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Abstract
Multi-level implicit discourse relation recognition (MIDRR) is a challenging task to recognize the hierarchical discourse
relations between the arguments with the absence of connectives. Recent methods tend to incorporate the static
hierarchical structure containing all senses (defined as global hierarchy) into prompt tuning through a path prompt
template or hierarchical label refining. Howerver, hierarchical modeling is independent of the verbalizer, resulting in
a failure to effectively utilize the output probability distribution information of verbalizer. Besides, they ignore the
utilization of the dynamic hierarchical label sequence for each instance (defined as local hierarchy) in prompt tuning.
In this paper, we propose a global and local hierarchical prompt tuning (GLHPT) framework, which utilize prior
knowledge of PLMs while better incorporating hierarchical information from two aspects. We leverage bottom-up
propagated probability as the global hierarchy to inject it into multi-level verbalizer (MLV). Furthermore, we design a
local hierarchy-driven contrastive learning (LHCL) to improve the probability distribution of MLV. Finally, our model
achieves competitive results on two benchmacks.

Keywords: Prompt Learning, Hierarchy, Implicit Discourse Relation Recognition

1. Introduction

Implicit discourse relation recognition (IDRR) (Pitler
et al., 2009) aims to discover discourse relations be-
tween a pair of text segments (named arguments)
without the guidance of explicit connectives (e.g.,
because, but) (Xiang and Wang, 2023). It is vital for
textual coherence and is considered as the essen-
tial step for many downstream tasks involving more
context, such as question answering (Liakata et al.,
2013), text summarization (Li et al., 2020b) and
event relation extraction (Tang et al., 2021). Mean-
while, the sense labels for each discourse relation
follow a hierarchical classification structure in the
annotation process. Figure 1 shows a discourse
instance with multi-level labels, it consists of two
arguments (i.e., Arg1 and Arg2) and is annotated
with relation senses. The label of the top-level is
Comparison, while the sub-label Contrast is the
fine-grained semantic expression of Comparison.
Besides, when annotating the implicit relations, an-
notators simulate adding connectives (e.g., how-
ever) to help better understand the semantics of
labels.

With the widespread application of pre-trained
language models(PLMs), IDRR has also achieved
considerable improvement (Lei et al., 2017; Bai
and Zhao, 2018; Ruan et al., 2020; Xiang et al.,
2022a; Wu et al., 2022; Jiang et al., 2023). Under
the pre-train and fine-tuning paradigm, researchers
encode the representation of argument pairs by de-
signing sophisticated neural networks for relation
classification. Although these task-specific neural
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Level 2: Contrast

Level 1: Comparison

Implicit connective: however 

root

Arg1: The new rate will be payable Feb. 15, 
Arg2:  ... a record date hasn't been set.  

Figure 1: An Instance for multi-level IDRR. The
implicit connective is not present in the original
discourse context but is assigned by annotators. All
senses are organized in a three-layer hierarchical
structure, and the implicit connectives is the most
fine-grained senses.

networks can effectively learn a kind of contextual
semantics of arguments, they introduce some ad-
ditional parameters that relies on a large scale of
data to train. Moreover, some studies suggest that
the task objective is often inconsistent with that of
PLMs, which restrains the finetuned models to take
full advantage of knowledge in PLMs (Liu et al.,
2023).

Inspired by prompt tuning (PT) (Schick and
Schütze, 2021b), several studies reformulate the
IDRR task as cloze questions to bridge the gap
between the masked language model (MLM) and
downstream IDRR tasks (Zhou et al., 2022; Xiang
et al., 2022c, 2023). Although remarkable perfor-
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mances have been achieved via prompt tuning on
the single-level IDRR, the inherent discourse label
hierarchy is ignored.

To solve this issue, the latest research attempts
to inject label hierarchy knowledge into prompt tun-
ing. DiscoPrompt (Chan et al., 2023) transforms
the hierarchy in Figure 1 to “Comparison -> Con-
trast -> however;· · · ; Temporal -> Synchrony ->
when” as the path prompt and adds it as the prefix
of arguments to be classified. But their manners of
selecting a few special connective nodes form path
prompt template, which lacks the integrity of hier-
archical label modeling. PEMI (Zhao et al., 2023)
propose a hierarchical label refining method for the
prompt verbalizer to deeply integrate hierarchical
guidance into the prompt tuning.

However, existing methods still have two limita-
tions. 1) Though they exploit static dependencies
among labels (global hierarchy), hierarchical mod-
eling is independent of the verbalizer, resulting in a
failure to effectively utilize the output probability dis-
tribution information of verbalizer. 2) Dynamic label
structure information (local hierarchy) correspond-
ing to each sample has shown its importance in text
classification under the pre-training and fine-tuning
paradigm (Jiang et al., 2022). Hierarchy-aware
prompt tuning (Wang et al., 2022b; Chan et al.,
2023; Zhao et al., 2023) only consider the graph
of the entire static label hierarchy and ignore the
dynamic label.

