@inproceedings{debess-etal-2024-good,
title = "Good or Bad News? Exploring {GPT}-4 for Sentiment Analysis for {F}aroese on a Public News Corpora",
author = "Debess, Iben Nyholm and
Simonsen, Annika and
Einarsson, Hafsteinn",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.690",
pages = "7814--7824",
abstract = "Sentiment analysis in low-resource languages presents unique challenges that Large Language Models may help address. This study explores the efficacy of GPT-4 for sentiment analysis on Faroese news texts, an uncharted task for this language. On the basis of guidelines presented, the sentiment analysis was performed with a multi-class approach at the sentence and document level with 225 sentences analysed in 170 articles. When comparing GPT-4 to human annotators, we observe that GPT-4 performs remarkably well. We explored two prompt configurations and observed a benefit from having clear instructions for the sentiment analysis task, but no benefit from translating the articles to English before the sentiment analysis task. Our results indicate that GPT-4 can be considered as a valuable tool for generating Faroese test data. Furthermore, our investigation reveals the intricacy of news sentiment. This motivates a more nuanced approach going forward, and we suggest a multi-label approach for future research in this domain. We further explored the efficacy of GPT-4 in topic classification on news texts and observed more negative sentiments expressed in international than national news. Overall, this work demonstrates GPT-4{'}s proficiency on a novel task and its utility for augmenting resources in low-data languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="debess-etal-2024-good">
<titleInfo>
<title>Good or Bad News? Exploring GPT-4 for Sentiment Analysis for Faroese on a Public News Corpora</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iben</namePart>
<namePart type="given">Nyholm</namePart>
<namePart type="family">Debess</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annika</namePart>
<namePart type="family">Simonsen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hafsteinn</namePart>
<namePart type="family">Einarsson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentiment analysis in low-resource languages presents unique challenges that Large Language Models may help address. This study explores the efficacy of GPT-4 for sentiment analysis on Faroese news texts, an uncharted task for this language. On the basis of guidelines presented, the sentiment analysis was performed with a multi-class approach at the sentence and document level with 225 sentences analysed in 170 articles. When comparing GPT-4 to human annotators, we observe that GPT-4 performs remarkably well. We explored two prompt configurations and observed a benefit from having clear instructions for the sentiment analysis task, but no benefit from translating the articles to English before the sentiment analysis task. Our results indicate that GPT-4 can be considered as a valuable tool for generating Faroese test data. Furthermore, our investigation reveals the intricacy of news sentiment. This motivates a more nuanced approach going forward, and we suggest a multi-label approach for future research in this domain. We further explored the efficacy of GPT-4 in topic classification on news texts and observed more negative sentiments expressed in international than national news. Overall, this work demonstrates GPT-4’s proficiency on a novel task and its utility for augmenting resources in low-data languages.</abstract>
<identifier type="citekey">debess-etal-2024-good</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.690</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>7814</start>
<end>7824</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Good or Bad News? Exploring GPT-4 for Sentiment Analysis for Faroese on a Public News Corpora
%A Debess, Iben Nyholm
%A Simonsen, Annika
%A Einarsson, Hafsteinn
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F debess-etal-2024-good
%X Sentiment analysis in low-resource languages presents unique challenges that Large Language Models may help address. This study explores the efficacy of GPT-4 for sentiment analysis on Faroese news texts, an uncharted task for this language. On the basis of guidelines presented, the sentiment analysis was performed with a multi-class approach at the sentence and document level with 225 sentences analysed in 170 articles. When comparing GPT-4 to human annotators, we observe that GPT-4 performs remarkably well. We explored two prompt configurations and observed a benefit from having clear instructions for the sentiment analysis task, but no benefit from translating the articles to English before the sentiment analysis task. Our results indicate that GPT-4 can be considered as a valuable tool for generating Faroese test data. Furthermore, our investigation reveals the intricacy of news sentiment. This motivates a more nuanced approach going forward, and we suggest a multi-label approach for future research in this domain. We further explored the efficacy of GPT-4 in topic classification on news texts and observed more negative sentiments expressed in international than national news. Overall, this work demonstrates GPT-4’s proficiency on a novel task and its utility for augmenting resources in low-data languages.
%U https://aclanthology.org/2024.lrec-main.690
%P 7814-7824
Markdown (Informal)
[Good or Bad News? Exploring GPT-4 for Sentiment Analysis for Faroese on a Public News Corpora](https://aclanthology.org/2024.lrec-main.690) (Debess et al., LREC-COLING 2024)
ACL