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Abstract
This paper details the process of developing the first native large generative language model for the North
Germanic languages, GPT-SW3. We cover all parts of the development process, from data collection and
processing, training configuration and instruction finetuning, to evaluation, applications, and considerations
for release strategies. We discuss pros and cons of developing large language models for smaller lan-
guages and in relatively peripheral regions of the globe, and we hope that this paper can serve as a guide
and reference for other researchers that undertake the development of large generative models for smaller languages.
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1. Introduction

There is a growing interest in building and apply-
ing Large Language Models (LLMs) for languages
other than English. This interest has been fu-
elled partly by the unprecedented popularity of
ChatGPT1 that has propelled LLMs to the fore-
front of general awareness, and partly by the rapid
commoditization of frameworks and infrastructure
for training LLMs, which has drastically lowered
the threshold for researchers to train and utilize
LLMs. However, even with the existence of ac-
cessible frameworks such as Hugging Face Trans-
formers2 and commoditized compute infrastructure
either through cloud or various national (and in-
ternational) supercomputer initiatives, there are
significant challenges to develop LLMs for smaller
languages.

The perhaps most obvious challenge is access
to sufficient amounts of diverse, high-quality data.
Apart from the basic question whether sufficient
amounts of data at all exists for a smaller language,
there may be additional complicating issues related
to compliance with regulatory frameworks such as
GDPR, the EU AI Act, and questions pertaining to
copyright. We describe our data collection efforts
in Section 3 (and in a separate paper, Öhman et al.
(2023)). Another challenge for prospective devel-
opers of LLMs is access to sufficient amounts of
compute. Some countries have national compute
infrastructure devoted to researchers, but such in-
frastructure may have limited GPU-resources, and
access is typically regulated via specific allocation
tiers, which may not be suitable for large-scale

1chat.openai.com
2huggingface.co/docs/transformers

projects such as LLM training. On the other hand,
cloud providers are typically always an easily ac-
cessible option, but can be prohibitively costly.

We have faced all of these challenges in our work
on developing the first native LLM for the Scandi-
navian (or, more accurately, North Germanic) lan-
guages. The LLM, which we call GPT-SW3, is a
continuation of our previous Swedish-only model
(Ekgren et al., 2022a). GPT-SW3 is a collection
of large decoder-only pretrained Transformer lan-
guage models trained with a causal language mod-
eling objective on a dataset containing approxi-
mately 320B tokens in Swedish, Norwegian, Dan-
ish, Icelandic, and English, as well as a set of 4
programming languages (Python, JavaScript, SQL
and Shell script). The suite of models ranges from
126M to 40B parameters, and instruction-tuned ver-
sions are also available for some of these models.
This paper details the entire development process,
from data collection and processing, training con-
figuration and instruction-tuning, to evaluation and
considerations for model release.

2. Related Work

The era of LLMs arguably started with the 175B pa-
rameter GPT-3 model that was introduced in 2020
(Brown et al., 2020). During the last 3 years, we
have seen a steady stream of new LLMs, exempli-
fied by the models listed in Table 1. What counts
as a “large” language model is of course not rig-
orously defined. Our compilation in Table 1 lists
models that have been trained from scratch with
more than 20 billion parameters, but this threshold
is arbitrary, and could as well be 1B or 100B.

The majority of current LLMs are built from En-

chat.openai.com
huggingface.co/docs/transformers
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Size Language Open Name Reference

20B English Yes GPT-NeoX Black et al. (2022b)
30B English Yes MPT Team (2023)
34B Chinese, English Yes Yi Young et al. (2024)
34B Finnish, English Yes Poro huggingface.co/LumiOpen/Poro-34B

40B
Swedish, Norwegian

Yes GPT-SW3 This paperDanish, Icelandic
Faroese, English

45B Multilingual Yes Mixtral Jiang et al. (2024)
50B English No BloombergGPT Wu et al. (2023)
65B Multilingual Yes LLaMA Touvron et al. (2023a)
70B Multilingual Yes LLaMA-2 Touvron et al. (2023b)
70B English No Chinchilla Hoffmann et al. (2022b)
72B Chinese, English Yes Qwen Bai et al. (2023)