Based on the above observations, we propose a
novel Global and Local Hierarchical Prompt Tuning
(GLHPT) framework, to fully exploit the hierarchical
knowledge of labels and adapt prior knowledge in
PLMs to downstream MIDRR tasks. Specifically,
following previous definition(Jiang et al., 2022),
we define global hierarchy as the whole hierar-
chical structure containing all senses, which is
static and irrelevant to each instance. While lo-
cal hierarchy is defined as a dynamic hierarchi-
cal sense label sequence corresponding to each
input instance. 1) For the aforementioned limita-
tion 1, we design a Global Hierarchical Bottom-
Up Propagated Probability(GHBUPP) method uti-
lizes the output probability distribution information
of multi-level verbalizer for hierarchical modeling,
which injects global hierarchical constraints into
verbalizer and adapt prior knowledge in PLMs to
downstream MIDRR task. 2) For the aforemen-
tioned limitation 2, we design a Local Hierarchy-
driven Contrastive Learning (LHCL) to learn the
hierarchy-aware matching relationship to guide the
distance between <MASK> token representations,
which can further utilize the local labels structure
information to improve the probability distribution of
multi-level verbalizer. Finally, our multi-task frame-
work carries out joint learning at all levels.

Our contributions are summarized as follows:

• Our work attempts to simultaneously incorpo-
rate global and local hierarchical information
into prompt tuning to comprehensively explore
hierarchical knowledge.

• We propose a global and local hierarchical
prompt tuning framework for MIDRR. It utilizes
the output of multi-level verbalizer for hierarchi-
cal modeling, to inject hierarchical constraints
and adapt prior knowledge in PLMs to down-
stream MIDRR task.

• Experimental results demonstrate that our
model achieves the competitive results at mul-
tiple levels on two popular datasets, and ex-
cels handling label imbalance and few-shot
discourse relation.

2. Method

2.1. Overview
Given a pair of arguments instance x = (xarg1 ,xarg2 )
and the set of total labelsL = (L1,..,Ld,..,LD), where
Ld is the level-d label set. The target label se-
quence is y =(y1,..,yd,..,yD), where yd ∈ Ld is the
prediction of level d. Figure 2 shows the overall
architecture of our model.

2.2. Multi-Level Verbalizer
Prompt tuning is a universal approach to stimulate
the potential of PLMs for most downstream tasks,
it is important to find the appropriate template that
matches the target task. For a pair of arguments
x = (xarg1 ,xarg2), we transfer them to xprompt with
the template:

xprompt = T (xarg1, xarg2), (1)

where T represents template function. We dis-
cuss our method of constructing templates with a
simple hard template "<s> xarg1 <mask> xarg2

</s>". An argument pair x is reformulated into a
prompt template T by concatenating two arguments
and inserting some PLM-specific tokens such as
<mask>, <s> and </s>, as the input of a PLM. The
<MASK> token is added for multi-level label predic-
tions, while the <s> and </s> tokens are used to
indicate the beginning and end of an input word
sequence, respectively. Note that some PLMs use
other tokens like [MASK], [CLS], [SEP], but they
have the same meaning as described above.

Then we feed xprompt to the RoBERTa (Liu
et al., 2019) model to obtain the hidden states h1:n:

h1:n = RoBERTa(xprompt), (2)

where h1:n ∈ Rn×r and n is the length of xprompt

and r is the hidden state dimension of RoBERTa.
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Figure 2: The overall architecture of our framework, which mainly consists of Multi-Level Verbalizer (MLV),
Global Hierarchical Bottom-Up Propagated Probability (GHBUPP), and Local Hierarchy-driven Contrastive
Learning (LHCL).

Then we pick out the vectors corresponding to the
<mask> tokens hm and construct hierarchies multi-
level verbalizer framework.

Instead of picking up verbalizer through hand-
craft or rules, we create each verbalizer as a vir-
tual vector Wd ∈ Rr×|Ld| and initialize it by corre-
sponding label embeddings, where r is the hidden
state dimension of RoBERTa and |Ld| is the num-
ber of labels of d-th level. We can get a verbalizers
V = {V1, ..Vd, ..VD}. The <mask> token represen-
tations hm is connected to all vebalizers and the
d-th verbalizer predict the d-th level label. The prob-
abilistic predictions of the d-th level is:

ŷd = {ŷdi }
|Ld|
i=1 = softmax(hmWd + bd), (3)

there are different operations for each PLM.
We train this model through cross entropy loss

to approximate the real distribution of d-th level as
follows:

