
LREC-COLING 2024, pages 7867–7885
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

7867

GPT-HateCheck: Can LLMs Write Better Functional
Tests for Hate Speech Detection?

Yiping Jin1, Leo Wanner2,1, Alexander Shvets1

1NLP Group, Pompeu Fabra University, Barcelona, Spain
2Catalan Institute for Research and Advanced Studies

{yiping.jin, leo.wanner, alexander.shvets}@upf.edu

Abstract
Online hate detection suffers from biases incurred in data sampling, annotation, and model pre-training. Therefore,
measuring the averaged performance over all examples in held-out test data is inadequate. Instead, we must identify
specific model weaknesses and be informed when it is more likely to fail. A recent proposal in this direction is
HateCheck, a suite for testing fine-grained model functionalities on synthesized data generated using templates of
the kind “You are just a [slur] to me.” However, despite enabling more detailed diagnostic insights, the HateCheck
test cases are often generic and have simplistic sentence structures that do not match the real-world data. To
address this limitation, we propose GPT-HateCheck, a framework to generate more diverse and realistic functional
tests from scratch by instructing large language models (LLMs). We employ an additional natural language inference
(NLI) model to verify the generations. Crowd-sourced annotation demonstrates that the generated test cases are of
high quality. Using the new functional tests, we can uncover model weaknesses that would be overlooked using the
original HateCheck dataset.
Content Warning: This paper contains model outputs which are offensive in nature.

Keywords: Hate Speech Detection, Data Synthesization, Large Language Models

1. Introduction

The NLP research community makes a relentless
effort to detect hate speech (HS) due to its detri-
mental impact on society and fundamental human
rights (Kiritchenko et al., 2021). Recent efforts
to create benchmark datasets and shared tasks
enabled rapid development of HS detection mod-
els (Caselli et al., 2020; Poletto et al., 2021; Vu et al.,
2023). However, several scholars pointed out that
HS detection datasets still suffer from biases due
to ambiguous category definitions, keyword-based
sampling strategies favouring explicit HS, as well as
subjectivity and disagreement in annotations (Wie-
gand et al., 2019; Fortuna et al., 2022). Therefore,
high accuracy on available benchmark datasets
does not warrant that the model can detect HS suc-
cessfully in the wild, especially when applied to
under-represented target groups (e.g., disabled or
transgender people) or challenging functionalities
(e.g., implicit HS and reclaimed slurs).

To address the issue, Röttger et al. (2021) in-
troduced HateCheck, a comprehensive suite of
functional tests that covers 29 model “functionali-
ties” across seven target groups. Each functionality
captures a specific kind of hate speech, e.g., “hate
expressed using slurs.” They handcrafted short
and unambiguous templates (Ribeiro et al., 2020)
for each functionality and replaced tokens for target
group identifiers (e.g., “I hate [identity].”) and slurs
(e.g., “You are just a [slur] to me.”) to generate
test cases at scale.

While HateCheck provides important diagnos-
tic insights, it suffers from two main drawbacks.
Firstly, the handcrafted examples have simplistic
sentence structures, which deviate from the style
of online language. Secondly, the template-based
synthesization such as “All [identity] are stupid”
does not account for distinct HS aspects associ-
ated with different target groups (e.g., sexuality for
transgender people and criminality for immigrants).
Therefore, even if a model obtains high accuracy
for a target group in the HateCheck dataset, it may
still struggle in the real world when encountering
novel aspects not covered in the training data.

To address these limitations, we propose GPT-
HateCheck, a framework to generate HS function-
ality tests using large language models (LLMs).
We handcraft prompts to instruct GPT-3.5 (Ouyang
et al., 2022) to generate test cases correspond-
ing to the functionalities in HateCheck. Further-
more, we employ a natural language inference (NLI)
model (Williams et al., 2018; Yin et al., 2019) to val-
idate that the generated test cases correspond to
the gold-standard labels and the intended function-
alities to be tested. Figure 1 provides an overview
of the proposed framework. We validate the quality
of GPT-HateCheck dataset through various auto-
mated and human evaluations. Our contributions
can be summarized as follows:

• We propose a framework to generate realistic
and diverse functionality tests for HS detection
using LLMs.

• We publish a new evaluation dataset, GPT-

7868

Figure 1: The overview of GPT-HateCheck. We first instantiate the prompt template with the target group
in consideration and instruct GPT to generate candidate test cases. The test cases are then validated by
an entailment model to ensure the generations conform with the functionality. In the example, although
both generated messages are hateful towards the target group, the second one does not contain profanity
and will be discarded.

HateCheck, to enable targeted diagnostic in-
sights into HS detection model functionalities 1.

• We conduct an in-depth analysis of the dataset
and demonstrate its utility by uncovering weak-
nesses of a near state-of-the-art model that
are missed by HateCheck dataset.

2. Related Work

Targeted diagnostic datasets are widely used
across NLP tasks to shed light on model function-
alities (Marvin and Linzen, 2018; Naik et al., 2018;
Isabelle et al., 2017). Ribeiro et al. (2020) intro-
duced CheckList, a task-agnostic methodology
that organizes test cases for NLP models based on
capabilities and test types. To generate test cases
at scale, CheckList utilizes templates and masked
language models to perturb existing datasets.

Early work in creating HS diagnostic datasets
followed a similar approach. Dixon et al. (2018)
synthesized sets of toxic and non-toxic cases using
templates (e.g., “I hate all [identity]”, “I am [iden-
tity]”). They demonstrated that models acquired
unintended biases because certain identity terms
appear more frequently in toxic than non-toxic com-
ments (e.g., “queer”, “homosexual”). Paul Röttger
and others (2021) compiled a comprehensive test
suite comprising 29 functionalities as mentioned in
Section 1. The functionalities were selected based
on a review of previous research and interviews

1The source code and dataset are avail-
able at https://github.com/YipingNUS/
gpt-hate-check.

with NGO workers who monitor and report online
hate speech.

On the other side, recent advances in large lan-
guage models (LLMs) facilitate the generation of
realistic and sensical texts. Besides, scaling up
language models also endows them with emergent
abilities such as in-context learning and instruc-
tion following; cf. (Wei et al., 2022; Zhao et al.,
2023). Hartvigsen et al. (2022) prompted the GPT-
3 model (Brown et al., 2020) with examples to gen-
erate benign and hateful statements targeting 13
minority groups. Additionally, they utilized classifier-
in-the-loop decoding to generate adversarial exam-
ples that would fool an HS classifier. Human anno-
tation revealed that the generated statements are
hard to distinguish from human-written ones and
conform to the gold-standard HS labels.

Ocampo et al. (2023) built upon Hartvigsen et al.
(2022)’s work to generate implicit hateful state-
ments by incorporating multiple objectives, such as
maximization of the similarity between the genera-
tion and the implicit hateful prompts, minimization
of the classification scores of an HS detector, and
penalization of the presence of words encountered
in an HS lexicon.

Perez et al. (2022) used a red teaming language
model (LM) to generate test cases that cause a
target LM to behave in a harmful way. Instead of pre-
specifying the functionalities to test, they generated
many samples with the red teaming LM. Then, they
relied on an HS detector to identify samples where
the target LM responded with a harmful output.

Markov et al. (2023) also synthesized data by
prompting GPT-3 (Brown et al., 2020) as part of
their proposed holistic approach to detect online

https://github.com/YipingNUS/gpt-hate-check
https://github.com/YipingNUS/gpt-hate-check

7869

hateful content. They highlighted that the synthe-
sized data are beneficial to augment rare categories
and mitigate unintended biases.

While we also prompt LLMs to generate test
cases for HS detection, previous work only focused
on generating binary benign/hateful posts. Instead,
we generate test cases corresponding to function-
alities in HateCheck (Röttger et al., 2021), which
can yield more fine-grained diagnostic insights.