100B Russian Yes YaLM github.com/yandex/YaLM-100B
120B English No Galactica Taylor et al. (2022)
130B Chinese, English Yes GLM Zeng et al. (2022)
137B English No LaMDA Thoppilan et al. (2022)
175B English No GPT-3 Brown et al. (2020)
175B English Yes OPT Zhang et al. (2022)
176B Multilingual Yes BLOOM BigScience (2022)
178B English No Jurassic-1 Lieber et al. (2021)
180B Multilingual Yes Falcon Almazrouei et al. (2023)
200B Chinese No PanGu-α Zeng et al. (2021)
260B Chinese No Ernie 3.0 Wang et al. (2021)
280B English No Gopher Rae et al. (2021)
314B Multilingual Yes Grok-1 github.com/xai-org/grok-1
530B English No Megatron-Turing Smith et al. (2022)
540B English No PaLM Chowdhery et al. (2022)

? Multilingual No Mistral chat.mistral.ai
? Multilingual No Gemini gemini.google.com
? Multilingual No GPT-4 openai.com/gpt-4
? Multilingual No Claude anthropic.com/claude

Table 1: LLMs with a parameter count of more than 20 billion, sorted by ascending size. The “language”
column indicates the languages in the pretraining data (excluding code, which is present in a majority of
models), and the “open” column indicates whether the model weights are accessible for download.

glish data. There are however a growing number
of exceptions to this, including a number of Chi-
nese models (Yi, Qwen, GLM, PanGu-α, and Ernie
3.0), one Russian (YaLM) and one Finnish/English
model (Poro), as well as a number of models that
count as multilingual since they include a number
of different languages; examples include Falcon,
Mixtral, LLaMA (1 and 2), BLOOM, Grok-1 as well
as the commercial models Mistral, Gemini, GPT-4
and Claude. GPT-SW3 is unique in the sense that
it is the only model trained specifically on the North
Germanic languages (Swedish, Norwegian, Dan-
ish, Icelandic and Faroese), and as such it is also
the only current LLM built to represent a specific
language group.

Most of the early LLMs from 2020 and 2021,
such as GPT-3, Jurassic-1, PanGu-α, Ernie 3.0
and Gopher, were not (and are still not) publicly
released. However, from 2022 onwards there has
been a noticeable shift in release strategies from

developers of LLMs, with an increasing number
of models being released under various forms of
more or less permissive licenses that allow for
downloading of model weights (what we refer to
as “open” in Table 1). GPT-SW3 is also publicly
released under a permissive license. Section 8
provides a more detailed discussion about our con-
siderations regarding release strategies.

3. Data

The arguably most challenging aspect of building
an LLM for a (set of) smaller languages is find-
ing sufficient amounts of text data with sufficient
quality and variety. Since there are no readily avail-
able large data collections for LLM pretraining in
the North Germanic languages, we compiled our
own training data, which we call The Nordic Pile
(Öhman et al., 2023).

Our training data consists of text data collected

huggingface.co/LumiOpen/Poro-34B
github.com/yandex/YaLM-100B
github.com/xai-org/grok-1
chat.mistral.ai
gemini.google.com
openai.com/gpt-4
anthropic.com/claude
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Swedish English Norwegian Danish Icelandic Other Code Total

Articles 16.49 GB 173.52 GB 0.01 GB 0.19 GB 190.21 GB
Books 1.15 GB 94.14 GB 0.04 GB 0.06 GB 95.39 GB
Conversational 65.61 GB 81.67 GB 0.57 GB 2.84 GB 0.07 GB 0.01 GB 150.77 GB
Math 4.58 GB 4.98 GB 0.01 GB 0.01 GB 0.19 GB 9.77 GB
Miscellaneous 28.85 GB 56.31 GB 48.48 GB 13.85 GB 10.26 GB 1.8 GB 159.55 GB
Web CC 188.94 GB 60.36 GB 90 GB 111.33 GB 8.79 GB 2.05 GB 461.47 GB
Web Sources 7.83 GB 0.61 GB 0.03 GB 1.85 GB 10.32 GB
Wikipedia 1.03 GB 14.77 GB 0.48 GB 0.38 GB 0.05 GB 16.71 GB
Code 114.5 GB 114.5 GB