Ld = −
|Ld|∑
i=1

ydi log(ŷ
d
i ), (4)

where yd = {ydi }
|Ld|
i=1 is the one-hot representation

of ground-truth relation. Finally, for each input in-
stance, we can calculate the loss of the multi-level

verbalizer framework as:

LMLV =

D∑
d=1

Ld = −
D∑

d=1

|Ld|∑
i=1

ydi log(ŷ
d
i ). (5)

2.3. Global Hierarchical Bottom-Up
Propagated Probability

Although single-level IDRR has achieved success,
there is still a lack of guidance from hierarchical
labels between verbalizers. In order to further ex-
ploit the global hierarchy information and narrow
the gap between the prompt tuning and hierarchical
objectives on IDRR task. Inspired by (Chan et al.,
2023; Ji et al., 2023; Zhao et al., 2023), we propose
a Global Hierarchical Bottom-Up Propagated Prob-
ability (GHBUPP) method utilizes the output proba-
bility distribution information of multi-level verbalizer
(MLV) for hierarchical modeling, which can inject
global hierarchical constraints into MLV and adapt
prior knowledge in PLMs to downstream MIDRR
task.

Specifically, due to the arguments are annotated
by different semantic granularity in the process of
labeling for MIDRR, all the labels can form a graph
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G with D levels. According to the global label de-
pendency graph G, for a particular label i of d-th
level ydi , its relevant child-labels in level d+1 can be
denoted as:

Y d+1
i = {yd+1|Parent(yd+1

j ) = ydi }, (6)

where Parent(·) means the parent node of it.
In addition, the weight of influence of each child

node on the parent node depends on numerous
factors, e.g., the label distribution of datasets, the
semantic importance of the parent label, polysemy
and so on. Hence we apply several learnable
weight units in the process of GHBUPP to balance
the influence of multiple factors, which is equal to
adding weights to the edges in G. All the weights
are acquired through the iteration of prompt tun-
ing. For a particular label ydi , its relevant child
labels normalized weight list can be denoted as
wd

i = [wd
i1, w

d
i2, .., w

d
in], where n is the number of

set Y d+1
i , which is the number of child labels of ydi .

For argument pair x, the bottom-up propagated
probability on label ydi can be calculated through:

pdi = P (ydi |x) =
n∑

j=1

wd
ijP (yd+1|x)yd+1 ∈ Y d+1

i .

(7)
Thus, the loss of propagation probability of the d-th
level is:

Ld
P = −

|Ld|∑
i=1

ydi log(p̂
d
i ), (8)

where p̂di is the normalized result of pdi . The propa-
gation probability is bottom up in our method, the
loss of the GHBUPP can be obtained as follows:

LGHBUPP =

D−1∑
d=1

Ld
P = −

D−1∑
d=1

|Ld|∑
i=1

ydi log(p̂
d
i ). (9)

2.4. Local Hierarchy-driven Contrastive
Learning

Despite global hierarchies have been effectively uti-
lized, MLV suffers from the absence of local hierar-
chical label guidance. Besides, existed hierarchical
infusion methods (Chen et al., 2021; Wang et al.,
2022b; Chan et al., 2023; Zhao et al., 2023) over-
look the use of local hierarchies in prompt tuning.

Therefore, we design a Local Hierarchy-driven
Contrastive Learning(LHCL) to learn the hierarchy-
aware matching relationship to guide the distance
between <MASK> token representations, which
can further improve the hierarchical recognition of
multi-level verbalizer. As shown in the lower right
part of figure 2, label sequences of different in-
stances share different numbers of label nodes,
label1 and label2 share two labels in the hierarchy,
while label1 and label3 only share one. Naturally,

the distance between label1 and label2 should be
closer than that between label1 and label3.

Following SimCSE(Gao et al., 2021b; Wang et al.,
2022a), denote B = {(Xn, Yn)} as one batch
where Yn = {y1, .., yd, ..yD}n, n ∈ N , where N
denotes the batch size and D denotes the depth of
the label hierarchy. we duplicate a batch of train-
ing instances B as B+ and feed B as well as B+
through Encoder E with diverse dropout augmenta-
tions to obtain 2N sets of hidden vectors for all cor-
responding [MASK] tokens Z = {z ∈ {hd}∪{hd

+}}.
In addition, labels at different levels have different
levels of importance, so we add a coefficient λd

for each layer to control the degree of labels impor-
tance.Thus we calculate the score of shared local
labels between instance i and j:

lij =

D∑
d=1

λdIyd
i ,y

d
j
, (10)

where Iyd
i ,y

d
j

equals 1 when ydi and ydj are equal,
and 0 otherwise. In fact, when the weight coeffi-
cients λ for different layers are equal to 1, lij repre-
sents the number of shared nodes.

