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Abstract
Building on a recent method for decoding translation candidates from a Machine Translation (MT) model via a genetic
algorithm, we modify it to generate adversarial translations to test and challenge MT evaluation metrics. The produced
translations score very well in an arbitrary MT evaluation metric selected beforehand, despite containing serious,
deliberately introduced errors. The method can be used to create adversarial test sets to analyze the biases and
shortcomings of the metrics. We publish various such test sets for the Czech to English language pair, as well as the
code to convert any parallel data into a similar adversarial test set.

1. Introduction
One of the crucial aspects of developing and de-
ploying machine translation is automatic evalua-
tion. The evaluation metrics introduced in recent
years follow the trend of using pre-trained large lan-
guage models as the core of a task-specific system.
These novel metrics correlate better with human
evaluation than the previous generation of metrics
based on a rather shallow similarity of the proposed
translation and human reference. However, many
shortcomings, weaknesses and blind spots of these
new metrics were already described in the litera-
ture, like insensitivity to errors in the translation of
named entities, numbers and others (Hanna and
Bojar, 2021; Amrhein and Sennrich, 2022).
In this paper, we modify a recently introduced ge-
netic algorithm-based technique (Jon and Bojar,
2023) to automatically construct adversarial ex-
amples for specific metrics. Starting with an ini-
tial set of translation hypotheses generated by an
MT model, we stochastically modify and combine
them. The objective is to craft translations that
excel in one specific metric but perform poorly
across others. The main contribution of this pa-
per is the release of metric-specific adversarial
test sets and the accompanying code for creat-
ing new test sets, enabling researchers to probe
various metrics’ robustness, biases, and weak-
nesses. The code and the test sets can be found
at: https://github.com/cepin19/GAATME

2. Related work
Many new MT evaluation metrics were introduced
recently (Zhang et al., 2020; Yuan et al., 2021;
Thompson and Post, 2020; Sellam et al., 2020;
Rei et al., 2020, 2021, 2022b; Lo, 2019; Wan
et al., 2021, 2022; Freitag et al., 2022; Rei et al.,
2022a; Kocmi and Federmann, 2023; Guerreiro
et al., 2023). They are based on representing the
source, MT, and reference sentences in a (some-

times shared) high-dimensional space, computing
the similarity between the representations, and (in
most cases) predicting human evaluation scores.
This allows more flexibility than traditional metrics
based on shallow text similarities (e.g. for lexical
overlap metrics like BLEU, synonyms vs. com-
pletely unrelated mistranslations are indistinguish-
able, while neural metrics should account for this by
scoring synonyms similarly). Overall, they correlate
better with human evaluation (Freitag et al., 2022;
Kocmi et al., 2021). The downside of this increased
flexibility is that the models are prone to be insen-
sitive to some kinds of errors, especially in rare
words and named entities, since such expressions
often have similar embeddings.
Existing literature extensively probes the behavior
and weaknesses of these contemporary metrics.
Moghe et al. (2023) show that neural metrics do not
provide reliable results on the segment level. Am-
rhein and Sennrich (2022) try to find high-scoring
incorrect translations, similar to our approach, to
show that the analyzed metrics are not sensitive to
errors in named entities and numbers. Alves et al.
(2022) and Kanojia et al. (2021) further show that
meaning-changing errors are hard to detect for QE.
Rei et al. (2023); Leiter et al. (2022); Treviso et al.
(2021); Guerreiro et al. (2023), and Fomicheva et al.
(2021) explore the interpretability of the neural met-
rics.
Lastly, we directly build on Jon and Bojar (2023)
and use a slight modification of this approach (using
negative weights for “control” metrics) to build our
adversarial test sets.

3. Method
We adapt the method presented by Jon and Bo-
jar (2023). This approach is based on the genetic
algorithm, which is described in the following para-
graphs.

https://github.com/cepin19/GAATME
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Figure 1: One iteration of the GA algorithm for a population of 4 individuals s1,. . . , s4. The steps with the
yellow background are equivalent to simple reranking, the steps with the blue background introduce the
operations of the genetic algorithm. Figure from Jon and Bojar (2023).