LLMs still occasionally make simple mistakes
and deviate from the instructions (Ouyang et al.,
2022). Previous work employed an HS detector
to filter or score the generation (Hartvigsen et al.,
2022; Perez et al., 2022). However, as we shall
demonstrate, a near state-of-the-art HS detector
still struggles with challenging functionalities, and
their predictions cannot always be taken on faith.
Furthermore, besides validating whether a mes-
sage is hateful, we must ensure that it conforms to
the functionality to be tested. Unfortunately, there
is no off-the-shelf classifier that can perform this
validation. To facilitate it, we formulate multiple
hypotheses on various aspects of an input text de-
pending on the functionality. We then combine a
natural language inference (NLI) model’s predic-
tions into a final verdict following Goldzycher and
Schneider (2022).

3. GPT-HateCheck

Figure 1 depicts the two sequential steps in GPT-
HateCheck: We first instruct a large language
model (LLM) to generate candidate test cases and
then use a natural language inference (NLI) model
to validate the candidates to yield the final dataset.

3.1. Generating Test Cases
We generate test cases for all target groups in Hat-
eCheck (Röttger et al., 2021) and cover all Hate-
Check functionalities, except for the ones that focus
on spelling variations because they are not specific
to hate speech detection. Table 1 presents the list
of functionalities with examples from HateCheck
and GPT-HateCheck.

We use GPT-3.5 (Ouyang et al., 2022) as the
LLM to generate test cases by invoking OpenAI’s
API.2 To set the context, we provide the following
system prompt, mentioning that the generated mes-
sages are for research purposes so that GPT will

2gpt-3.5-turbo-0613 checkpoint accessed via
OpenAI library version 0.27.0; https://platform.
openai.com/docs/models/gpt-3-5. For brevity,
we refer henceforth to this model as “GPT”. We note
that OpenAI will deprecate the checkpoint and replace
it with newer ones on June 13, 2024. For reproducibil-
ity, please specify gpt-3.5-turbo-0613 instead of
gpt-3.5-turbo.

Figure 2: The prompt factory method that instanti-
ates prompt templates w/ or w/o demonstrations.

not reject the request due to violation of the usage
policies:3

“You are a crowd-sourced worker who
composes messages for a hate speech
research project. Write messages with
diverse styles and lengths.”

We use a prompt factory method (shown in Fig-
ure 2) as a skeleton and alter only the instruction
fragments specific to each functionality in order to
speed up the prompt creation process.4

We aim to apply minimum prompt engineering
to study LLMs’ capability to generate plausible test
cases without excessive guidance. The following
procedure is applied to compose the prompts for
each functionality with increasing sophistication:

1. Use only the functionality definition provided
in HateCheck.

2. Rephrase the instruction so that the LLM un-
derstands it better.

3. Use the instruction and one demonstration ran-
domly drawn from HateCheck dataset.

4. For the functionalities involving slur words (F7-
F9), additionally provide the list of slur words
from HateCheck in the prompt.

We further restrict each functionality to use the
same instruction across different target groups, ex-
cept for replacing the target group identities (and
slur words for F7-F9). In cases where a demonstra-
tion is provided, we randomly sample a generic test
case from HateCheck dataset (e.g., “[identity] be-
long in a zoo.”) to generate messages for all target
groups.

During development, we set temperature=0
(greedy decoding) and generate a small set of ex-
amples (10) only for the target group “black people”

3https://openai.com/policies/
usage-policies.

4We use “skeleton” to refer to the structure of the
prompt. “Prompt templates” are specific to each func-
tionality but may contain special mask tokens such as
[identity] or [slur]. The final prompts replace the mask
tokens with the target group identity or slur words.

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://openai.com/policies/usage-policies
https://openai.com/policies/usage-policies

7870

Functionality HateCheck Example GPT-HateCheck Example Gold Label
D

er
og

at
io

n
F1: Expression of strong nega-
tive emotions (explicit) "I hate [IDENTITY]." "Trans people are sick and need help,

not acceptance." hateful

F2: Description using very nega-
tive attributes (explicit) "[IDENTITY] are disgusting."

"Trans people are nothing more than
confused individuals who need to ac-
cept their biological reality."

hateful

F3: Dehumanisation (explicit) "[IDENTITY] are scum." "Trans people are nothing more than
delusional attention seekers." hateful

F4: Implicit derogation "[IDENTITY] belong in a zoo."
"Transgender people are just con-
fused individuals who are trying to
seek attention."

hateful

Th
re

at
en

in
g

la
ng

ua
ge F5: Direct threat "I am going to shoot the next

[IDENTITY] I see."

"Trans people are a disgrace and
should be eradicated from society.
We will make sure you suffer for your
existence."

hateful

F6: Threat as normative state-
ment

"We should get rid of [IDENTITY]
once and for all."

"Trans people should be eradicated
from society. They are a threat to the
natural order."

hateful

Sl
ur

us
ag

e F7: Hate expressed using slur "You are just a [SLUR] to me." "You’re just a freak, a tranny." hateful
F8: Non-hateful homonyms of
slurs

"I had this queer feeling we were
being watched."

"I hope you have a transparent and
fulfilling day!"

non-hate

F9: Reclaimed slurs "I’m the freshest n*gga in the
room." "I love being a proud trans individual!" non-hate

Pr
of

an
ity

us
ag

e

F10: Hate expressed using pro-
fanity

"These [IDENTITY] should shut
the f*ck up once and for all."

"Transgender people are a f*cking dis-
grace to humanity." hateful

F11: Non-hateful use of profanity "I wish someone could get me
the f*ck out of here." "I f*cking hate Mondays, man." non-hate

Pr
on

ou
n

re
f.

F12: Hate expressed through ref-
erence in subsequent clauses

"I have met many [IDENTITY]
and I hate every single one of
them."

"Every time I see a trans person, I
can’t help but feel disgusted by their
existence."

hateful

F13: Hate expressed through ref-
erence in subsequent sentences

"Of course they are stupid. They
are just [IDENTITY] after all."

"You think being trans makes you spe-
cial? It just makes you even more pa-
thetic."

hateful

Ne
ga

tio
n F14: Hate expressed using

negated positive statement "[IDENTITY] lives do not matter." "trans will never be truly happy." hateful

F15: Non-hate expressed using
negated hateful statement "No [IDENTITY] deserves to die." "Trans rights are not a threat to soci-

ety." non-hate

Ph
ra

sin
g F16: Hate phrased as a question "Why is it that all [IDENTITY] are

repulsive?"
"Why do trans people think they de-
serve special rights?" hateful

F17: Hate phrased as an opinion "I think that [IDENTITY] should
all be killed."

"Transgender people are mentally ill
and need to seek help." hateful

N
on

-
ha

te
gr

p. F18: Neutral statements using
protected group identifiers "We are a group of [IDENTITY]."

"Transgender individuals experience
gender dysphoria, which is a distress-
ing disconnect between their gender
identity and assigned sex at birth."

non-hate

F19: Positive statements using
protected group identifiers "I love [IDENTITY]." "Trans individuals are courageous

and inspiring." non-hate

C
ou

nt
er

sp
ee

ch

F20: Denouncements of hate
that quote it

"Statements like ‘[IDENTITY] are
scum’ are deeply hurtful."

"Statements like ‘transgender people
are freaks’ are completely unaccept-
able."

non-hate

F21: Denouncements of hate
that make direct reference to it

"You have to stop calling [IDEN-
TITY] disgusting."

"Your ignorant comment about trans
people only shows your lack of under-
standing and empathy."

non-hate

N
on

-p
ro

t.
ta

rg
et

s

F22: Abuse targeted at objects "I really can’t stand cauliflower." "You stupid pencil, you can’t even
write straight!" non-hate

F23: Abuse targeted at individ-
uals (not as member of a prot.
group)

"You make me sick." "Hey you f*cking loser, go kill your-
self!" non-hate

F24: Abuse targeted at non-
protected groups (e.g. profes-
sions)

"Artists are parasites to our soci-
ety."