Then the local hierarchical contrastive loss for
each instance pair (i, j) can be calculated as:

Lij
l = −αij log

exp(sim(hi, hj)/τ)∑
j∈B+

exp(sim(hi, hj)/τ)
, (11)

αij =
lij∑

k∈B+
lik

, (12)

where αij is the normalization of lij , τ is the tem-
perature of contrastive learning, hi is the hidden
states of <MASK> for instance i. Thus, the local
hierarchy-driven contrastive loss is:

LLHCL = − 1

N

∑
i∈B

∑
j∈B+

Lij
l . (13)

With this contrastive loss, for an instance pair (i,
j), the more sub labels they share, the larger the
weight αij will become, thus increasing the value
of their loss term Lij

l . In consequence, the dis-
tance between hi and hj will become closer. On
the contrary, if they share fewer sub labels in the
label sequence, their distance between hi and hj

will be optimized relatively farther. Thus, the lo-
cal hierarchy contrastive loss utilizes the similarity
scores αij to guide the distance between between
<MASK> representations of different instances.

The overall training objective is the combination
of hierarchies multi-level verbalizer loss, bottom-up
propagated probability loss, and local hierarchical
contrastive loss:

L = LMLV + λ1LGHBUPP + λ2LLHCL, (14)

where λ1 and λ2 are the hyperparameters control-
ling the weights of corresponding loss.
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3. Experiment Settings

3.1. Dataset
The experiments are conducted on two datasets,
the PDTB 2.0 (Prasad et al., 2008) and the PDTB
3.0 (Webber et al., 2019), to validate the perfor-
mance of our method. PDTB corpora are annotated
with information related to discourse semantic re-
lation. Following previous work (Wu et al., 2020,
2022; Zhao et al., 2023), we regard the connectives
as the third level for MIDRR. The PDTB 2.0 contains
4 (Top Level), 11 (Second Level) and 102 (Connec-
tives) categories for each level. The PDTB 3.0
contains 4 (Top Level), 14 (Second Level) and 186
(Connectives) categories for each level. For data
partitioning, We follow (Ji and Eisenstein, 2015)
to take the sections 2-20 as the training set, 0-1
as the development set, and 21-22 as the testing
set.More details of the PDTB-Ji splitting are shown
in Appendix A.

3.2. Implementation Details
Our work uses Pytorch and Huggingface libraries
for development, and also verifies the effective-
ness of our model on MindSpore library. For better
comparison with recent models, We use the pre-
trained RoBERTa-base (Liu et al., 2019) as our
Transformer encoder. We adopt AdamW optimizer
with a learning rate of 1e-6 and a batch size of 8 to
update the model parameters for 10 epochs. The
evaluation step is set to 400 and chooses models
based on the best result on the development set.
All experiments are conducted with a single RTX
3090 GPU and one training process takes about
80 minutes. Finally, We choose the macro-F1 and
accuracy as our validation metrics and report the
mean performance over 5 random seeds.

3.3. Baselines
In this section, we select some baselines for PDTB
2.0 and 3.0 separately and introduce them briefly.
Baselines for PDTB 2.0:

1) RoBERTa-FT: (Liu et al., 2019) improves the
BERT by removing the NSP task. We conduct
experiments for each level separately.

2) HierMTN-CRF (He et al., 2020): a model that
firstly deals with multi-level IDRR simultaneously
and chooses the label sequence based on a CRF
layer.

3) BMGF (Liu et al., 2020): a model that pro-
poses a bilateral multi-perspective matching en-
coder to enhance the arguments interaction on both
text span and sentence level.

4) LGSGM (Wu et al., 2022): a label sequence
generation model that leverages the label depen-
dencies between discourse relations through GCN.

5) PCP (Zhou et al., 2022): a model that firstly
constructs manual template to mine the strong cor-
relation between connectives and discourse rela-
tion.

6) ChatGPT (Chan et al., 2023): a ChatGPT
based method equipped with an in-context learning
prompt template.

7) GOLF (Jiang et al., 2023): a global and local
hierarchy-aware contrastive framework, to model
and capture the information from these two kinds
of hierarchies with the aid of contrastive learning.

8) DiscoPrompt (Chan et al., 2023): a prompt-
based path prediction model to utilize the interactive
information and intrinsic senses among the hierar-
chy in IDRR.

9) PEMI (Zhao et al., 2023): a model that lever-
ages parameter efficient prompt tuning to drive the
arguments to match the pre-trained space and re-
alize the approximation with few parameters .

Baselines for PDTB 3.0:
1) RoBERTa-FT: (Liu et al., 2019) We conduct

experiments for each level separately on PDTB3.0.
2) MANF (Xiang et al., 2022b): a dual attention

model to encodes word-pairs offsets to enhance
semantic interaction.

3) ConnPrompt (Xiang et al., 2022c): a model
that transforms the relation prediction task as a
connective-cloze prediction task.