Genetic algorithm Our approach is the same as
Jon and Bojar (2023) and we encourage the reader
to find a more detailed description there. The whole
process is illustrated in Figure 1.
First, a set of candidate sentences is produced by
an NMT model, either by a beam search decod-
ing or sampling for an increased diversity. These
candidates are stochastically combined using a
cross-over operation. This operation selects two
individuals (i.e. translation hypotheses) from the
population, splits them at a random token index
swaps the split parts between the individuals. The
resulting sequences are further modified using the
mutation operation, which randomly removes, adds
or replaces tokens in the candidate. The choices
for new tokens to add or replace come from two
sources: the complete wordlist in the target lan-
guage and the set of words from a reference sen-
tence.
Then, these candidate translations are scored us-
ing a fitness function, in our case a weighted sum
of MT metrics’ scores computed with regard to a
known reference. This is a difference from Jon and
Bojar (2023), who use MBR decoding with the trans-
lation candidates themselves as pseudoreferences.
We use a positive weight for the metric we want to
analyze (i.e., the one we want to find adversarial ex-
amples for) and a small negative weight for several
other MT metrics. Our goal is to find sentences that

perform exceptionally well according to the metric
of interest but not as well according to other metrics.
Finally, a new population of candidates is selected
based on their scores via tournament selection.
In most of the experiments by Jon and Bojar (2023),
the authors use MBR decoding to obtain the scores,
in order to improve the quality of the translation. In
our experiments, we do not keep the reference
secret, since we are looking to obtain adversarial
examples for the MT metrics instead. Jon and Bo-
jar (2023) also ran a similarly designed small-scale
experiment but they only used the analyzed met-
ric for the fitness function, without the negatively
weighted “control” metrics. They searched for the
“suspicious” final translations in the outputs after
running the whole GA algorithm. We are encourag-
ing GA to directly prefer the suspicious translation
candidates, making our approach proactive in seek-
ing out translations that may reveal weaknesses in
MT metrics.

4. Experiments
4.1. Data, tools and model
The NMT model was trained on CzEng 2.0 (Bo-
jar et al., 2016; Kocmi et al., 2020) We obtained
the English wordlist from https://github.com/
dwyl/english-words. We tokenize the text us-
ing SentencePiece (Kudo and Richardson, 2018)

https://github.com/dwyl/english-words
https://github.com/dwyl/english-words
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and FactoredSegmenter1 for the training. For the to-
kenization in the GA process, we use SacreMoses.2
We used the wmt22 (Kocmi et al., 2022) test set in
Czech to English direction to create the adversarial
translations. To produce the initial translations, we
use the same model as Jon and Bojar (2023), i.e.
transformer-big (Vaswani et al., 2017) using
MarianNMT (Junczys-Dowmunt et al., 2018) with
default hyperparameters.

4.2. GA parameters
The initial population of translation candidates
is created by the NMT model described in Sec-
tion 4.1. We concatenate n-best list obtained by
beam search with beam size 20 and 20 sampled
translations. We sample uniformly from the whole
output distribution, as default in MarianNMT. We
copy these 40 candidates 50 times to reach a pop-
ulation size of 2000. Empty token positions are
added before and after each token in each candi-
date to support the addition of new words at these
positions by mutating them to non-empty tokens.
Finally, all the candidates are padded with empty to-
ken positions to the length of the longest candidate
multiplied by 1.1.
The candidates are combined at a crossover rate
of c = 0.1. The mutation rate for modifying non-
empty genes (tokens) to other non-empty genes
is m = 1

l , with l representing chromosome length
(i.e. number of positions in the translation candi-
date, including the empty token placeholders). Mu-
tation rates between empty and non-empty genes
(word addition/deletion) are m

10 . Parents for the next
generation are chosen via a tournament selection
with n = 3. The GA stops after 150 generations.
We combine the studied metric (the one we aim to
find adversarial examples for) with other metrics
in the fitness function by a weighted sum. We set
the weight of the studied metric to 1.0 and we ex-
plore the following weights for all the other metrics:
0,−0.001,−0.01,−0.02,−0.03,−0.05,−0.1. We
note that these settings are arbitrary, based on
some previous experience. A search for better
parameters could bring further improvements, but
running the whole process is computationally costly.
This is mainly due to a need for running a large num-
ber of evaluations by the MT metrics, many of which
are deep learning-based and resource-intensive.