"All heterosexuals should be eradi-
cated from society." non-hate

Table 1: List of functionalities. The examples from HateCheck are copied from Röttger et al. (2021).
For GPT-HateCheck, we show examples of the “trans” category because it is much less studied in the
literature than categories such as “black people” or “women”, making data synthesization especially useful.
We select the first example for each functionality in GPT-HateCheck without cherry-picking, highlighting
ones not following the functionality in yellow.

7871

to perform prompt engineering. Once the result is
satisfactory, we freeze the prompts and generate
the final dataset for all target groups with temper-
ature=0.5 to encourage diversity.

Table 2 shows example instruction segments.5
They serve as input to the prompt factory method
in Figure 2 to form the complete prompt templates.
For F1, the instruction is taken directly from the def-
inition. F9 provides slur words from HateCheck in
addition. The other two examples require rephras-
ing to clarify the discourse structure (F12) or the
target sentiment (F18).

Func Instruction Segment
F1 "express strong negative emotions

against [identity]"
F9 "reclaim one of the following slurs refer-

ring to [identity] to show endearment in
a non-hateful context.
Slurs: ‘[slur], [slur], [slur]’"

F12 "1. each contain two clauses
2. the second clause contains hate ex-
pressions against [identity]"

F18 "contain factual statements about [iden-
tity] with neither positive or negative
sentiment"

Table 2: Example instruction segments.

3.2. Validating Test Cases
LLMs may not always follow the instructions
strictly (Ouyang et al., 2022). For the generated
test cases to be usable, we must ensure that the
examples 1) agree with the gold labels, and 2) are
targeted to the specified functionalities.

We were inspired by Goldzycher and Schneider
(2022)’s proposal to use an NLI model (Yin et al.,
2019) to improve zero-shot HS detection. They
compose supporting hypotheses [h1, ..., hn] for four
strategies: (1) filtering by target group identity, (2)
filtering by counter speech, (3) filtering reclaimed
slurs, and (4) catching dehumanization compar-
isons. Then, they test each hypothesis indepen-
dently using an NLI model (Yin et al., 2019). The
predictions are combined using pre-defined rules to
assign a label y = {1, 0} to each input text, where
‘1’ denotes hateful and ‘0’ denotes non-hateful.

Extending their work, we write specific hypothe-
ses to test whether a text input conforms with the
gold label and the intended functionality. We use
the bart-large-mnli model from the transform-
ers library (Wolf et al., 2020), which predicts one
of the following labels: entailment, neutral, and
contradiction. We follow Goldzycher and Schnei-

5We report the complete list of instructions and demon-
strations in Appendix A.

der (2022) to perform a softmax over the logits of
entailment and contradiction.

Each functionality may involve multiple hypothe-
ses to test different aspects and has correspond-
ing rules to combine the entailment predictions us-
ing Boolean functions. Consider as an example
the functionality “F15: Non-hate expressed using
negated hateful statement”. We first test the hypoth-
esis “That text contains a negation.” If an example
passes the hypothesis test, we use a dictionary to
remove negation words from the example and test
against the second hypothesis “That text contains
hate speech against [identity].” An example is
kept only if it passes both hypothesis tests. Table 3
provides the hypothesis tests for sample function-
alities.6

Func Hypothesis Tests
F4 1. ¬"That text contains obscene lan-

guage."
2. "That text contains derogation"
3. nli-target

F8 1. ¬nli-target
2. ¬nli-hate

F11 1. "That text contains obscene lan-
guage."
2. ¬nli-target

F13 1. 7→: "That contains hate speech."
2. nli-target
3. nli-hate

Table 3: Hypothesis tests for example functionali-
ties. nli-target and nli-hate refer to the hypothe-
ses “That example is about [identity].” and “That
contains hate speech.”, which are reused across
functionalities. ¬ means that we take the reverse
of the entailment prediction; 7→ indicates that we
apply the hypothesis on the example after removing
the first sentence.

4. Analyzing GPT-HateCheck Dataset

We use the same list of target groups as Hate-
Check (Röttger et al., 2021), generating 40 ex-
amples for each (target group, functionality) pair.
Table 4 presents the number of examples for Hate-
Check, GPT-HateCheck and the candidates gen-
erated by GPT before filtering.

In what follows, we address three Research
Questions (RQs):

RQ1: Which functionalities does GPT struggle
to generate examples for? To tackle this ques-
tion, we calculate each functionality’s NLI test pass-
ing rates across different target groups and present

6We report the complete list of hypotheses in the Ap-
pendix B.

7872

Figure 3: Functionality-wise NLI test passing rates across different target groups.

Target Group HC GPT-HC -Filter
Women 509 606 824
Trans ppl. 463 611 795
Gay ppl. 551 646 822
Black ppl. 482 741 812
Disabled ppl. 484 644 814
Muslims 484 663 822
Immigrants 463 684 829
None 292 133 156
Total 3,728 4,731 5,874

Table 4: Number of examples for each target group
in different datasets (HC: HateCheck; GPT-HC:
GPT-HateCheck). “-Filter” denotes the number
of examples GPT generated before applying NLI-
based validation. “None” denotes functionalities
that do not target any protected group (F11, F22,
F23, and F24).

the result in Figure 3. The five functionalities with
the lowest passing rates involve homonyms (F8),
negations (F15), discourse structures (F12,13), and
neutral sentiments (F18). This result is in line with
previous research on creating adversarial examples
for HS detection (Hartvigsen et al., 2022; Ocampo
et al., 2023), showing that some nuanced function-
alities pose challenges to both HS detectors and
text generators. We provide samples of filtered test
cases for each of these functionalities in Table 5.

RQ2: Can GPT generate diverse and natural
test cases? A drawback of template-based test
case creation is that the examples lack natural vari-
ation of human language and appear rigid and un-
natural (Wen et al., 2015). We conduct automatic
evaluations to measure intra-example lexical diver-
sity using self-BLEU (Zhu et al., 2018)7 and natu-
ralness using perplexity 8.

7The Self-BLEU score of a dataset is calculated as
the average BLEU score of each generated example
using the rest of the examples as references. We report
BLEU-2/3/4 scores.

8We use the gpt2-large model from HuggingFace
library to calculate perplexity.

F8: Non-hateful homonyms of slurs
I find the call to prayer in Islam to be quite melo-
dious and soothing.
> “Islam” refers to Muslim people and is not a
homonymous sense.
F15: Non-hate using negated hateful statement
Women deserve to be celebrated and empow-
ered.
> The message does not contain negation.
F12: Hate via reference in subsequent clauses
I feel nothing but disdain for immigrants who
come here and refuse to learn our language.
> Does not contain more than one clause.
F13: Hate via reference in subsequent sen-
tences
I’m sorry, but disabled people like you are just a
burden on society. It’s time to accept the truth.
> Hate is expressed in the first sentence.
F18: Neutral statements about prot. group
The LGBTQ+ community has made signifi-
cant contributions to art, literature, and culture
throughout history.
> The message is a positive statement.

Table 5: Examples of test cases filtered out by NLI-
based hypothesis tests for the five functionalities
with the lowest passing rate. We add a short expla-
nation for each example based on the hypothesis
test results.

Since GPT-HateCheck contains more examples
than HateCheck, we calculate the metrics for Hat-
eCheck using the entire dataset while drawing ten
random subsamples from GPT-HateCheck with
the same number of examples as HateCheck. Ta-
ble 6 shows the averaged result.

We observe that the examples in GPT-
HateCheck have a higher lexical diversity than
in HateCheck, the gap being larger for longer
n-grams. It is likely because the template-based
approach instantiates multiple examples from the
same template, which contain exact copies of
text chunks. Qualitatively, we can also observe
from the samples in Table 1 that GPT-HateCheck

7873

Dataset self-BLEU PPL
n=2 n=3 n=4

HC 0.937 0.863 0.761 67.47
GPT- 0.864 0.735 0.594 21.52
HC (1.2e-3) (2.2e-3) (2.6e-3) (.088)

Table 6: Result of self-BLEU scores to measure
intra-example diversity (the lower the better) and
perplexity to measure naturalness (the lower the
better). The best results are highlighted in bold;
the standard deviations are shown in brackets. All
differences are statistically significant in terms of
a double-sided one-sample t-test with p-value=1e-
10.

contains novel aspects/arguments that are neither
in HateCheck nor in the prompts (e.g., trans
people are “mentally ill” or “against the natural
order”). Furthermore, the examples in HateCheck
have a much higher perplexity score, confirming
that the template-based generation method is
prone to producing rigid and unnatural examples.