Total 314.48 GB 486.36 GB 139.62 GB 130.51 GB 19.17 GB 4.05 GB 114.5 GB 1,208.69 GB

Table 2: Data sizes for each language and category after cleaning and processing.

from various open general data sources, such as
MC4 (Xue et al., 2021), OSCAR (Suárez et al.,
2019; Ortiz Suárez et al., 2020), OPUS (Tiede-
mann and Nygaard, 2004), Wikipedia and The Pile
(Gao et al., 2021a), as well as language-specific
corpora such as the Norwegian Colossal Corpus
(Kummervold et al., 2021), the Danish and Ice-
landic Gigaword corpora (Strømberg-Derczynski
et al., 2021; Barkarson et al., 2022), and various
data repositories, websites and discussion forums
in Swedish. We also include a set of four different
programming languages from the CodeParrot3 col-
lection (Python, JavaScript, SQL and Shell script).
Table 2 summarizes the various data categories
across the various languages included in the train-
ing data.

We performed several steps of data process-
ing on the collected data, including normaliza-
tion, quality filtering and deduplication (both exact
and fuzzy). The normalization takes care of non-
printing characters, and normalizes whitespace
and Unicode characters. The quality filtering ap-
plies a set of heuristics inspired by Gopher and
ROOTS (Rae et al., 2021; Laurençon et al., 2022),
and the fuzzy deduplication utilizes MinHash LSH
(Broder, 1997). Our training data, processing steps,
and arguments for selection and filtering of sources
is described in more detail in a separate publication
(Öhman et al., 2023).

We weight the different languages and cate-
gories (cf. Table 2) in such a way that the com-
position of the training data changes, while its total
size stays the same. Note that this implies that
some data are used multiple times while other data
are discarded. More details can be found in App. A.
After weighting, we end up with the following distri-
bution of data in terms of languages:

• Swedish: 35.3%

• English: 23.4%

• Norwegian: 17.3%

• Danish: 14.8%

3huggingface.co/codeparrot

• Icelandic: 2.7%

• Code: 6.5%

4. Tokenizer

We employed the SentencePiece library (Kudo and
Richardson, 2018) to train a Byte-Pair Encoding
(Sennrich et al., 2016) tokenizer on a representa-
tive 1% sample of the model training data. The
tokenizer has a vocabulary size of 64,000. Our
reason for using a slightly larger vocabulary size
compared to other LLMs (e.g. GPT-3, OPT, and
GPT-NeoX have a vocabulary size of 50k tokens,
while LLaMA only uses 32k tokens in the vocabu-
lary) is that we want to improve the performance of
the smaller languages included in our data, such
as Icelandic.

Our tokenizer works without explicit pretokeniza-
tion. However, it splits digits and uses Sentence-
Piece’s dummy prefix and the byte fallback fea-
ture. We also added repeated whitespace tokens
(Black et al., 2022b) and special code tokens like
<|python|> to the tokenizer’s vocabulary, in order
to improve the way code data is handled. Note that
the special code tokens are present in the code
data as well. We describe the tokenizer’s features,
training and evaluation in more detail in a separate
paper (Stollenwerk, 2023).

After tokenization, our training data consists of
around 320B tokens.

5. Training

We trained our models on 160 40GB A100 GPUs
using the Nemo Megatron framework (Narayanan
et al., 2021). We trained models of increasing
size, starting out with the smaller models. This
strategy was employed to identify problems with
the pretraining procedure early on, before training
the larger models.4

4One such problem did occur: In the initial runs of the
small models, we assumed that the tokenization and bi-
narization script would delimit documents by end-of-text-
tokens. It did no such thing, which lead to frequent and

huggingface.co/codeparrot
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Size lr batch heads depth emb. dim.

126M 3e-4 256 12 12 768
356M 3e-4 256 16 24 1,024
1.3B 2e-4 512 32 24 2,048
6.7B 1.2e-4 1,000 32 32 4,096
20B 1.4e-4 1,920 48 44 6,144
40B 1.1e-4 1,920 64 48 8,192

Table 3: Hyperparameters used for the GPT-SW3
models of different sizes. All models have the same
vocabulary size (64,000) and sequence length
(2,048). The number of model parameters are
denoted by Size, while lr corresponds to the maxi-
mum learning rate.