4.3. Metrics
We assess the translations using the metrics:
BLEU (Papineni et al., 2002), ChrF (Popović, 2015),
BLEURT-20 (Sellam et al., 2020), wmt20-comet-da
(CMT20 in the tables), wmt22-comet-da (CMT22),

1https://github.com/microsoft/
factored-segmenter

2https://github.com/alvations/
sacremoses

wmt22-cometkiwi-da (CMT22-QE) (Rei et al., 2020,
2022a,c) and UniTE-MUP (Wan et al., 2022).
For both BLEU and ChrF metrics, Sacre-
BLEU (Post, 2018) is used. Specifically, ChrF op-
erates with a β = 2 setting, labeled ChrF2.
BLEURT is not used as the negative metric in any
of the experiments, due to its 5̃x computational re-
quirements compared to COMET. We only analyze
it as the studied metric, with other metrics as the
negative ones. We also do not use wmt20-comet-
da as part of the negatively weighted metrics, be-
cause we previously found that it does not correlate
well with human quality assessment under these
circumstances.

4.4. Results
The results from our various experimental runs are
summarized in Table 1. The first column speci-
fies the metric we are creating adversarial exam-
ples for. The second column details the negative
metric weights. These “control” metrics guide the
GA to produce translations with errors. The fol-
lowing columns provide system-level scores of the
adversarial translations produced. A translation is
identified as adversarial if its post-GA score in the
examined metric rises, while the translation mani-
fests serious translation mistakes introduced by the
GA process, as we manuall annotated, see below.
The first row shows the results of the baseline MT
model that was used to create the initial population
of translation candidates for the GA.
We can infer some notions about the robustness
of the particular metrics based on this table. By
comparing the targeted metric’s score with other
(control) metrics’ scores, we can get a gist of its
resilience against adversarial inputs. If a metric
can be tricked using our method, its post-GA score
should remain high, whereas scores from other
metrics should decrease significantly. For instance,
when optimized for BLEU or CMT22-QE, we ob-
serve a decline in most other metrics compared to
their baseline, even without negative weights in the
fitness function. In other words, BLEU and CMT22-
QE are very susceptible to overfitting towards them.
Conversely, optimization for UniTE or CMT22 en-
hances scores in many other metrics, indicating
the robustness of UniTE and CMT22. This kind
of analysis assumes there are no spurious corre-
lations or shared blind spots between the metrics
– this assumption is however certainly violated in
practice, since the neural metrics share large parts
of the architecture and training data.
To address this, we manually examined a selection
of translations to determine the true ratio of adver-
sarial samples. We evaluated 50 samples from
each metric with negative weights of 0 and −0.1,
labeling them adversarial if they presented signif-
icant translation errors (consistent samples were

https://github.com/microsoft/factored-segmenter
https://github.com/microsoft/factored-segmenter
https://github.com/alvations/sacremoses
https://github.com/alvations/sacremoses
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Adv metric Wneg ChrF BLEU CMT20 CMT22 CMT22-QE BLEURT UniTE % better % adv

Baseline MT 64.1 39.9 0.434 0.794 0.751 0.671 0.123

chrF

0 84.8 58.2 -0.220 0.634 0.508 0.543 -0.433 100 78 (78)
0.001 85.2 58.6 -0.240 0.635 0.511 0.539 -0.427
0.01 85.0 56.4 -0.433 0.589 0.472 0.495 -0.668
0.02 84.8 55.1 -0.640 0.544 0.435 0.444 -0.829
0.03 84.4 52.1 -0.815 0.517 0.415 0.408 -0.991
0.05 82.6 45.0 -1.078 0.460 0.381 0.363 -1.193
0.1 79.9 33.6 -1.257 0.406 0.341 0.353 -1.374 96 96 (100)

BLEU

0 74.8 63.4 0.122 0.730 0.607 0.588 -0.157 100 70 (70)
0.001 71.4 63.0 -0.535 0.570 0.485 0.445 -0.789
0.01 69.2 62.5 -0.907 0.477 0.428 0.389 -1.099
0.02 68.7 62.7 -0.972 0.452 0.404 0.362 -1.149
0.03 67.5 62.1 -1.022 0.438 0.397 0.356 -1.187
0.05 65.7 61.3 -1.186 0.401 0.370 0.321 -1.321
0.1 61.8 59.2 -1.292 0.363 0.328 0.292 -1.427 98 98 (100)