RQ3: Are the generated test cases faithful
to the gold label and intended functionality?
To answer this question, we select all 795 GPT-
generated messages targeting trans people and
156 messages that do not target any protected
group (cf. Table 4) to conduct human evaluations
using a crowd-sourced platform.9 We ran two sepa-
rate annotation tasks, asking annotators to indicate
whether a message is hateful and consistent with
the indicated functionality. 54 and 37 annotators
who have passed a pre-qualification test partici-
pated in the annotation tasks. In each task, each
message was labelled by three distinct annotators.

For hateful annotation, we use a scale of 1 (not
hateful) – 5 (most hateful) to account for subjec-
tivity following recommendations of Fortuna et al.
(2022). We average the assigned scores by three
annotators and binarize the final label by treating
scores higher than 3 as hateful and scores equal
to or lower than 3 as non-hateful. For functionality
consistency annotation, we present the annotators
with the (functionality, message) pair and ask them
to indicate whether the message is consistent with
the functionality. We then take the majority vote to
obtain the final label.10

We use Fleiss’ κ (Fleiss, 1971) to assess the inter-
annotator agreement. We obtained Fleiss’ κ=0.63
(substantial) for binarised hateful labels. Further-
more, all three annotators assigned the same label
in 72.3% of the cases. For functionality consistency

9https://toloka.ai/
10Details of the crowd-sourced annotation, including

annotation guidelines, UIs, and stats, are reported in
Appendix C.

annotation, we obtained Fleiss’ κ=0.05 (slight), and
all three annotators agreed on only 49.3% of the
cases. We hypothesize that the functionality con-
sistency annotation has much lower agreement
because it requires annotators to understand the
intention of each fine-grained functionality and in-
volves more reasoning. In the crowd-sourced an-
notation, annotators may not read the guidelines
carefully to understand the purpose and the scope
of each functionality due to monetary incentives
to complete the annotation fast. To obtain a more
reliable evaluation, we instructed a domain expert
(male, PhD student) to annotate for functionality
consistency independently. We present the hateful
and functionality consistency evaluation in Table 7.

Setting Hateful Funccrowd Funcexpert

GPT-HC 92.65% 78.57% 88.57%
GPT-HC -filter 91.48% 76.77% 83.28%

Table 7: Hatefulness and functionality consistency
as judged by annotators. For functionality consis-
tency annotation, “crowd” refers to the majority vote
labels of crowd-sourced annotators, and “expert”
refers to the labels annotated by the domain expert.
The best scores are highlighted in bold.

The results demonstrate that GPT generates
messages agreeing with the target hateful labels
over 90% of the time. However, the generations are
more likely not to follow the intended functionalities.
For both aspects, the NLI-based filtering that we
introduced improves the test cases’ consistency.

5. Testing Models with
GPT-HateCheck

To study whether GPT-HateCheck can help us
to uncover model weaknesses that are missed
by HateCheck, we apply HateBERT (Caselli
et al., 2021),11 a near state-of-the-art hate speech
(HS) detector, on both datasets and report the
functionality-wise accuracy in Figure 4.

Table 8 summarizes this result, showing
that HateBERT has a lower accuracy on GPT-
HateCheck in 13 functionalities versus 8 functional-
ities on HateCheck dataset. Furthermore, an inter-
esting trend is revealed by grouping the categories
based on the ground-truth hatefulness label: Hate-
ful messages generated by GPT are much more
likely to trick HateBERT than examples from Hate-
Check dataset. However, non-hateful messages
from HateCheck are more likely to trick the classi-
fier.

11We use the best-performing model variant fine-tuned
on OffensEval dataset (Caselli et al., 2020). The model
checkpoint is available at https://osf.io/mucwv.

https://toloka.ai/
https://osf.io/mucwv

7874

Figure 4: Functionality-wise accuracy of HateBERT on the HateCheck and GPT-HateCheck test datasets.
A lower accuracy indicates more challenging test cases.

Label HC ⇓ GPT-HC ⇓ Tie
Hateful 1 10 2

Non-Hateful 7 3 1
Combined 8 13 3

Table 8: Comparing the accuracy of Hate-
BERT on hateful and non-hateful functionalities.
“HC ⇓” denotes the functionalities where Hate-
BERT has lower accuracy on HateCheck than
GPT-HateCheck. Vice versa for “GPT-HC ⇓”. “Tie”
indicates the accuracy difference is smaller than
3%.

The accuracy gap between the two datasets
reaches as much as 30% in the three functional-
ities: “F12: Hate expressed through reference in
subsequent clauses”, “F14: Hate expressed us-
ing negated positive statement”, and “F16: Hate
phrased as a question”. Interestingly, the LLM also
fooled the HS detector with examples of seemingly
straightforward functionalities, such as negative
emotions, negative attributes, or dehumanization
(F1,2,3). On the other hand, HateBERT achieved
over 90% accuracy for most of these functionalities
on the HateCheck dataset, which might cause us
to overestimate the model’s capability.

To find out why non-hateful examples from Hat-
eCheck are more likely to trick HateBERT, we cal-
culate the HS detector’s average predictions on
hateful and non-hateful examples of both datasets;
cf. Table 9. We see that there is a clear bias for
HateBERT to predict more “hateful” labels on Hat-
eCheck than GPT-HateCheck, regardless of the
ground-truth label.

HC GPT-HC
Hateful .911 .765

Non-Hateful .633 .356

Table 9: Mean predictions of HateBERT for hateful
and non-hateful examples from different datasets.

We present sample GPT-HateCheck test cases
that fooled HateBERT in Table 10. A general obser-
vation is that GPT often generates implicit hateful
examples absent from slurs or profanity. It confirms

with previous research that even state-of-the-art
HS detectors rely heavily on explicit slurs (Yin and
Zubiaga, 2021; Fortuna et al., 2022).

Func Test Case (Gold:Predicted)
F1 Why do women even bother pursuing ed-

ucation and careers? They should focus
on finding a husband instead. (1:0)

F2 Black people are prone to welfare depen-
dency, relying on government assistance
instead of working. (1:0)

F3 Women are nothing more than objects
for men’s pleasure. (1:0)

F12 Whenever immigrants celebrate their cul-
ture, it only intensifies my disdain to-
wards them. (1:0)

F14 disabled people are never capable of
achieving success. (1:0)

F16 Do gays not see that their relationships
are unnatural? (1:0)

Table 10: Sample test cases in GPT-HateCheck
that HateBERT predicts wrongly. The gold and
predicted labels are in brackets.

(a) HateBERT (b) ToxiGen

Figure 5: Confusion matrices on the GPT-
HateCheck dataset of the original HateBERT
(macro F1=0.70) and HateBERT fine-tuned using
ToxiGen dataset (macro F1=0.33).

We further investigate whether implicitness is
the only reason why HateBERT fails on the GPT-
HateCheck dataset by applying the HateBERT
model fine-tuned on ToxiGen (Hartvigsen et al.,

7875

2022) 12, a large-scale dataset for implicit HS de-
tection. We present the confusion matrices of the
original HateBERT model and the fine-tuned model
in Figure 5. Surprisingly, the fine-tuned model pre-
dicts “non-hateful” for most examples and has a
much lower macro F1 score than the original Hate-
BERT. It demonstrates that the ability to identify
implicit HS does not warrant good performance on
the GPT-HateCheck dataset.

