@inproceedings{tu-etal-2024-glamr,
title = "{GLAMR}: Augmenting {AMR} with {GL}-{V}erb{N}et Event Structure",
author = "Tu, Jingxuan and
Obiso, Timothy and
Ye, Bingyang and
Rim, Kyeongmin and
Xu, Keer and
Yue, Liulu and
Brown, Susan Windisch and
Palmer, Martha and
Pustejovsky, James",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.685",
pages = "7746--7759",
abstract = "This paper introduces GLAMR, an Abstract Meaning Representation (AMR) interpretation of Generative Lexicon (GL) semantic components. It includes a structured subeventual interpretation of linguistic predicates, and encoding of the opposition structure of property changes of event arguments. Both of these features are recently encoded in VerbNet (VN), and form the scaffolding for the semantic form associated with VN frame files. We develop a new syntax, concepts, and roles for subevent structure based on VN for connecting subevents to atomic predicates. Our proposed extension is compatible with current AMR specification. We also present an approach to automatically augment AMR graphs by inserting subevent structure of the predicates and identifying the subevent arguments from the semantic roles. A pilot annotation of GLAMR graphs of 65 documents (486 sentences), based on procedural texts as a source, is presented as a public dataset. The annotation includes subevents, argument property change, and document-level anaphoric links. Finally, we provide baseline models for converting text to GLAMR and vice versa, along with the application of GLAMR for generating enriched paraphrases with details on subevent transformation and arguments that are not present in the surface form of the texts.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tu-etal-2024-glamr">
<titleInfo>
<title>GLAMR: Augmenting AMR with GL-VerbNet Event Structure</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jingxuan</namePart>
<namePart type="family">Tu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Obiso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bingyang</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyeongmin</namePart>
<namePart type="family">Rim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keer</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liulu</namePart>
<namePart type="family">Yue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Susan</namePart>
<namePart type="given">Windisch</namePart>
<namePart type="family">Brown</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces GLAMR, an Abstract Meaning Representation (AMR) interpretation of Generative Lexicon (GL) semantic components. It includes a structured subeventual interpretation of linguistic predicates, and encoding of the opposition structure of property changes of event arguments. Both of these features are recently encoded in VerbNet (VN), and form the scaffolding for the semantic form associated with VN frame files. We develop a new syntax, concepts, and roles for subevent structure based on VN for connecting subevents to atomic predicates. Our proposed extension is compatible with current AMR specification. We also present an approach to automatically augment AMR graphs by inserting subevent structure of the predicates and identifying the subevent arguments from the semantic roles. A pilot annotation of GLAMR graphs of 65 documents (486 sentences), based on procedural texts as a source, is presented as a public dataset. The annotation includes subevents, argument property change, and document-level anaphoric links. Finally, we provide baseline models for converting text to GLAMR and vice versa, along with the application of GLAMR for generating enriched paraphrases with details on subevent transformation and arguments that are not present in the surface form of the texts.</abstract>
<identifier type="citekey">tu-etal-2024-glamr</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.685</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>7746</start>
<end>7759</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GLAMR: Augmenting AMR with GL-VerbNet Event Structure
%A Tu, Jingxuan
%A Obiso, Timothy
%A Ye, Bingyang
%A Rim, Kyeongmin
%A Xu, Keer
%A Yue, Liulu
%A Brown, Susan Windisch
%A Palmer, Martha
%A Pustejovsky, James
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F tu-etal-2024-glamr
%X This paper introduces GLAMR, an Abstract Meaning Representation (AMR) interpretation of Generative Lexicon (GL) semantic components. It includes a structured subeventual interpretation of linguistic predicates, and encoding of the opposition structure of property changes of event arguments. Both of these features are recently encoded in VerbNet (VN), and form the scaffolding for the semantic form associated with VN frame files. We develop a new syntax, concepts, and roles for subevent structure based on VN for connecting subevents to atomic predicates. Our proposed extension is compatible with current AMR specification. We also present an approach to automatically augment AMR graphs by inserting subevent structure of the predicates and identifying the subevent arguments from the semantic roles. A pilot annotation of GLAMR graphs of 65 documents (486 sentences), based on procedural texts as a source, is presented as a public dataset. The annotation includes subevents, argument property change, and document-level anaphoric links. Finally, we provide baseline models for converting text to GLAMR and vice versa, along with the application of GLAMR for generating enriched paraphrases with details on subevent transformation and arguments that are not present in the surface form of the texts.
%U https://aclanthology.org/2024.lrec-main.685
%P 7746-7759
Markdown (Informal)
[GLAMR: Augmenting AMR with GL-VerbNet Event Structure](https://aclanthology.org/2024.lrec-main.685) (Tu et al., LREC-COLING 2024)
ACL
- Jingxuan Tu, Timothy Obiso, Bingyang Ye, Kyeongmin Rim, Keer Xu, Liulu Yue, Susan Windisch Brown, Martha Palmer, and James Pustejovsky. 2024. GLAMR: Augmenting AMR with GL-VerbNet Event Structure. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 7746–7759, Torino, Italia. ELRA and ICCL.