CMT20*

0 70.4 49.6 0.803 0.851 0.739 0.727 0.401 100 22 (22)
0.001 69.9 49.0 0.800 0.850 0.733 0.719 0.357
0.01 70.7 49.7 0.801 0.849 0.723 0.701 0.299
0.02 69.1 48.2 0.799 0.843 0.721 0.692 0.239
0.03 67.8 45.0 0.794 0.839 0.698 0.680 0.139
0.05 64.1 37.7 0.772 0.820 0.673 0.641 -0.016
0.1 55.5 24.0 0.716 0.779 0.599 0.561 -0.449 82 78 (96)

CMT22

0 69.4 48.4 0.667 0.879 0.742 0.710 0.311 100 26 (26)
0.001 69.5 49.3 0.649 0.879 0.739 0.715 0.294
0.01 64.6 40.4 0.580 0.876 0.715 0.681 0.069
0.02 59.3 29.9 0.471 0.867 0.658 0.621 -0.225
0.03 53.3 22.6 0.259 0.854 0.612 0.569 -0.532
0.05 45.8 12.3 -0.071 0.828 0.535 0.490 -0.908
0.1 35.5 2.3 -0.518 0.788 0.449 0.401 -1.194 38 38 (100)

CMT22-QE

0 61.2 35.3 0.400 0.809 0.824 0.674 0.080 100 20 (20)
0.001 61.5 35.2 0.404 0.807 0.822 0.667 0.098
0.01 56.9 28.2 0.220 0.775 0.819 0.629 -0.157
0.02 50.5 17.8 -0.217 0.711 0.810 0.551 -0.526
0.03 46.9 12.4 -0.461 0.670 0.801 0.510 -0.754
0.05 40.6 6.9 -0.770 0.601 0.783 0.449 -1.038
0.1 32.7 2.3 -1.079 0.515 0.752 0.402 -1.236 30 30 (100)

BLEURT*

0 65.1 40.8 0.048 0.721 0.611 0.822 -0.241 100 78 (78)
0.001 65.0 40.4 0.076 0.732 0.638 0.819 -0.211
0.01 61.1 35.1 -0.374 0.633 0.515 0.819 -0.612
0.02 58.9 28.3 -0.665 0.567 0.459 0.817 -0.855
0.03 53.2 20.3 -0.814 0.531 0.429 0.809 -0.985
0.05 49.0 15.8 -1.008 0.480 0.401 0.806 -1.143
0.1 36.4 4.9 -1.275 0.406 0.348 0.833 -1.359 76 76 (100)

UniTE

0 68.4 45.4 0.591 0.817 0.726 0.707 0.628 100 22 (22)
0.001 68.3 44.8 0.555 0.808 0.719 0.707 0.622
0.01 67.5 45.1 0.588 0.810 0.717 0.706 0.643
0.02 67.8 45.1 0.609 0.821 0.723 0.715 0.636
0.03 67.3 43.5 0.548 0.808 0.723 0.702 0.622
0.05 66.3 41.5 0.544 0.804 0.705 0.692 0.615
0.1 62.7 33.9 0.471 0.783 0.687 0.665 0.610 100 44 (44)

Table 1: Average scores of the generated test sets. Metrics marked with * were not used in the negative
component of the fitness function for analyzing the other metrics. Scores in analyzed metric (the one we
are searching adversarial examples for) are bold. ChrF and BLEU scores are multiplied by 100, in the
algorithm they are in the 0-1 range. Higher is better for all the metrics.

used across all settings). Significant errors are de-
fined as omissions, misinterpretations, additions
not related to the source, redundant repetitions,
or severe word-order errors. Our analysis is sum-
marized in the last two columns. The “% better”
column displays cases where the post-GA metric
score surpasses its pre-GA value. The final column
highlights instances that meet the previous crite-
rion but also introduce a significant error via the
GA. The presence of these errors was manually
assessed. The numbers in parentheses show the
total percentages of examples that contain newly
introduced errors, regardless of whether the GA
has improved the score or not.