6. Conclusions and Future Work

In this paper, we introduced GPT-HateCheck, a
suite of functional tests for hate speech detection
generated and validated by large language mod-
els. Empirical results showed that the generated
examples are more diverse and natural than the
templated-based counterparts introduced in pre-
vious work. Furthermore, we demonstrated the
utility of GPT-HateCheck by using it to uncover
critical model weaknesses of HateBERT. We hope
GPT-HateCheck can provide additional insights
on models’ performance in targeted functionalities
and help the community develop more accurate
and robust hate speech detectors.

In future work, we plan to generate auxiliary train-
ing examples. We will also explore extending our
framework to other NLP tasks.

Ethical Considerations

Large language models (LLMs) are a double-edged
sword. While LLMs are instrumental in the NLP
field and beyond, they can harm society when
misused (Bommasani et al., 2021). We demon-
strated that GPT-3.5 could generate very toxic com-
ments with careful prompting despite the original
authors’ effort to suppress the model’s harmful be-
haviors (Ouyang et al., 2022).

Because some posts in the dataset can be of-
fensive or even contain profanity, we selected an-
notators at least 18 years old who are comfortable
with annotating adult content. We also included an
explicit content warning at the top of the annotation
guideline.

A legitimate concern about our work is that the
generated comments could upset people belonging
to the target groups. However, with the increasing
incidents of online hate, hate speech detection has
become a heated arms race, and having access
to a comprehensive evaluation dataset is the first
step to improving hate speech detection models.

To facilitate future work and minimize the risk, we
plan to set up a request form where researchers
can obtain access to our dataset and source code.

12https://github.com/microsoft/ToxiGen.

We will carefully review the nature of each request
and grant access only for plausible intended uses.

Limitations

Despite their impressive capability, large language
models (LLMs) still struggle to generate high-quality
test cases for specific functionalities. We observe
that GPT struggles to generate plausible exam-
ples for the two functionalities “F8: Non-hateful
homonyms of slurs” and “F9: Reclaimed slurs”,
likely because they involve the usage of alternative
word senses. On the other hand, the examples in
HateCheck for these two functionalities are written
by humans from scratch, without using templates
and cover only a subset of 2-3 target groups. In this
work, we adopt a generate-and-filter approach to
remove noisy examples. However, it may not work
when most generated examples are noisy, and we
may have to fall back to human data creation to
complement the dataset.

Our approach relies on a commercial closed-
source LLM (GPT-3.5 Turbo), which incurs access
costs. Due to the same reason, we did not conduct
systematic prompt engineering or experiment with
multiple random seeds. Another drawback of using
a closed-source model is that the company owning
the model may update it in the future, negatively
affecting our work’s reproducibility. We conducted
some preliminary exploration on an open-sourced
Llama 2 model (Touvron et al., 2023). However,
it seems much more restrictive and refrains from
generating messages related to hate speech.

We only generated examples in English in this
work. It would be interesting to extend our frame-
work to other languages like in Röttger et al. (2022).
Hate expressions in other languages may possess
novel phenomena such as code-switching and ho-
mophones. The generation quality also depends
significantly on the capability of the instruction-
following LLM, which may not be widely available
for low-resource languages.

Finally, hate can be expressed in other modalities
such as emojis (Kirk et al., 2022), images (Gomez
et al., 2020), and memes (Kiela et al., 2020). In
this work, we only studied hate speech expressed
via text messages.

Acknowledgement

This work has been partially funded by the Euro-
pean Commission under contract numbers HE-
101070278 and ISF-101080090. Yiping was
granted to OpenAI’s Researcher Access Program
to access their APIs. We thank the anonymous
reviewers for the careful reading and constructive
feedback for us to improve the manuscript.

https://github.com/microsoft/ToxiGen

7876

7. Bibliographical References

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine
Bosselut, Emma Brunskill, et al. 2021. On the op-
portunities and risks of foundation models. arXiv
preprint arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. 2020. Language mod-
els are few-shot learners. Advances in neural
information processing systems, 33:1877–1901.

Tommaso Caselli, Valerio Basile, Jelena Mitrović,
and Michael Granitzer. 2021. HateBERT: Re-
training BERT for abusive language detection in
English. In Proceedings of the 5th Workshop on
Online Abuse and Harms (WOAH 2021), pages
17–25, Online. Association for Computational
Linguistics.

Tommaso Caselli, Valerio Basile, Jelena Mitrović,
Inga Kartoziya, and Michael Granitzer. 2020. I
feel offended, don’t be abusive! implicit/explicit
messages in offensive and abusive language.
In Proceedings of the Twelfth Language Re-
sources and Evaluation Conference, pages
6193–6202, Marseille, France. European Lan-
guage Resources Association.

Lucas Dixon, John Li, Jeffrey Sorensen, Nithum
Thain, and Lucy Vasserman. 2018. Measuring
and mitigating unintended bias in text classifi-
cation. In Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, pages
67–73, New Orleans, LA, USA.

Joseph L Fleiss. 1971. Measuring nominal scale
agreement among many raters. Psychological
bulletin, 76(5):378.

Paula Fortuna, Monica Dominguez, Leo Wanner,
and Zeerak Talat. 2022. Directions for nlp prac-
tices applied to online hate speech detection. In
Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing,
page 11794–11805, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Janis Goldzycher and Gerold Schneider. 2022. Hy-
pothesis engineering for zero-shot hate speech
detection. In Proceedings of the Third Workshop
on Threat, Aggression and Cyberbullying (TRAC
2022), pages 75–90, Gyeongju, Republic of Ko-
rea. Association for Computational Linguistics.

Raul Gomez, Jaume Gibert, Lluis Gomez, and
Dimosthenis Karatzas. 2020. Exploring hate
speech detection in multimodal publications. In
Proceedings of the IEEE/CVF winter conference
on applications of computer vision, pages 1470–
1478.

Thomas Hartvigsen, Saadia Gabriel, Hamid
Palangi, Maarten Sap, Dipankar Ray, and Ece
Kamar. 2022. ToxiGen: A large-scale machine-
generated dataset for adversarial and implicit
hate speech detection. In Proceedings of the
60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 3309–3326, Dublin, Ireland. Association
for Computational Linguistics.

Pierre Isabelle, Colin Cherry, and George Foster.
2017. A challenge set approach to evaluating
machine translation. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2486–2496, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Douwe Kiela, Hamed Firooz, Aravind Mohan,
Vedanuj Goswami, Amanpreet Singh, Pratik
Ringshia, and Davide Testuggine. 2020. The
hateful memes challenge: Detecting hate speech
in multimodal memes. Advances in neural infor-
mation processing systems, 33:2611–2624.

Svetlana Kiritchenko, Isar Nejadgholi, and Kath-
leen C Fraser. 2021. Confronting abusive lan-
guage online: A survey from the ethical and hu-
man rights perspective. Journal of Artificial Intel-
ligence Research, 71:431–478.

Hannah Kirk, Bertie Vidgen, Paul Rottger, Tris-
tan Thrush, and Scott Hale. 2022. Hatemoji: A
test suite and adversarially-generated dataset for
benchmarking and detecting emoji-based hate.
In Proceedings of the 2022 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 1352–1368, Seattle, United
States. Association for Computational Linguis-
tics.

Young-Jun Lee, Chae-Gyun Lim, Yunsu Choi, Ji-
Hui Lm, and Ho-Jin Choi. 2022. PERSONACHAT-
GEN: Generating personalized dialogues using
GPT-3. In Proceedings of the 1st Workshop on
Customized Chat Grounding Persona and Knowl-
edge, pages 29–48, Gyeongju, Republic of Ko-
rea. Association for Computational Linguistics.

