@inproceedings{konca-etal-2024-german,
title = "{G}erman {SRL}: Corpus Construction and Model Training",
author = "Konca, Maxim and
Luecking, Andy and
Mehler, Alexander",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.682",
pages = "7717--7727",
abstract = "A useful semantic role-annotated resource for training semantic role models for the German language is missing. We point out some problems of previous resources and provide a new one due to a combined translation and alignment process: The gold standard CoNLL-2012 semantic role annotations are translated into German. Semantic role labels are transferred due to alignment models. The resulting dataset is used to train a German semantic role model. With F1-scores around 0.7, the major roles achieve competitive evaluation scores, but avoid limitations of previous approaches. The described procedure can be applied to other languages as well.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="konca-etal-2024-german">
<titleInfo>
<title>German SRL: Corpus Construction and Model Training</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maxim</namePart>
<namePart type="family">Konca</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andy</namePart>
<namePart type="family">Luecking</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Mehler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A useful semantic role-annotated resource for training semantic role models for the German language is missing. We point out some problems of previous resources and provide a new one due to a combined translation and alignment process: The gold standard CoNLL-2012 semantic role annotations are translated into German. Semantic role labels are transferred due to alignment models. The resulting dataset is used to train a German semantic role model. With F1-scores around 0.7, the major roles achieve competitive evaluation scores, but avoid limitations of previous approaches. The described procedure can be applied to other languages as well.</abstract>
<identifier type="citekey">konca-etal-2024-german</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.682</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>7717</start>
<end>7727</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T German SRL: Corpus Construction and Model Training
%A Konca, Maxim
%A Luecking, Andy
%A Mehler, Alexander
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F konca-etal-2024-german
%X A useful semantic role-annotated resource for training semantic role models for the German language is missing. We point out some problems of previous resources and provide a new one due to a combined translation and alignment process: The gold standard CoNLL-2012 semantic role annotations are translated into German. Semantic role labels are transferred due to alignment models. The resulting dataset is used to train a German semantic role model. With F1-scores around 0.7, the major roles achieve competitive evaluation scores, but avoid limitations of previous approaches. The described procedure can be applied to other languages as well.
%U https://aclanthology.org/2024.lrec-main.682
%P 7717-7727
Markdown (Informal)
[German SRL: Corpus Construction and Model Training](https://aclanthology.org/2024.lrec-main.682) (Konca et al., LREC-COLING 2024)
ACL
- Maxim Konca, Andy Luecking, and Alexander Mehler. 2024. German SRL: Corpus Construction and Model Training. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 7717–7727, Torino, Italia. ELRA and ICCL.