4.5. Examples
Examples from our final test sets are presented in
Table 2. Each row of the final test set displays the
name of the analyzed metric, the source sentence
(which is omitted in the table for conciseness), the
machine translation (the first translation from the
n-best list used as the initial population), the best
translation post-GA, as well as the pre-GA and post-
GA scores for the analyzed metric. This table offers
insights into common errors associated with spe-
cific metrics. For instance, BLEURT appears to fa-
vor unfamiliar words or terms from other languages.
These words were part of the noise in the English
wordlist. We were unaware of their presence in the
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Metric MT post-GA Ref MT score GA score

CMT22-QE

In the NHL, "France" caught 36
games, its save rate at 92.3%.

In yn, "Frederic" clocked up 36 or-
dain, with touchdown rate at 92.3
Basilica

He has played 36 games in the
NHL, where his save percentage
is 92.3%.

0.6407 0.7679

The 31-year-old full-back will be on
the scoresheet and could soon be
in goal.

The fullback will toilette on rota-
tion and could get into goal soon
fungo

The thirty-one-year-old Pilsen na-
tive will be on the bench and could
soon be in goal.

0.6901 0.7242

CMT22

The highest ranked in the affair is
Berbr, who no longer features in
any of the football functions.

The highest profile in glave affair is
Piute Denten who no longer longer
figures stanno any football func-
tions

The most senior figure in the affair
is Berbr, who is no longer involved
in any football function.

0.7947 0.8104

Prince William, Duke of Cam-
bridge, is wearing the same as
Princes George and Louis shorts
and a collared T-shirt.

Prince Pippo, Duke of Gold-
wyn, dressed the same as Princes
Alexander and Louis in shorts and
a T-shirt

Prince William, Duke of Cam-
bridge, and Princes George and
Louis are wearing shorts and a
polo shirt.

0.7675 0.8402

CHRF

Interior has got respirators signif-
icantly cheaper than the Depart-
ment of Health

Interior got respirators mushy
Asch cheaper than the Ministry oie
Ministry of Health natl . fur . LADT
Goethe

The Ministry of the Interior got res-
pirators much cheaper than the
Ministry of Health

0.5342 0.8168

PVO: medium-cold war, outdated;
short range - good, modern, rela-
tively good number.

unpaint: medium-cold war, ob-
solete; short range - good, mod-
ern, relatively Orth . enterable
number. fugitively favorer POS
SMDF R.A.A.F. pm . SM

SHORAD: medium - cold war, ob-
solete; short range - good, modern,
relatively favorable number.

67.9 82.0

BLEU

The picture, which will serve as a
Christmas card, was also posted
by heir to the throne Prince Charles
and wife Camilla.

knotty-leaved, which will be
fat-shunning weeny-bopper
Christmas card, was also posted
by the heir to the throne, Prince
Charles, dichlorodiphenyl-
trichloroethane duodenochole-
cystostomy cock-a-doodle-doos
his wife, Camilla.

The image, which will be used
for the Christmas card, was also
posted by the heir to the throne,
Prince Charles, and his wife,
Camilla.

34.3 68.6

BLEURT

By the time I got off my seat, it
was gone.

Idun epicanthi got achenium
tundun terebinthial off Ladakhi
Morgenthaler gone.. ecliptically
scholium mesonasal

By the time I got off the deer-stand,
he was gone.

0.3965 0.8183

His return to goal in the NHL
eventually extended to more
than two months.

succinimid Badajoz hootchie-
kootchie cheongsam NHL tao-
tai meromyarian Abyla Nadean
vainer tenson months

In the end, his time away from the
NHL was extended by more than
two months.

0.5695 0.8510

Table 2: Examples from the adversarial test set. Superfluous words in the post-GA translation and words
from before GA that are missing post-GA are in bold.

wordlist before running the experiments.

5. Conclusion
We have presented a method to automatically gen-
erate adversarial test sets for arbitrary evaluation
metrics. Our results demonstrate that this method
is capable of producing translations that, while
scoring higher than initial (correct or at least rea-
sonable) MT outputs, contain serious translation
errors. We have found that robustness against
this method varies between metrics, with wmt22-
comet-da and UniTE being particularly robust,
while BLEURT (alongside BLEU and CHRF) can
be surprisingly easy to deceive. We publish the
code and the created test sets to allow further use
of this method.
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