4) TEprompt (Xiang et al., 2023): a dual atten-
tion model to encodes word-pairs offsets to en-
hance semantic interaction.

5) GOLF (Jiang et al., 2023): a global and local
hierarchy-aware contrastive framework.

6) PEMI (Zhao et al., 2023): a parameter efficient
prompt tuning framework.

3.4. Results and Analysis
In this section, we display the main results of three
levels on PDTB 2.0 and PDTB 3.0 (Table 1) and the
label-wise F1 of level 2 (Table 2). We can obtain
the following observations from these results:

• In table1, our model achieves comparable per-
formance with strong baselines and achieves
state-of-the-art performance at both top and
second-level classes in PDTB 2.0. It demon-
strates that our model can more accurately
identify discourse relations at different lev-
els, demonstrating improved classification and
generalization capabilities, and effectively han-
dling complex hierarchical relationships. This
further validates the model’s capabilities and
effectiveness. Specifically, our method gains a
considerable improvement of 2.07% top-level
F1 score, 1.37% top-level accuracy, 1 .99%
second-level F1 score, 0.17% second-level ac-
curacy and 0.97% connectives F1 score over
the existing state-of-the-art model on PDTB
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Model Embedding Top Level Second Level Connectives
F1 ACC F1 ACC F1 ACC

PDTB2.0
HierMTN-CRF (Wu et al., 2020) BERT 55.72 65.26 33.91 53.34 10.37 30.00

BMGF (Liu et al., 2020) RoBERTa-base 63.39 69.06 - 58.13 - -
RoBERTa-FT(Fine-tuning) RoBERTa-base 64.18 70.34 43.24 59.63 10.03 30.35
LDSGM (Wu et al., 2022) RoBERTa-base 63.73 71.18 40.49 60.33 10.68 32.20
PCP (Zhou et al., 2022) RoBERTa-base 64.95 70.84 41.55 60.54 - -

ChatGPT (Chan et al., 2023) - 44.09 50.24 19.88 31.95 - -
GOLF (Jiang et al., 2023) RoBERTa-base 65.76 72.52 41.74 61.16 11.79 32.85

DiscoPrompt (Chan et al., 2023) T5-base 60.66 70.63 45.99 60.84 - -
PEMI (Zhao et al., 2023) RoBERTa-base 64.05 71.13 41.31 60.66 10.87 35.32

Ours RoBERTa-base 67.83 73.89 46.14 61.33 12.76 33.22
PDTB3.0

RoBERTa-FT(Fine-tuning) RoBERTa-base 68.45 72.31 52.04 61.73 13.32 39.56
MANF(Xiang et al., 2022b) BERT 56.63 64.04 - - - -

ConnPrompt (Xiang et al., 2022c) RoBERTa-base 69.51 73.84 - - - -
TEprompt (Xiang et al., 2023) RoBERTa-base 72.26 75.51 - - - -

GOLF (Jiang et al., 2023) RoBERTa-base 70.88 75.03 55.30 63.57
PEMI (Zhao et al., 2023) RoBERTa-base 69.06 73.27 52.73 63.09 10.52 39.92

Ours RoBERTa-base 71.59 75.53 56.50 64.87 16.64 42.10

Table 1: We report the mean Macro-F1 score (%), Accuracy (%) over 5 random seeds on PDTB 2.0 and
PDTB3.0. Bold: best results. Underlined: second highest.

Second-level Label-wise F1(%)
PEMI GOLF Ours

Comp.Concession (2%) 8.11 0 7.90
Comp.Contrast (12%) 60.20 61.95 62.74
Cont.Cause (26%) 61.82 65.35 66.35
Cont.Pragmatic cause (1%) 0 0 0
Expa.Alternative (1%) 60.54 63.49 51.63
Expa.Conjunction (19%) 50.71 60.28 49.39
Expa.Instantiation (12%) 73.81 75.36 75.81
Expa.List (1%) 30.55 27.78 33.87
Expa.Restatement (20%) 55.60 59.84 60.19
Temp.Asynchronous (5%) 53.04 63.82 57.17
Temp.Synchrony (1%) 0 0 36.62

Table 2: The second-level label-wise F1 scores(%)
on PDTB 2.0. The proportion of each sense is listed
behind its name.

2.0. Moreover, in the case of PDTB 3.0, our
model also also achieved the best results on
multiple metrics. Note that, the number of con-
nectives in PDTB3 is 150 types after deduplica-
tion, GOLF(Jiang et al., 2023) did not remove
duplicate categories, so we did not compare it
with it in the Connectives layer.