Figure 1: Normalized learning rate schedule. The
maxima of the learning rate are given in Table 3.

Table 3 shows the most important hyperparame-
ters for the various model sizes. All models have
the same vocabulary size (64,000) and sequence
length (2,048). The feed-forward dimension is al-
ways four times the embedding dimension. The
models were trained using packing, meaning that
each sample in a batch can consist of multiple doc-
uments5 delimited by end-of-text-tokens6. We did
not use attention-masking between documents.

The learning rate schedule we employed is a
function of the amount of data, as visualized in
Figure 1. It is the same for all model sizes apart
from a global factor, the maximum learning rate
listed in Table 3. The training process starts with a
short warm-up period that amounts to 0.5B tokens,
during which the learning rate is increased from 0
to its maximum. Afterwards, we use a cosine decay
to the minimum learning rate ( 1

10 of the maximum

unexpected context-switching during generation. Thank-
fully, this was discovered and remedied early on due to
the training strategy.

5We have ∼4 documents per sample on average.
6Due to the nature of dataloading in Nemo Megatron,

this also means that documents belonging to the same
data sample also belong to the same dataset. Com-
bined with cross-document attention, this could have a
slightly adverse effect on the end-of-text token as docu-
ments across end-of-text boundaries are not completely
independent.

Size GPUs FLOP/s Utilization

126M 64 1.71 × 1015 8.58%
356M 32 1.57 × 1015 15.69%
1.3B 128 5.21 × 1015 13.06%
6.7B 160 8.63 × 1015 17.28%
20B 160 1.89 × 1016 37.91%
40B 160 1.96 × 1016 39.23%

Table 4: Achieved Model FLOP/s and Utilization
(w.r.t. peak theoretical FLOP/s) for the various
model sizes during a single job.

Figure 2: Validation loss during training.

learning rate) for another 319.3B tokens. Finally,
training is continued at a constant learning rate
until up to 372.2B tokens are reached.

Table 4 shows the model FLOP/s we achieved
for the various model sizes, as well as the utiliza-
tion w.r.t. peak theoretical FLOP/s. For the larger
models, the utilization numbers are comparable
to those reported by NVIDIA in Narayanan et al.
(2021) whereas the smaller models show much
poorer utilization. We believe this can be attributed
to over-parallelization of the smaller models.

The validation loss during training can be seen
in Figure 2. As expected, the larger models reach
lower validation loss, and largely follow the ex-
pected scaling behavior (see Appendix B for more
details). Contrary to some other works (Zhang
et al., 2022), we did not experience any divergence
during training, but we did observe the occasional
gradient spike (with no catastrophic long-term ef-
fect).

5.1. Energy consumption

We estimate that the total compute budget for our
training runs is something like 560k GPU hours.
This is obviously a very rough estimate, and likely
to be somewhat on the high end. The average car-
bon intensity in Sweden, where the models were
trained, is estimated to be around 10 grams of car-
bon dioxide per kilowatt-hour (gCO2/KWh).7 Using
the ML CO2 IMPACT calculator8 we calculate
our total carbon emissions to be roughly 14,462 kg
CO2. This is approximately on the same level of

7https://bit.ly/4anuJyK
8mlco2.github.io/

https://bit.ly/4anuJyK
mlco2.github.io/
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carbon emissions as is generated by manufactur-
ing one 80 kWh lithium-ion battery used in electric
cars.9 Considering the relatively low carbon inten-
sity of the power system used to train our models,
our carbon footprint is significantly lower than that
of other similar models (see e.g. the emissions
estimated for the BLOOM model (Luccioni et al.,
2022)).

6. Instruction finetuning

Due to the popularity and effectiveness of
instruction-tuned models such as ChatGPT, we
also produce a set of instruction-tuned models.
The models were fine-tuned using instruction
tuning (Ouyang et al., 2022) data from multiple
sources: Open Assistant10 (Köpf et al., 2023),
The Open Instruction Generalist (OIG) dataset11,
Dolly12, and a dataset compiled specifically for
this study based on FASS (The Swedish pharma-
ceutical formulary, Farmaceutiska Specialiteter i
Sverige).

