive learning based re-ranking framework
for one-stage summarization. In Proceedings
of the 29th International Conference on Com-
putational Linguistics, COLING 2022, Gyeongju,
Republic of Korea, October 12-17, 2022, pages
5783–5793. International Committee on Compu-
tational Linguistics.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for
sequence prediction with recurrent neural net-
works. In NIPS 2015, pages 1171–1179.

Tom B. Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language
models are few-shot learners. In Advances in
Neural Information Processing Systems 33: An-
nual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

Shuyang Cao and Lu Wang. 2021. CLIFF: con-
trastive learning for improving faithfulness and
factuality in abstractive summarization. In Pro-
ceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Do-
minican Republic, 7-11 November, 2021, pages
6633–6649. Association for Computational Lin-
guistics.

Zi-Yi Dou, Pengfei Liu, Hiroaki Hayashi, Zheng-
bao Jiang, and Graham Neubig. 2021. Gsum:
A general framework for guided neural abstrac-
tive summarization. In NAACL-HLT 2021, pages
4830–4842.

Markus Dreyer, Mengwen Liu, Feng Nan, Sandeep
Atluri, and Sujith Ravi. 2023. Evaluating the trade-
off between abstractiveness and factuality in ab-
stractive summarization. In Findings of the As-
sociation for Computational Linguistics: EACL
2023, Dubrovnik, Croatia, May 2-6, 2023, pages
2044–2060. Association for Computational Lin-
guistics.

Sebastian Goodman, Nan Ding, and Radu Soricut.
2020. Teaforn: Teacher-forcing with n-grams. In
EMNLP 2020, pages 8704–8717.

Anirudh Goyal, Alex Lamb, Ying Zhang, Saizheng
Zhang, Aaron C. Courville, and Yoshua Bengio.
2016. Professor forcing: A new algorithm for
training recurrent networks. In NIPS 2016, pages
4601–4609.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor O. K. Li, and Richard Socher. 2018. Non-
autoregressive neural machine translation. In
6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Pro-
ceedings. OpenReview.net.

Jiatao Gu, Changhan Wang, and Junbo Zhao.
2019. Levenshtein transformer. In Advances
in Neural Information Processing Systems 32:
Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, Decem-
ber 8-14, 2019, Vancouver, BC, Canada, pages
11179–11189.

Raia Hadsell, Sumit Chopra, and Yann LeCun.
2006. Dimensionality reduction by learning an
invariant mapping. In 2006 IEEE Computer So-
ciety Conference on Computer Vision and Pat-
tern Recognition (CVPR 2006), 17-22 June 2006,
New York, NY, USA, pages 1735–1742. IEEE
Computer Society.

G. Senthil Kumar and Midhun Chakkaravarthy.
2023. A survey on recent text summarization
techniques. In MIWAI 2023, volume 14078
of Lecture Notes in Computer Science, pages
496–502.

Vladimir I Levenshtein et al. 1966. Binary codes
capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10,
pages 707–710. Soviet Union.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: denoising sequence-to-sequence
pre-training for natural language generation,
translation, and comprehension. In ACL 2020,
pages 7871–7880.

https://aclanthology.org/2022.coling-1.508
https://aclanthology.org/2022.coling-1.508
https://aclanthology.org/2022.coling-1.508
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2023.findings-eacl.156
https://doi.org/10.18653/v1/2023.findings-eacl.156
https://doi.org/10.18653/v1/2023.findings-eacl.156
https://doi.org/10.18653/v1/2020.emnlp-main.702
https://proceedings.neurips.cc/paper/2016/hash/16026d60ff9b54410b3435b403afd226-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/16026d60ff9b54410b3435b403afd226-Abstract.html
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb
https://proceedings.neurips.cc/paper/2019/hash/675f9820626f5bc0afb47b57890b466e-Abstract.html
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1007/978-3-031-36402-0_46
https://doi.org/10.1007/978-3-031-36402-0_46
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703


749

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy
Liang, and Tatsunori B. Hashimoto. 2022.
Diffusion-lm improves controllable text genera-
tion. In NeurIPS.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summa-
rization branches out, pages 74–81.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. Roberta: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692.