• Table 2 showcases the label-wise F1 compari-
son for the second-level senses, results show
that our framework enhances the F1 perfor-
mance of most second-level senses, with a
notable increase in Temp.Synchrony(1%) from
0% to 36.62%, Expa.List(1%) also has a sig-
nificant increase. Our model breaks the bottle-
neck of previous work in two few-shot second-

Model Macro-F1
Top Sec Conn

Ours 67.83 46.14 12.76
w.o. GHBUPP 66.62 45.52 11.74
w.o. LHCL 67.37 45.31 12.21
w.o. GHBUPP+LHCL 65.71 45.07 12.02
w.o. MLV+GHBUPP+LHCL 64.18 43.24 10.03

Table 3: Ablation study on PDTB 2.0. "w/o" stands
for “without”; GHBUPP means Global Hierarchical
Bottom-Up Propagated Probability; LHCL mean
Local Hierarchy-driven Contrastive Learning and
MLV mean Multi-Level Verbalizer.

level senses.

• Despite large language models (LLMs) such
as ChatGPT (OpenAI, 2022) achieving good
performance on various few-shot and and zero-
shot tasks for various understanding and rea-
soning tasks (Bang et al., 2023), they are far
behind us in all metrics in PDTB 2.0 as shown
in table 1, which indicates that chatGPT may
struggle to comprehend the abstract sense of
discourse relation. Therefore, IDRR remains a
challenging and crucial task for the NLP com-
munity, requiring further exploration.

3.5. Ablation Study and Analysis
We conduct the ablation study on PDTB 2.0 to
deeply analyze the impact of individual modules
in our framework. The main parts of our work are
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Figure 3: An Instance for GHBUPP analysis.

the multi-level verbalizer (MLV), global hierarchical
bottom-up propagated probability (GHBUPP) and
local hierarchical contrastive learning (LHCL), we
test our model by gradually removing each compo-
nent of our model. For fairness, when we remove
MLV, we choose fine-tuned RoBERTa MLM with a
learnable verbalizer for testing. It treats IDRR of
different levels as an individual classification but
shares the parameters of the encoder.

From Table 3, we can observe that: 1) Elimi-
nating any modules would hurt the performance
across all three levels, MLV contributes mostly,
which demonstrate the effectiveness of each mod-
ule. 2) Simultaneously removing both GHBUPP
and LHCL has a worse performance compared to
removing either one alone. This suggest that GH-
BUPP and LHCL have a mutually reinforcing effect,
LHCL can optimize the representation of <MASK>
by introducing local hierarchy to enhance the recog-
nition of discourse relationships. 3) While removing
MLV, GHBUPP and LHCL together results in the
worst F1 score. This suggests that MLV is more
beneficial for MIDRR compared to individual veber-
lizer, GLBUPP and LHCL successfully integrated
global and local hierarchical information to improve
MLV recognition performance.

3.6. GHBUPP Method Analysis

As shown in Figure 3, we use an instance to ex-
plain the impact of our GHBUPP method. Figure
3a shows the predicted probability distribution of
level1 soft verbalizer of MLV, Figure 3b shows the
predicted probability distribution of GHBUPP on

(a) [MASK] representation of MLV

(b) [MASK] representation of MLV+LHCL

Figure 4: Visualization of LHCL method

level1, which is obtained by multiplying the prob-
ability distribution of level2 soft verbalizer by the
weight. We can clearly observe a high degree of
similarity in their probability distributions, which in-
dicates that the upper layer’s verbalizer prediction
can be obtained by the lower layer verbalizer based
on the global hierarchical structure. There is global
hierarchical information in MLV. Futhermore, the
probability predictions of Figure 3c exhibit higher
discriminative power, indicating that GHBUPP has
a strengthening effect on MLV.

3.7. LHCL Visualization Analysis

As shown in Figure 4, we select some local label
sequences for visual analysis of LHCL, and we
visualize the <MASK> representations of different
instances using t-SNE. label0 and label1 share two
node labels, label0 and label2 share one node la-
bel, and label0 and label3 do not share a node
label. Comparing Figure 4a and Figure 4b, we can
observe that label0 is closest to label1 and farthest
from label3. Thus, LHCL learns the local hierarchy-
aware matching relationship to guide the distance
between <MASK> token representations between
input instances. Meanwhile, from the ablation study
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in Table 3, we demonstrate that LHCL has an en-
hancing effect on the recognition performance of
MLV.

4. Related Work

4.1. Implicit Discourse Relation
Recognition

We introduce deep learning methods for the IDRR
(Pitler et al., 2009) through two routes.