For the OIG data, we selected high-quality sub-
sets, which encompassed a wide range of topics
and dialog styles. The datasets selected were
abstract infill, HC3 human, SODA dialog, CHIP2,
image prompts instructions, SQLv1, conversa-
tion FinQA, MathQA FLANv2 Kojma COT, SQLv2,
CUAD, NI, SQuAD v2, essays, OpenAI Summarize
TLDR, SQuAD v2 more negative, grade school
math instructions, Rallio SODA upgraded 2,048,
and unnatural instructions. The rest of the datasets
from OIG were discarded, leaving us with a consid-
erably smaller data set than the original OIG.

We formatted the instruction data into a unified
turn-based format, where an initial user query is
followed by an assistant response, which in turn
is (potentially) followed by a follow up user query,
and so on. This turn-based query-response format
was formatted in two ways13:

• An unrolled format, where the query-response-
query-turns are simply delimited by double
newlines:

Query

Response

...

9https://bit.ly/3Ts9rJi
10huggingface.co/datasets/

OpenAssistant/oasst1
11laion.ai/blog/oig-dataset/
12huggingface.co/datasets/databricks/

databricks-dolly-15k
13This means that each conversation occurs twice in

the final training data, once as chat and once in the
unrolled format.

• An explicit chat format inspired by the chatml
format:14

<eos><bos>User: Query
<bos>Assistant: Response
<bos>...

Where <eos> is the special document-
delimiter token used during pretraining, and
<bos> is a special turn-delimiter token only
used during instruction-finetuning.

In both cases, we employed stochastic merging
of independent conversations using a simple con-
catenation strategy: Sample a number of samples
N according to a geometric distribution, randomly
sample N conversations from the dataset, and let
the concatenation of these N conversations be
your new datapoint. This was done to improve the
models context-switching capabilities.

To accommodate our multilingual focus, the Ope-
nAssistant and Dolly data sets were translated.
The OpenAssistant data set was translated from
English to Swedish, Danish, Norwegian, and Ice-
landic, while the Dolly data set was translated from
English to Swedish and Danish. The translations
were done with the GPT-SW3 base models.

The fine-tuning process was applied consistently
across models of different scales, including 356M,
1.3B, 6.7B, and 20B parameters. We used a se-
quence length of 2,048, a batch size of 160, and
an initial learning rate of 2× 10−5, which we grad-
ually reduced with cosine decay to a minimum of
2×10−6 over the course of 2,069 global steps. This
approach consumed a total of 331,040 samples,
with a warm-up period spanning 360 steps.

7. Evaluation

Since we currently lack suitable evaluation bench-
marks for generative language models in the North
Germanic languages, we use language modeling
perplexity on a set of held-out data to compare our
models. We use character length normalization
(Cotterell et al., 2018; Mielke, 2019) rather than to-
ken length for calculating perplexity formula, since
token length favours tokenizers that use more to-
kens per sentence. We thus calculate perplexity
as:

PPLc(X) = exp

{
− 1

c

t∑
i=1

log p(Ti|T<i)

}
c = Character length of X
T = Tokenization of X
t = Token length of T

(1)

14github.com/openai/openai-python/blob/
main/chatml.md

https://bit.ly/3Ts9rJi
huggingface.co/datasets/OpenAssistant/oasst1
huggingface.co/datasets/OpenAssistant/oasst1
laion.ai/blog/oig-dataset/
huggingface.co/datasets/databricks/databricks-dolly-15k
huggingface.co/datasets/databricks/databricks-dolly-15k
github.com/openai/openai-python/blob/main/chatml.md
github.com/openai/openai-python/blob/main/chatml.md
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0-shot 5-shot
Task 126M 356M 1.3B 6.7B 20B 40B 126M 356M 1.3B 6.7B 20B 40B