Yixin Liu and Pengfei Liu. 2021. Simcls: A sim-
ple framework for contrastive learning of abstrac-
tive summarization. In Proceedings of the 59th
Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International
Joint Conference on Natural Language Process-
ing, ACL/IJCNLP 2021, (Volume 2: Short Pa-
pers), Virtual Event, August 1-6, 2021, pages
1065–1072. Association for Computational Lin-
guistics.

Yixin Liu, Pengfei Liu, Dragomir R. Radev, and
Graham Neubig. 2022. BRIO: bringing order to
abstractive summarization. In ACL 2022, pages
2890–2903.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Joshua Maynez, Shashi Narayan, Bernd Bohnet,
and Ryan T. McDonald. 2020. On faithfulness
and factuality in abstractive summarization. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 1906–1919.
Association for Computational Linguistics.

George A. Miller. 1995. Wordnet: A lexi-
cal database for english. Commun. ACM,
38(11):39–41.

Richard Yuanzhe Pang and He He. 2021. Text
generation by learning from demonstrations. In
ICLR 2021. OpenReview.net.

Romain Paulus, Caiming Xiong, and Richard
Socher. 2018. A deep reinforced model for ab-
stractive summarization. In 6th International
Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenRe-
view.net.

Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, Ilya Sutskever, et al. 2019.
Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9.

Paul Roit, Johan Ferret, Lior Shani, Roee Aha-
roni, Geoffrey Cideron, Robert Dadashi, Matthieu
Geist, Sertan Girgin, Léonard Hussenot, Orgad
Keller, Nikola Momchev, Sabela Ramos Garea,
Piotr Stanczyk, Nino Vieillard, Olivier Bachem,
Gal Elidan, Avinatan Hassidim, Olivier Pietquin,
and Idan Szpektor. 2023. Factually consistent
summarization via reinforcement learning with
textual entailment feedback. In ACL 2023, pages
6252–6272.

Stéphane Ross, Geoffrey J. Gordon, and Drew Bag-
nell. 2011. A reduction of imitation learning and
structured prediction to no-regret online learning.
In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statis-
tics, AISTATS 2011, Fort Lauderdale, USA, April
11-13, 2011, volume 15 of JMLR Proceedings,
pages 627–635. JMLR.org.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He,
Hua Wu, Maosong Sun, and Yang Liu. 2016. Min-
imum risk training for neural machine translation.
In ACL 2016.

Caidong Tan. 2023. Deep reinforcement learn-
ing with copy-oriented context awareness and
weighted rewards for abstractive summarization.
In CACML 2023, pages 84–89.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In NIPS 2017, pages
5998–6008.

Ashwin K. Vijayakumar, Michael Cogswell, Ram-
prasaath R. Selvaraju, Qing Sun, Stefan Lee,
David J. Crandall, and Dhruv Batra. 2016. Di-
verse beam search: Decoding diverse solu-
tions from neural sequence models. CoRR,
abs/1610.02424.

Jiawen Xie, Qi Su, Shaoting Zhang, and Xiaofan
Zhang. 2023. Alleviating exposure bias via multi-
level contrastive learning and deviation simula-
tion in abstractive summarization. In Findings
of the Association for Computational Linguistics:
ACL 2023, pages 9732–9747.

Shusheng Xu, Xingxing Zhang, Yi Wu, and Furu
Wei. 2022. Sequence level contrastive learning
for text summarization. In AAAI 2022, pages
11556–11565.