Todor Markov, Chong Zhang, Sandhini Agarwal,
Florentine Eloundou Nekoul, Theodore Lee,
Steven Adler, Angela Jiang, and Lilian Weng.
2023. A holistic approach to undesired content

https://doi.org/10.18653/v1/2021.woah-1.3
https://doi.org/10.18653/v1/2021.woah-1.3
https://doi.org/10.18653/v1/2021.woah-1.3
https://aclanthology.org/2020.lrec-1.760
https://aclanthology.org/2020.lrec-1.760
https://aclanthology.org/2020.lrec-1.760
https://aclanthology.org/2022.emnlp-main.809/
https://aclanthology.org/2022.emnlp-main.809/
https://aclanthology.org/2022.trac-1.10
https://aclanthology.org/2022.trac-1.10
https://aclanthology.org/2022.trac-1.10
https://doi.org/10.18653/v1/2022.acl-long.234
https://doi.org/10.18653/v1/2022.acl-long.234
https://doi.org/10.18653/v1/2022.acl-long.234
https://doi.org/10.18653/v1/D17-1263
https://doi.org/10.18653/v1/D17-1263
https://doi.org/10.18653/v1/2022.naacl-main.97
https://doi.org/10.18653/v1/2022.naacl-main.97
https://doi.org/10.18653/v1/2022.naacl-main.97
https://aclanthology.org/2022.ccgpk-1.4
https://aclanthology.org/2022.ccgpk-1.4
https://aclanthology.org/2022.ccgpk-1.4

7877

detection in the real world. In Proceedings of the
AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 15009–15018, Washington DC,
USA.

Rebecca Marvin and Tal Linzen. 2018. Targeted
syntactic evaluation of language models. In Pro-
ceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
1192–1202, Brussels, Belgium. Association for
Computational Linguistics.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig.
2018. Stress test evaluation for natural language
inference. In Proceedings of the 27th Interna-
tional Conference on Computational Linguistics,
pages 2340–2353, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Nicolas Ocampo, Elena Cabrio, and Serena Vil-
lata. 2023. Playing the part of the sharp bully:
Generating adversarial examples for implicit hate
speech detection. In Findings of the Association
for Computational Linguistics: ACL 2023, pages
2758–2772, Toronto, Canada. Association for
Computational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, et al. 2022. Training language models to
follow instructions with human feedback. In Ad-
vances in Neural Information Processing Sys-
tems, volume 35, pages 27730–27744, New Or-
leans, Louisiana, USA.

Ethan Perez, Saffron Huang, Francis Song, Trevor
Cai, Roman Ring, John Aslanides, Amelia
Glaese, Nat McAleese, and Geoffrey Irving.
2022. Red teaming language models with lan-
guage models. In Proceedings of the 2022
Conference on Empirical Methods in Natural
Language Processing, pages 3419–3448, Abu
Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Fabio Poletto, Valerio Basile, Manuela Sanguinetti,
Cristina Bosco, and Viviana Patti. 2021. Re-
sources and benchmark corpora for hate speech
detection: a systematic review. Language Re-
sources and Evaluation, 55(2):477–523.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos
Guestrin, and Sameer Singh. 2020. Beyond ac-
curacy: Behavioral testing of NLP models with
CheckList. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4902–4912, Online. Association
for Computational Linguistics.

Paul Röttger, Haitham Seelawi, Debora Nozza,
Zeerak Talat, and Bertie Vidgen. 2022. Multilin-
gual HateCheck: Functional tests for multilingual
hate speech detection models. In Proceedings of
the Sixth Workshop on Online Abuse and Harms
(WOAH), pages 154–169, Seattle, Washington
(Hybrid). Association for Computational Linguis-
tics.

Paul Röttger, Bertie Vidgen, Dong Nguyen, Zeerak
Waseem, Helen Margetts, and Janet Pierrehum-
bert. 2021. HateCheck: Functional tests for hate
speech detection models. In Proceedings of the
59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pages 41–58, On-
line. Association for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, et al. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Anh Vu, Lydia Wilson, Yi Ting Chua, Ilia Shu-
mailov, and Ross Anderson. 2023. Extremebb:
A database for large-scale research into online
hate, harassment, the manosphere and extrem-
ism. Apollo - University of Cambridge Repository.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raf-
fel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Don-
ald Metzler, et al. 2022. Emergent abilities of
large language models. Transactions on Ma-
chine Learning Research.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural
language generation for spoken dialogue sys-
tems. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1711–1721, Lisbon, Portugal. Associ-
ation for Computational Linguistics.

Michael Wiegand, Josef Ruppenhofer, and Thomas
Kleinbauer. 2019. Detection of Abusive Lan-
guage: the Problem of Biased Datasets. In Pro-
ceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
602–608, Minneapolis, Minnesota. Association
for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In

https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://aclanthology.org/C18-1198
https://aclanthology.org/C18-1198
https://aclanthology.org/2023.findings-acl.173
https://aclanthology.org/2023.findings-acl.173
https://aclanthology.org/2023.findings-acl.173
https://aclanthology.org/2022.emnlp-main.225
https://aclanthology.org/2022.emnlp-main.225
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2022.woah-1.15
https://doi.org/10.18653/v1/2022.woah-1.15
https://doi.org/10.18653/v1/2022.woah-1.15
https://doi.org/10.18653/v1/2021.acl-long.4
https://doi.org/10.18653/v1/2021.acl-long.4
https://doi.org/10.17863/CAM.97191
https://doi.org/10.17863/CAM.97191
https://doi.org/10.17863/CAM.97191
https://doi.org/10.17863/CAM.97191
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/N19-1060
https://doi.org/10.18653/v1/N19-1060
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101

7878

Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 1112–1122.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexan-
der Rush. 2020. Transformers: State-of-the-art
natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demon-
strations, pages 38–45, Online. Association for
Computational Linguistics.

Wenjie Yin and Arkaitz Zubiaga. 2021. Towards
generalisable hate speech detection: a review
on obstacles and solutions. PeerJ Computer
Science, 7:e598.

Wenpeng Yin, Jamaal Hay, and Dan Roth.
2019. Benchmarking zero-shot text classification:
Datasets, evaluation and entailment approach.
In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 3914–3923, Hong Kong, China. Associa-
tion for Computational Linguistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, et al.
2023. A survey of large language models. arXiv
preprint arXiv:2303.18223.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo,
Weinan Zhang, Jun Wang, and Yong Yu. 2018.
Texygen: A benchmarking platform for text gen-
eration models. In The 41st International ACM
SIGIR Conference on Research & Development
in Information Retrieval, pages 1097–1100, Ann
Arbor, Michigan, USA. Association for Comput-
ing Machinery.

8. Language Resource References

Paul Röttger and others. 2021. HateCheck: Func-
tional Tests for Hate Speech Detection Models.
University of Oxford. Association for Computa-
tional Linguistics.

A. List of Instructions to Generate
Examples

Table 11 presents the complete list of instruc-
tion segments to generate examples in GPT-
HateCheck dataset. The instruction segments are
provided as input to the prompt factory method in
Figure 2. The “[identity]” and “[slur]“ (optional)
tokens are then substituted to form the final instruc-
tion for GPT. For instructions requiring slur words,
we use the same list from HateCheck; cf. Table 12.

B. List of Hypothesis Tests to
Validate Examples

Table 13 presents the complete list of hypothe-
sis tests to validate examples in GPT-HateCheck
dataset. All the corresponding tests must pass for
an example to be retained.

C. Details of Human Annotation

We use the Toloka platform to conduct crowd-
sourced annotation. We apply the following filters
to ensure annotation quality:

• The annotators must be fluent in English, as
demonstrated by an exam administered by the
Toloka platform.

• The annotators must be rated among the top
50% in the platform based on their past anno-
tation quality.

• The annotators must pass a short training ses-
sion for the annotation tasks and score over
70% in a small test of ten examples.

• Ban annotators who have skipped five task
suites 13 in a row (avoiding annotators who
pick only the easy examples).

• Ban annotators who submitted the task too fast
(less than 30 seconds per task suite).

Figure 6 shows the annotation pool statistics for
the hateful and functionality consistency annotation.
On average, annotators spent 50% more time on
functionality consistency annotation than hateful
annotation. We reimbursed annotators based on a
minimum wage of 6 USD/hour.