ANLI Round 1 0.336 0.298 0.315 0.337 0.322 0.368 0.334 0.313 0.332 0.317 0.330 0.350
ANLI Round 2 0.317 0.338 0.345 0.333 0.343 0.358 0.341 0.359 0.340 0.332 0.333 0.350
ANLI Round 3 0.322 0.325 0.311 0.332 0.333 0.391 0.330 0.319 0.336 0.330 0.343 0.364
WSC 0.365 0.365 0.365 0.413 0.394 0.548 0.365 0.365 0.394 0.365 0.519 0.423
HellaSwag 0.279 0.322 0.393 0.457 0.502 0.532 0.280 0.321 0.387 0.452 0.504 0.532
Winogrande 0.493 0.517 0.571 0.617 0.632 0.656 0.522 0.527 0.557 0.607 0.657 0.674
PIQA 0.584 0.642 0.707 0.735 0.768 0.772 0.600 0.646 0.708 0.739 0.765 0.776
ARC (Easy) 0.388 0.408 0.549 0.609 0.692 0.687 0.412 0.473 0.588 0.647 0.707 0.718
ARC (Cha.) 0.204 0.200 0.253 0.294 0.352 0.368 0.191 0.213 0.276 0.312 0.360 0.387
OpenBookQA 0.140 0.186 0.214 0.220 0.268 0.274 0.148 0.188 0.228 0.260 0.240 0.300
HeadQA 0.224 0.236 0.266 0.278 0.308 0.302 0.227 0.243 0.273 0.295 0.233 0.330

Average 0.332 0.349 0.390 0.420 0.447 0.478 0.341 0.361 0.402 0.424 0.454 0.473

Table 5: LM Evaluation Harness accuracy scores of GPT-SW3 in 0-shot setting (left) and 5-shot setting
(right). The best performance for each task and setting is marked in boldface.

Model SE DA NO EN

GPT-SW3 40B 1.9240 1.8698 1.9270 1.9660
GPT-SW3 20B 1.9458 1.8932 1.9491 1.9928
GPT-SW3 6.7B 1.9781 1.9229 1.9795 2.0152
GPT-SW3 1.3B 2.0665 2.0192 2.0741 2.1166
GPT-SW3 356M 2.1973 2.1568 2.2130 2.2477
GPT-SW3 126M 2.3748 2.3455 2.3992 2.4297

GPT-NeoX 20B 2.3807 2.3378 2.4245 1.9377

Falcon 40B 2.0194 2.2379 2.2705 1.8152
Falcon 7B 2.6546 2.7355 2.7740 1.8743
Falcon-RW 1B 3.7672 3.7187 3.7806 1.9765

Table 6: Evaluation of perplexity normalized on
characters on held-out data for Swedish, Danish,
Norwegian and English. The best score per lan-
guage is marked in boldface.

Table 6 shows the perplexity scores for GPT-
SW3 in comparison with GPT-NeoX (20B) and the
recent Falcon models (1B, 7B and 40B) which have
been trained on a small amount of Swedish data
(1B tokens). It is obvious, and perhaps not very sur-
prising, that GPT-SW3 reach the lowest language
modeling perplexity on Swedish, Danish and Nor-
wegian data, and that larger models reach lower
perplexity.

The fact that GPT-SW3 has been trained on En-
glish data, and seems to perform well w.r.t. lan-
guage modeling perplexity, suggests that we can
also take advantage of the English-language Lan-
guage Model Evaluation Harness (Gao et al.,
2021b) to benchmark our models. The LM Evalua-
tion Harness framework contains a large number
(200+) of different evaluation tasks. We select a
small subset of these to benchmark our models
(ANLI, WSC, HellaSwag, Winogrande, PIQA, ARC,
OpenBookQA, and HeadQA). Table 5 shows the
results of GPT-SW3 in a 0-shot setting (left side
of the table) and 5-shot setting (right side of the
table). Unsurprisingly, the larger models perform
better, with the 40B model performing best overall.

Table 7 shows a comparison between two of
our base models and their respective instruction-

tuned variants in both 0-shot and 5-shot setting.
The general tendency is (perhaps unsurprisingly)
that instruction-tuning is beneficial for the models
when applied to the LM Harness tasks. The 6.7B
instruction-tuned model even outperforms the 20B
base model on average on LM Harness, and the
20B instruction-tuned version approaches the per-
formance of the 40B model.