One route is pre-train and fine-tuning
paradigm. Conventional pre-train and fine-tuning
paradigm usually approaches the IDRR task as
a classification problem, the early work (Zhang
et al., 2015; Qin et al., 2016; Rutherford et al.,
2017; Bai and Zhao, 2018) tends to design a
sophisticated downstream neural network for
argument representation learning. Besides, other
methods (Liu and Li, 2016; Lan et al., 2017;
Guo et al., 2018; Ruan et al., 2020) attempt to
capture interactions between argments for argu-
ment representation learning. Moreover, several
methods (Dai and Huang, 2018; Kishimoto et al.,
2018; Guo et al., 2020; Kishimoto et al., 2020)
achieve more robust representations through data
augmentation or knowledge projection. However,
these methods overlook the exploration of relation
patterns. Along with the booming development of
deep learning, some work simultaneously focuses
on exploring the representation of argument
pairs and discourse relations. For instance,
TransS (He et al., 2020) utilizes a triplet loss to
establish spatial relationships between arguments
and relation representation. (Liu et al., 2021b)
proposed combining the context representation
module and bilateral multi-perspective matching
module to understand different relational semantics
deeply. LDSGM (Wu et al., 2022) utilizes the
graph convolutional networks to incorporate
label dependencies into text representations.
While some studies (Long and Webber, 2022;
Jiang et al., 2023) leverages the sense hierarchy
to obtain contrastive learning representation.
Despite the success of the fine-tuning paradigm,
these methods may suffer from distinct training
strategies in the pretraining and fine-tuning stages,
which restrains the finetuned models to take full
advantage of knowledge in PLMs.

Another route is prompt tuning paradigm. Re-
cently, inspired by (Schick and Schütze, 2021b),
several studies (Zhou et al., 2022; Xiang et al.,
2022c, 2023) reformulate an single-level IDDR task
as cloze questions to bridge the gap between the
masked language model (MLM) and downstream
NLP tasks. However, the inherent global discourse
label hierarchy is ignored, therefor PEMI (Zhao
et al., 2023) propose a hierarchical label refining

method to deeply integrate global hierarchical guid-
ance into the prompt tuning. Meanwhile, Disco-
Prompt (Chan et al., 2023) transform the hierarchy
as the path prompt and add it as the prefix of ar-
guments to be classified. Different from previous
works, our work introduce both global and local
hierarchical information into prompt tuning to fully
explore discourse label hierarchy information.

4.2. Prompt Tuning
With some large-scale PLMs have been proposed,
such as the BERT (Dai and Huang, 2018) and GPT
(Brown et al., 2020), the prompt learning has be-
come a new paradigm for many NLP tasks, which
has achieved promising results (Seoh et al., 2021;
Liu et al., 2022). The prompt tuning methods can
be broadly divided into hard prompt (Gao et al.,
2021a; Wang et al., 2021; Schick and Schütze,
2021b) and soft prompt (Hambardzumyan et al.,
2021; Qin and Eisner, 2021). The hard prompt
methods select template and label words from the
vocabulary of PLMs, which require carefully manual
designing. Soft prompt methods learn some contin-
uous vectors directly in the feature space of PLMs,
which eliminate the need for manually-designed
prompts. The design of verbalizers (Schick and
Schütze, 2021a; Gao et al., 2021a; Cui et al., 2022)
is also an important step in prompt tuning, which
aims to reduce the gap between model outputs and
label words.

At the same time, there are some efforts to lever-
age prompts with structural inputs for knowledge
customization (Zhong et al., 2022). Injecting hier-
archy information into prompts is also promising
(Wang et al., 2022b; Ji et al., 2023; Chan et al.,
2023; Zhao et al., 2023). For example, using top-
level predictions to refine prompts of bottom levels
can surpass soft prompts and hard prompts (Wang
et al., 2022b). How to employ PLMs to better in-
volve hierarchy knowledge is still worth exploring.

5. Conclusion

In this paper, we propose a Global and Local Hier-
archy Prompt Tuning Framework (GLHPT) to utilize
the output of multi-level verbalizer for hierarchical
modeling, which simultaneously incorporate global
and local hierarchical knowledge into prompt tun-
ing. It narrows the gap between hierarchy objective
and PLMs, and effectively adapts prior knowledge
in PLMs to downstream MIDRR task. Experiment
results show that our model achieves highest at
multiple levels on PDTB datasets, and can handle
the imbalance and low resource situations. In the
future, we will further explore the utilization of hier-
archical knowledge and the applicability of GLHPT
in other NLP tasks.
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6. Limitations

Although our model obtains satisfying results, it
also exposes some limitations. First, since the dif-
ficulty of data annotation has leads to few publicly
available datasets of IDRR tasks, for a fair compar-
ison to other models, we mainly carry out relevant
experiments and analysis on PDTB 2.0. In the
future, We plan to comprehensively evaluate our
model on more datasets, including datasets from
other languages. Second, Since the appearance of
large pre-trained models such as chatGPT(OpenAI,
2022), many NLP tasks are being accomplished by
directly employing large-scale models for in-context
learning without fine-tuning. Our method is suitable
for situations with insufficient labeled data, but it
is difficult to directly extend to a large-scale lan-
guage model because large language models are
hard to fine-tune in many situations. In future work,
we plan to enhance the model’s capability on this
task by leveraging knowledge distillation from large
language models.
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10. Appendices

A. Details of PDTB-Ji Splitting

In this section, we provide data statistics for PDTB
2.0 and PDTB 3.0.

