@inproceedings{abrami-etal-2024-german,
title = "{G}erman Parliamentary Corpus ({G}er{P}ar{C}or) Reloaded",
author = {Abrami, Giuseppe and
Bagci, Mevl{\"u}t and
Mehler, Alexander},
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.681",
pages = "7707--7716",
abstract = "In 2022, the largest German-speaking corpus of parliamentary protocols from three different centuries, on a national and federal level from the countries of Germany, Austria, Switzerland and Liechtenstein, was collected and published - GerParCor. Through GerParCor, it became possible to provide for the first time various parliamentary protocols which were not available digitally and, moreover, could not be retrieved and processed in a uniform manner. Furthermore, GerParCor was additionally preprocessed using NLP methods and made available in XMI format. In this paper, GerParCor is significantly updated by including all new parliamentary protocols in the corpus, as well as adding and preprocessing further parliamentary protocols previously not covered, so that a period up to 1797 is now covered. Besides the integration of a new, state-of-the-art and appropriate NLP preprocessing for the handling of large text corpora, this update also provides an overview of the further reuse of GerParCor by presenting various provisioning capabilities such as API{'}s, among others.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="abrami-etal-2024-german">
<titleInfo>
<title>German Parliamentary Corpus (GerParCor) Reloaded</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Abrami</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mevlüt</namePart>
<namePart type="family">Bagci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Mehler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In 2022, the largest German-speaking corpus of parliamentary protocols from three different centuries, on a national and federal level from the countries of Germany, Austria, Switzerland and Liechtenstein, was collected and published - GerParCor. Through GerParCor, it became possible to provide for the first time various parliamentary protocols which were not available digitally and, moreover, could not be retrieved and processed in a uniform manner. Furthermore, GerParCor was additionally preprocessed using NLP methods and made available in XMI format. In this paper, GerParCor is significantly updated by including all new parliamentary protocols in the corpus, as well as adding and preprocessing further parliamentary protocols previously not covered, so that a period up to 1797 is now covered. Besides the integration of a new, state-of-the-art and appropriate NLP preprocessing for the handling of large text corpora, this update also provides an overview of the further reuse of GerParCor by presenting various provisioning capabilities such as API’s, among others.</abstract>
<identifier type="citekey">abrami-etal-2024-german</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.681</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>7707</start>
<end>7716</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T German Parliamentary Corpus (GerParCor) Reloaded
%A Abrami, Giuseppe
%A Bagci, Mevlüt
%A Mehler, Alexander
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F abrami-etal-2024-german
%X In 2022, the largest German-speaking corpus of parliamentary protocols from three different centuries, on a national and federal level from the countries of Germany, Austria, Switzerland and Liechtenstein, was collected and published - GerParCor. Through GerParCor, it became possible to provide for the first time various parliamentary protocols which were not available digitally and, moreover, could not be retrieved and processed in a uniform manner. Furthermore, GerParCor was additionally preprocessed using NLP methods and made available in XMI format. In this paper, GerParCor is significantly updated by including all new parliamentary protocols in the corpus, as well as adding and preprocessing further parliamentary protocols previously not covered, so that a period up to 1797 is now covered. Besides the integration of a new, state-of-the-art and appropriate NLP preprocessing for the handling of large text corpora, this update also provides an overview of the further reuse of GerParCor by presenting various provisioning capabilities such as API’s, among others.
%U https://aclanthology.org/2024.lrec-main.681
%P 7707-7716
Markdown (Informal)
[German Parliamentary Corpus (GerParCor) Reloaded](https://aclanthology.org/2024.lrec-main.681) (Abrami et al., LREC-COLING 2024)
ACL
- Giuseppe Abrami, Mevlüt Bagci, and Alexander Mehler. 2024. German Parliamentary Corpus (GerParCor) Reloaded. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 7707–7716, Torino, Italia. ELRA and ICCL.