Table 8 shows a comparison between GPT-SW3
40B, GPT-NeoX (20B), and GPT-3 DaVinci (pre-
sumably 175B) on LM Harness in a 0-shot setting.
The models perform more or less comparably over
all tests, with DaVinci outperforming GPT-NeoX
and GPT-SW3 in 8 out of 13 tests, GPT-SW3 out-
performing the other in 5 tests, and GPT-NeoX
outperforming the others in only one test. It should
be noted that these models are strictly not com-
parable due to significant differences in training
data and parameter count; DaVinci is by far the
largest of these models with (presumably) 175B pa-
rameters compared to 40B for GPT-SW3 and 20B
for GPT-NeoX. On the other hand, GPT-SW3 has
been trained on significantly less English data than
the other models, but still performs comparably on
these tests.

8. Release plan

As we touched upon in Section 2, it is not obvi-
ous that new LLMs are released openly, and dif-
ferent developers have opted for different release
strategies. Some opt for a completely open release
where the weights of the model can be downloaded
freely and the user is permitted to both modify and
redistribute the weights, as well as to integrate the
model in various types of applications, both aca-
demic and commercial. Others opt to not share
the model weights at all, due to reasons such as
commercial advantage, concerns about the poten-
tial for misuse, or legal restrictions relating to, e.g.,
the General Data Protection Regulation (GDPR).
Solaiman (2023) provides a good discussion and



7892

0-shot 5-shot
Task 6.7B 6.7B-instruct 20B 20B-instruct 6.7B 6.7B-instruct 20B 20B-instruct

ANLI Round 1 0.337 0.329 0.322 0.372 0.317 0.309 0.330 0.328
ANLI Round 2 0.333 0.376 0.343 0.381 0.332 0.341 0.333 0.359
ANLI Round 3 0.332 0.361 0.333 0.378 0.330 0.331 0.343 0.372
WSC 0.414 0.385 0.394 0.365 0.365 0.490 0.519 0.375
HellaSwag 0.457 0.503 0.502 0.528 0.452 0.502 0.504 0.527
Winogrande 0.617 0.617 0.632 0.639 0.607 0.616 0.657 0.646
PIQA 0.735 0.765 0.768 0.764 0.739 0.762 0.766 0.773
ARC (Easy) 0.609 0.679 0.692 0.677 0.650 0.686 0.707 0.702
ARC (Cha.) 0.294 0.352 0.352 0.355 0.312 0.360 0.360 0.382
OpenBookQA 0.220 0.274 0.268 0.250 0.260 0.288 0.240 0.282
HeadQA 0.278 0.318 0.309 0.310 0.295 0.334 0.233 0.323

Average 0.421 0.451 0.447 0.457 0.424 0.456 0.454 0.461

Table 7: LM Evaluation Harness accuracy scores of our instruct models (6.7B and 20B) compared with
their same-size base model counterparts in 0-shot setting (left) and 5-shot setting (right). The best
performance for each task and setting is marked in boldface.

GPT-NeoX DaVinci GPT-SW3 40B

ANLI Round 1 0.340 0.363 0.368
ANLI Round 2 0.343 0.375 0.358
ANLI Round 3 0.354 0.369 0.391
WSC 0.500 0.548 0.548
HellaSwag 0.535 0.592 0.532
Winogrande 0.661 0.699 0.656
SciQ 0.928 0.949 0.955
PIQA 0.779 0.791 0.772
ARC (Easy) 0.723 0.762 0.687
ARC (Challenge) 0.380 0.435 0.368
OpenBookQA 0.290 0.336 0.274
LogiQA 0.230 0.227 0.290
PROST 0.296 0.267 0.263

Average 0.489 0.516 0.497

Table 8: Comparison between GPT-NeoX 20B,
OpenAIs DaVinci (175B), and GPT-SW3 40B
model on LM Harness (0-shot). The best score
for each task is marked in boldface.

overview of the complexities involved in defining a
suitable release strategy for an LLM.

As a compromise between openness and cau-
tion, our release strategy consisted of two phases:

1. An initial restricted pre-release, which included
manual audit of applications where access
was granted to the model weights for organiza-
tions and individuals in the Nordic NLP ecosys-
tem that aimed to use the models for research
purposes. Usage was also restricted by a
slightly modified version of the BigScience Re-
sponsible AI License (RAIL).15 Our intention
was to use this pre-release phase for collect-
ing input on model behavior, flaws and lim-
itations in order to be able to make a more
informed decision about open release. The
restricted pre-release lasted approximately 6
months, and showed no significant flaws or
adversarial effects.