C.1. Annotation Guidelines
C.1.1. Hateful Annotation

We are a Natural Language Processing research
group. The messages you shall annotate are all
written by ChatGPT. They may contain offensive

13Each task suite contains ten examples to annotate.

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404

7879

Functionality Instruction Segments
F1: Expression of strong negative emo-
tions (explicit)

"express strong negative emotions against [identity]"

F2: Description using very negative at-
tributes (explicit)

"mention very negative attributes of [identity]"

F3: Dehumanisation (explicit) "dehumanize [identity]"
F4: Implicit derogation "implicitly derogates [identity]"
F5: Direct threat "contain direct threat to [identity] mentioning their identity"
F6: Threat as normative statement "contain threat to [identity] as a normative statement"
F7: Hate expressed using slur "contain hate expressions against [identity] using slurs"

Slurs: ‘[slur], [slur], [slur]’
Example: That’s only natural for a [slur] like you.

F8: Non-hateful homonyms of slurs "contain non-hateful homonyms of slurs of [identity]"
F9: Reclaimed slurs "reclaim one of the following slurs referring to [identity] to show endearment

in a non-hateful context."
Slurs: ‘[slur], [slur], [slur]’
Example:: I’m proud to be a [slur].

F10: Hate expressed using profanity "contain hate expressions against [identity] using profanity"
Example: [identity] are all complete a**holes.

F11: Non-hateful use of profanity "contain profanity but are not hateful"
Example: I wish someone could get me the fuck out of here.

F12: Hate expressed through reference
in subsequent clauses

"1. each contain two clauses
2. the second clause contains hate expressions against [identity]"
Example: I have met many [identity], and I hate every single one of them.

F13: Hate expressed through reference
in subsequent sentences

"1. each contain two sentences
2. the second sentence contains hate expressions against [identity]"
Example: Some [identity] get into government. They are still just common
trash to me.

F14: Hate expressed using negated pos-
itive statement

"contain hate expressed against [identity] by negating a positive statement"
Example: [identity] are never any intelligent.

F15: Non-hate expressed using negated
hateful statement

"are not offensive and mention [identity] in a negated hateful statement"
Example: No [identity] deserves to die.

F16: Hate phrased as a question "contain hate phrases against [identity] as a question"
Example: Do people really not realise that [identity] are disgusting?

F17: Hate phrased as an opinion "contain hate phrases against [identity] as an opinion"
F18: Neutral statements using protected
group identifiers

"contain factual statements about [identity] with neither positive or negative
sentiment"

F19: Positive statements using protected
group identifiers

"contain positive statements about [identity]"

F20: Denouncements of hate that quote
it

"1. mention hateful statements against [identity] in quote
2. denounce the statement"
Example: Statements like ‘[identity] are scum’ are deeply hurtful.

F21: Denouncements of hate that make
direct reference to it

"mention a hateful statement made against [identity] and denounce it. Make
sure your response does not contain generic words like ‘hate’, ‘hateful’, or
‘derogatory’"
Example: I lost all respect for you when you said [identity] like me were
pathetic.

F22: Abuse targeted at objects "contain abusive language targeting at objects"
F23: Abuse targeted at individuals (not
as member of a prot. group)

"contain abusive language targeting at individuals"

F24: Abuse targeted at non-protected
groups (e.g. professions)

"contain abusive language targeting at non-minority groups"
Example: Death to all capitalists.

Table 11: Full list of instruction segments to generate examples in GPT-HateCheck dataset.

content and do not represent our view. Your anno-
tation will help us build more robust AI-based hate
speech detectors to protect minority groups.

Read the message and determine how hateful it
is to trans people.

Hateful Hate speech consists of offensive, ag-
gressive, or abusive comments against a specific

minority group, in this case, trans people.

• Expression of strong negative emotions

• Description using very negative attributes

• Dehumanization

• Implicit derogation

• Direct threat

7880

(a) Hateful annotation

(b) Functionality consistency annotation

Figure 6: Crowd-sourced annotation pool statistics for different annotation tasks.

Target Group Slurs
Women b*tch, b*tches
Trans ppl. trans, tr*nny, tr*nnies, sh*male,

sh*males
Gay ppl. fag, fags, f*ggot, f*ggots,

LGBTQ, queer
Black ppl. n*gga, n*gger, negro, n*ger
Disabled ppl. retard, cripple, mong
Muslims muzzie, muzzies
Immigrants wetback, mojado

Table 12: Slur words for each target group taken
from HateCheck dataset.

• Threat as normative statement

• Hate expressed using slur

• Hate expressed using profanity

• Hate expressed using negated positive state-
ment

• Hate phrased as a question

• Hate phrased as an opinion

Examples

• I hate trans people.

• Trans are disgusting.

• Trans are scum.

• Trans people belong in a zoo.

• I’m going to shoot the next trans I see.

• We should get rid of all trans once and for all.

• You are just a tranny to me.

• These trans should shut the f*ck up once and
for all.

• Trans lives do not matter.

• Why is it that all trans are repulsive?

• I think that trans should all be killed.

Not hateful Messages that are NOT hateful
against a specific minority group, in this case, trans
people. Types:

• Non-hateful homonyms of slurs

• Reclaimed slurs

• **Use of profanity that’s not hateful against
trans people

• Non-hate expressed using negated hateful
statement

• Neutral statements about trans people

• Positive statements about trans people

• **Denouncements of hate

7881

Functionality Hypothesis Tests
F1: Expression of strong negative emotions 1. "That text contains expression of strong negative emotions."
F2: Description using very negative attributes 1. "That text describes [identity] using very negative attributes."
F3: Dehumanisation 1. "That text contains dehumanization."
F4: Implicit derogation 1. ¬"That text contains obscene language."

2. "That text contains derogation"
F5: Direct threat 1. "That text contains a direct threat."
F6: Threat as normative statement 1. "That text contains a threat as normative statement."
F7: Hate expressed using slur 1. "That text contains a slur referring to [identity]."

2. nli-hate
F8: Non-hateful homonyms of slurs 1. ¬nli-hate
F9: Reclaimed slurs 1. "This text is about myself." or "This text is about us."

2. ¬"This text has a negative sentiment."
F10: Hate expressed using profanity 1. "That text contains obscene language."

2. nli-hate
F11: Non-hateful use of profanity 1. "That text contains obscene language."

2. ¬nli-target
F12: Hate expressed through reference in sub-
sequent clauses

1. *contains_at_least_two_clauses()
2. , 7→: "That contains hate speech."
3. nli-hate

F13: Hate expressed through reference in sub-
sequent sentences

1. *contains_at_least_two_sentenses()
2. · 7→: "That contains hate speech."
3. nli-hate

F14: Hate expressed using negated positive
statement

1. "That text contains a negation."
2. ⊘: "That text is a positive statement towards [identity]"

F15: Non-hate expressed using negated hate-
ful statement

1. "That text contains a negation."
2. ⊘: "That text contains hate speech against [identity]."

F16: Hate phrased as a question 1. "That text is a question."
2. nli-hate

F17: Hate phrased as an opinion 1. "That text is a subjective opinion."
2. nli-hate

F18: Neutral statements using protected group
identifiers

1. ¬"That text is a very positive statement."
2. ¬nli-hate

F19: Positive statements using protected group
identifiers

1. "That text is a positive statement."
2. ¬nli-hate

F20: Denouncements of hate that quote it 1. *extract_quote(): "That contains hate speech."
2. "This text supports [identity]"

F21: Denouncements of hate that make direct
reference to it

1. "That text is a denouncement."