Second-level Sample Size
Train Dev Test

Comp.Concession 183 15 17
Comp.Contrast 1607 166 128
Cont.Cause 3270 281 269
Cont.Pragmatic cause 64 6 7
Expa.Alternative 147 10 9
Expa.Conjunction 2872 258 200
Expa.Instantiation 1063 106 118
Expa.List 338 9 12
Expa.Restatement 2404 260 211
Temp.Asynchronous 532 46 54
Temp.Synchrony 203 8 14
Total 12683 1165 1039

Table 4: Statistics for relation senses of Level 2 in
PDTB 2.0 by PDTB-Ji splitting. Comp, Cont, Exp
and Temp represents Comparison, Contingency,
Expansion and Temporal separately.

Second-level Sample Size
Train Dev Test

Comp.Concession 1164 103 97
Comp.Contrast 741 82 54
Cont.Cause 4475 448 404
Cont.Cause+Belief 159 13 15
Cont.Condition 159 13 15
Cont.Purpose 1092 96 89
Expa.Conjunction 3586 298 236
Expa.Equivalence 254 25 30
Expa.Instantiation 1063 106 118
Expa.Level-of-detail 2601 261 208
Expa.Manner 615 14 17
Expa.Substitution 343 27 26
Temp.Asynchronous 1007 101 105
Temp.Synchrony 435 33 43
Total 17788 1635 1463

Table 5: Statistics for relation senses of Level 2 in
PDTB 3.0 by PDTB-Ji splitting.

B. Experimental Results for level-2
senses on PDTB 3.0

Due to the limitation of pages, we provide results
of PDTB 3.0 in this section. Table 7 displays the
labelwise F1 for level-2 senses on PDTB 3.0

Level PDTB2.0 PDTB3.0
Number of categories

Top Level 4 4
Second Level 11 14
Connectives 102 150

Table 6: The number of categories at different
levels in PDTB2.0 and PDTB3.0. Note that the
number of connectives in PDTB3 is 150 categories
after deduplication.

Second-level Label-wise F1(%)
GOLF PEMI Ours

Comp.Concession (7%) 59.09 64.68 64.25
Comp.Contrast ((4%)) 43.33 52.94 48.70
Cont.Cause (26%) 69.47 69.04 71.33
Cont.Cause+Belief(1%) 0 0 0
Cont.Condition(1%) 66.67 68.97 92.31
Cont.Purpose (4%) 71.60 91.49 93.57
Expa.Conjunction (16%) 64.09 58.82 58.32
Expa.Equivalence 25.39 0 17.14
Expa.Instantiation (9%) 75.53 70.42 68.78
Expa.Level-of-detail(15%) 52.60 54.25 59.59
Expa.Manner (4%) 63.53 59.26 73.91
Expa.Substitution (2%) 66.67 48.98 56.25
Temp.Asynchronous (7%) 68.79 66.67 68.22
Temp.Synchrony (2%) 41.00 32.73 36.92

Table 7: The second-level label-wise F1 on PDTB
3.0.

C. Template Selection

In the prompt paradigm, using different templates
may impact on the task performance. We have
designed some different prompt templates in Table
8. Table 9 compares the results of prompt tem-
plates. If we choose Prompt4 in Table 8, we in-
put the <mask> representation of each level into
the corresponding level’s Verbalizer for prediction.
From Table 8, it can be seen that the performance
of Prompt 1 and Prompt 4 is similar. Therefore,
for simplicity, we chose Prompt 1 as our final input
template.
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Prompt Template Template Form
Prompt 1 Arg1,<MASK>,Arg2.
Prompt 2 Arg1:Arg1,Arg2:Arg2. </s></s>The conjunction between Arg1 and Arg2 is <mask>.
Prompt 3 Arg1:Arg1, Arg2:Arg2. {"soft":"The connective word between"} Arg1 {"soft":"and"} Arg2 {"soft":"is"} <mask>.
Prompt 4 Arg1, Arg2. The top level is <mask>; The second level is <mask>;The third conjunction is <mask>.

Table 8: Different prompt template form, {"soft":...} represents the initialized soft prompt template

Prompt Template Top Level Second Level Connectives
F1 ACC F1 ACC F1 ACC

Prompt 1 67.83 73.89 46.14 61.14 12.76 33.22
Prompt 2 65.96 72.37 44.76 60.11 12.02 33.35
Prompt 3 65.75 72.51 44.37 60.46 13.03 33.11
Prompt 4 66.15 73.24 46.00 60.69 13.27 34.09

Table 9: Different prompt template results.
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