Weizhe Yuan, Graham Neubig, and Pengfei Liu.
2021. Bartscore: Evaluating generated text

http://papers.nips.cc/paper_files/paper/2022/hash/1be5bc25d50895ee656b8c2d9eb89d6a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1be5bc25d50895ee656b8c2d9eb89d6a-Abstract-Conference.html
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.acl-short.135
https://doi.org/10.18653/v1/2021.acl-short.135
https://doi.org/10.18653/v1/2021.acl-short.135
https://doi.org/10.18653/v1/2022.acl-long.207
https://doi.org/10.18653/v1/2022.acl-long.207
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://openreview.net/forum?id=RovX-uQ1Hua
https://openreview.net/forum?id=RovX-uQ1Hua
https://openreview.net/forum?id=HkAClQgA-
https://openreview.net/forum?id=HkAClQgA-
https://doi.org/10.18653/v1/2023.acl-long.344
https://doi.org/10.18653/v1/2023.acl-long.344
https://doi.org/10.18653/v1/2023.acl-long.344
http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
https://doi.org/10.18653/v1/p16-1159
https://doi.org/10.18653/v1/p16-1159
https://doi.org/10.1145/3590003.3590019
https://doi.org/10.1145/3590003.3590019
https://doi.org/10.1145/3590003.3590019
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1610.02424
https://doi.org/10.18653/v1/2023.findings-acl.617
https://doi.org/10.18653/v1/2023.findings-acl.617
https://doi.org/10.18653/v1/2023.findings-acl.617
https://doi.org/10.1609/aaai.v36i10.21409
https://doi.org/10.1609/aaai.v36i10.21409
https://proceedings.neurips.cc/paper/2021/hash/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Abstract.html


750

as text generation. In NeurIPS 2021, pages
27263–27277.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and
Peter J. Liu. 2020a. PEGASUS: pre-training
with extracted gap-sentences for abstractive sum-
marization. In ICML 2020, volume 119 of Pro-
ceedings of Machine Learning Research, pages
11328–11339.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020b. Bertscore:
Evaluating text generation with BERT. In ICLR
2020.

Xingxing Zhang, Yiran Liu, Xun Wang, Pengcheng
He, Yang Yu, Si-Qing Chen, Wayne Xiong, and
Furu Wei. 2022. Momentum calibration for text
generation. CoRR, abs/2212.04257.

Yao Zhao, Misha Khalman, Rishabh Joshi, Shashi
Narayan, Mohammad Saleh, and Peter J. Liu.
2023. Calibrating sequence likelihood improves
conditional language generation. In ICLR 2023.

11. Language Resource References

Karl Moritz Hermann, Tomás Kociský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. 2015. Teaching
machines to read and comprehend. In NIPS
2015, pages 1693–1701.

Ramesh Nallapati, Bowen Zhou, Cícero Nogueira
dos Santos, Çaglar Gülçehre, and Bing Xiang.
2016. Abstractive text summarization using
sequence-to-sequence rnns and beyond. In
CoNLL 2016, pages 280–290.

Shashi Narayan, Shay B. Cohen, and Mirella La-
pata. 2018. Don’t give me the details, just the
summary! topic-aware convolutional neural net-
works for extreme summarization. In EMNLP
2018, pages 1797–1807.

https://proceedings.neurips.cc/paper/2021/hash/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Abstract.html
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.48550/arXiv.2212.04257
https://doi.org/10.48550/arXiv.2212.04257
https://openreview.net/pdf?id=0qSOodKmJaN
https://openreview.net/pdf?id=0qSOodKmJaN
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://doi.org/10.18653/v1/k16-1028
https://doi.org/10.18653/v1/k16-1028
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206

	Introduction
	Related Work
	Language Generation
	Solutions of Exposure Bias

	Background
	Method
	Architecture
	Learning
	Training Strategy
	Inference Time

	Experiments
	Datasets
	Comparison Methods
	Implementation Details
	Main Results
	Ablation Study
	Calibration Analysis
	Case Study

	More Analyses
	Conclusion
	Limitations
	Acknowledgements
	Bibliographical References
	Language Resource References