F22: Abuse targeted at objects 1. "That text is about a non-human material object."
2. ¬nli-target
3. nli-hate

F23: Abuse targeted at individuals (not as mem-
ber of a prot. group)

1. "That text is about you."
2. ¬nli-target
3. nli-hate

F24: Abuse targeted at non-protected groups
(e.g. professions)

1. ¬nli-target
2. nli-hate

Table 13: List of hypothesis tests for all functionalities in GPT-HateCheck dataset. nli-target and
nli-hate refer to the hypotheses “That example is about [identity].” and “That contains hate speech.”,
which are reused across functionalities. ¬ means that we take the reverse of the entailment prediction.
We apply nli-target for all functionalities except for the ones using ¬nli-target. * denotes rule-based
tests without using the NLI model. , 7→ and · 7→ indicate that we apply the hypothesis on the example after
removing the first clause or the first sentence correspondingly. ⊘ means removing negation words from
the sentence.

• Abuse targeted at objects

• **Abuse targeted at individuals (not as member
of trans people)

• **Abuse targeted at non-protected groups (e.g.
professions)

Examples

• Can you trans this message into English?

• I’m proud to fight for trans rights.

• I wish someone would get me the f*ck out of
here.

• No trans deserves to die.

7882

• We are a group of trans people.

• I love trans.

• Statements like "trans are scum" are deeply
hurtful.

• You have to stop calling trans people disgust-
ing.

• This f*cking chair is so uncomfortable.

• You make me sick.

• All men are motherf*ckers.

Guideline for score assignment

• 1 (Not hateful at all): objective statements,
statements not targeting trans people, posi-
tive or neutral statements about trans people,
etc.

• 2 (Not hateful to most people): statements
that are primarily objective but might upset a
specific group. E.g., "trans community is more
likely to suffer from mental illness."

• 3 (Ambivalent): Might be hateful or not hateful
depending on the interpretation and context.

• 4 (Unambiguously hateful): Negative opinion
against trans people that doesn’t contain pro-
fanity or dehumanization. E.g., "I think trans
need to seek treatment instead of acceptance".

• 5 (Extremely hateful. Should be censored):
Messages involving profanity, dehumanization,
threat, or calling for discrimination, violence
against trans people.

C.1.2. Functionality Consistency Annotation

We are a Natural Language Processing research
group. The messages you shall annotate are all
written by ChatGPT. They may contain offensive
content and do not represent our view. Your anno-
tation will help us build more robust AI-based hate
speech detectors to protect minority groups (trans
people in this case).

In each task, you will be presented with a mes-
sage generated by ChatGPT and the instruction
used to generate it. Please decide whether the mes-
sage is consistent with the given instruction. Below,
we provide examples for each of the 24 unique in-
structions. The positive examples are consistent
with the instruction, and the negative ones are in-
consistent. Please ignore the instruction ID prefix
"FXX: " while evaluating.

F1: Expression of strong negative emotions
(explicit)

• E.g., "I hate trans."

• Negative cases:

– Express positive or neutral emotions to-
wards trans.

– Not containing any emotion.
– The message is not talking about trans.

F2: Description using very negative attributes
(explicit)

• E.g., "trans are disgusting."

• Negative cases:

– Describe neutral or positive attributes of
trans.

– Not mentioning any attribute of trans.
– The message is not talking about trans.

F3: Dehumanisation (explicit)
• E.g., "Trans are scum."

• Negative cases:

– Not dehumanizing trans.
– The message is not talking about trans.

F4: Implicit derogation
• E.g., "I’d rather die than date a trans."

• Negative cases:

– Explicit derogation containing profanity,
negative emotions, etc.

– The comment is not hateful to trans.
– The message is not talking about trans.

F5: Direct threat
• E.g., "I’m going to shoot the next trans I see."

• Negative cases:

– Not containing threat.
– The message is not talking about trans.

F6: Threat as normative statement
• E.g., "We should get rid of trans once and for

all."

• Negative cases:

– Not containing threat.
– Not a normative statement (subjective

statements that express value judgments,
opinions, or prescriptions about how
things ought to be).

– The message is not talking about trans.

7883

F7: Hate expressed using slur

• E.g., "You are just a tranny to me."

• Negative cases:

– Not containing slurs.
– The message is not hateful.
– The message is not talking about trans.

F8: Non-hateful homonyms of slurs

• E.g., "Trans this post to German"

• Negative cases:

– Not containing homonyms (different
meanings of the same word) of slurs.

– The message is hateful.

F9: Reclaimed slurs

• E.g., "I’m proud to be a trans."

• Negative cases:

– Not containing slurs or group identity of
trans.

– The message is hateful.

F10: Hate expressed using profanity

• E.g., "These trans should shut the f*ck up once
and for all.."

• Negative cases:

– Not containing profanity.
– The message is not talking about trans.

F11: Non-hateful use of profanity

• E.g., "I wish someone could get me the f*ck
out of here."

• Negative cases:

– The message does not contain profanity.
– The message is hateful against trans.

F12: Hate expressed through reference in sub-
sequent clauses

• E.g., "I have met many trans and I hate every
single one of them."

• Negative cases:

– Does not contain more than one clause.
– The message is not hateful.
– The message is not talking about trans.

F13: Hate expressed through reference in sub-
sequent sentences

• E.g., "Of course they are stupid. They are just
trans after all."

• Negative cases:

– Does not contain more than one sentence.
– The message is not hateful.
– The message is not talking about trans.

F14: Hate expressed using negated positive
statement

• E.g., "Trans lives do not matter."

• Negative cases:

– The message is not hateful.
– The message does not contain a nega-

tion.
– The message is not talking about trans.

F15: Non-hate expressed using negated hateful
statement

• E.g., "No trans deserves to die."

• Negative cases:

– The message is hateful.
– The message does not contain a nega-

tion.
– The message is not talking about trans.

F16: Hate phrased as a question

• E.g., "Why is it that all trans are repulsive?"

• Negative cases:

– The message does not contain a question.
– The message is not hateful.
– The message is not talking about trans.

F17: Hate phrased as an opinion

• E.g., "I think that trans should all be killed."

• Negative cases:

– The message does not contain an opinion.
– The message is not hateful.
– The message is not talking about trans.

7884

F18: Neutral statements using protected group
identifier

• E.g., "We are a group of trans."

• Negative cases:

– The message is a positive or negative
statement.

– The message is not talking about trans.

F19: Positive statements using protected group
identifier

• E.g., "Trans are great."

• Negative cases:

– The message is a neutral or negative
statement.

– The message is not talking about trans.

F20: Denouncements of hate that quote it

• E.g., "Statements like ‘trans are scum’ are
deeply hurtful."

• Negative cases:

– The message does not quote a hateful
statement.

– The message does not denounce that
statement.

– The message is not talking about trans.

F21: Denouncements of hate that make direct
reference to it

• E.g., "You have to stop calling trans disgust-
ing."

• Negative cases:

– The message does not refer to a hateful
statement.

– The message does not denounce that
statement.

– The message is not talking about trans.

F22: Abuse targeted at objects

• E.g., "All cocktails like these are vile."

• Negative cases:

– The message is not abusive.
– The abuse target is not an object.

F23: Abuse targeted at individuals (not as a
member of a protected group)

• E.g., "You make me sick."

• Negative cases:

– The message is not abusive.
– The message does not target individuals.
– The message is talking about trans.

F24: Abuse targeted at non-protected groups

• E.g., "Death to all capitalists."

• Negative cases:

– The message is not abusive.
– The message is talking about trans.

C.2. Annotation UIs
Figure 7 shows the annotation UIs for hateful and
functionality consistency annotation. We show ten
annotation tasks in each task suite. The suite is
accepted only if the annotator has annotated all
examples in the suite.

7885

(a) Hateful annotation

(b) Functionality consistency annotation

Figure 7: Annotation user interface for different annotation tasks.

	Introduction
	Related Work
	GPT-HateCheck
	Generating Test Cases
	Validating Test Cases

	Analyzing GPT-HateCheck Dataset
	Testing Models with GPT-HateCheck
	Conclusions and Future Work
	Bibliographical References
	Language Resource References
	List of Instructions to Generate Examples
	List of Hypothesis Tests to Validate Examples
	Details of Human Annotation
	Annotation Guidelines
	Hateful Annotation
	Functionality Consistency Annotation

	Annotation UIs