2. Due to the positive outcome of the restricted

15bigscience.huggingface.co/blog/
the-bigscience-rail-license

pre-release phase, we have now released the
weights of the GPT-SW3 models openly un-
der a slightly modified version of the Apache
2 license, which allows for modification, re-
distribution, research and commercialization
of the model weights. We believe that an
open release strategy is beneficial for value
creation, transparency, democratization, and
reproducibility.

The GPT-SW3 models are available at:
huggingface.co/AI-Sweden-Models.

9. Discussion

This paper has detailed the development process
for our family of North Germanic LLMs. It is at
this point a perfectly reasonable question to ask
why we at all should build a native LLM for a set of
small languages with limited resources when the
dominant LLMs of large corporations already can
handle these languages in a reasonable (and often
even superior) way. We have several answers to
this question.

We believe that there is a desire and need for
cultural and linguistic representativeness by in-
formed choices and processing of data sources,
transparency in all design choices and throughout
the entire development process, democratizing
access to natively built LLMs by open or hosted
release, and open validation of model capacities
as well as utilization of existing national compute
infrastructure. Perhaps most importantly, the main
goal of the GPT-SW3 initiative has been to give
the Nordic research community full access to the
weights of a native-language LLM, something that
is not currently possible with other existing LLMs.

Developing LLMs for smaller languages is ad-
mittedly a challenging endeavor when it comes to
data availability, but it also opens up opportunities
to select and process data sources in a more in-
formed manner that is guided by considerations of

bigscience.huggingface.co/blog/the-bigscience-rail-license
bigscience.huggingface.co/blog/the-bigscience-rail-license
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both population representativeness, application do-
mains and regulatory compliance. We have taken
a first step in this direction, but our efforts have
been constrained by limited funding and compute
resources, something we believe is an all too com-
mon situation for many developers in small coun-
tries. Our initiative has been made possible by
a national collaboration with a number of other
organisations that have contributed to the develop-
ment in various ways, e.g. by providing access to
large-scale compute. One major advantage of our
initiative is the geographical location of the com-
puter used to train our models, which is connected
to a power grid with minimal carbon intensity. As
such, our training runs have caused significantly
lower carbon emissions than other similar projects
that run on more carbon intensive power grids.

We concede that evaluation remains an issue
for LLMs built for smaller languages such as the
North Germanic ones. We are actively working
on evaluation resources and process for Scandi-
navian LLMs, and we are also running a validation
project, where stakeholders from all sectors of soci-
ety validate the models for actual use in real-world
applications, which span from relatively simple text
generation tasks to more complex decision support
functionalities. An important finding so far in the
validation project is that there is a tangible need for
LLMs that allow for the possibility to modify, fine-
tune, and host the models locally. This will likely
remain an important factor for LLM adoption, even
if the available models are slightly less capable
than the leading proprietary models.

We conclude this paper with a short note on risks
in relation to LLMs. We think the current debate
on the potential for apocalyptic risks incurred by
LLMs is poorly nuanced and greatly exaggerated,
leading to amplified and unnecessary polarization.
We think a more realistic risk is the concentration
of power and capital that will inevitably occur when
only a small set of companies have the resources
and abilities to develop, serve and distribute LLMs.
Open and nationally driven LLM initiatives are vital
counterparts to such developments. Another re-
alistic risk is inflated expectations that may occur
when models are not publicly accessible for valida-
tion, modification, and further development. Open
development will serve to counteract this risk.

Our position is thus that open initiatives to de-
velop LLMs for smaller languages are important
and should be supported rather than hindered by
regulation, funding sources, and infrastructure ac-
cess programs.
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A. Data Weighting

We present some details regarding the weighting
of the training data (see Sec. 3). First, a target
distribution in terms of languages and categories is
defined. This means that we specify the fraction of
the total dataset that should correspond to a given
language and category. Our choices are listed in
Table 9.

In order to obtain this target distribution, the
datasets need to be weighted, i.e. either down-
sampled (in case there is more data available than
wanted) or upsampled (in case there is less data
available than wanted). We do this in such a
way that the total amount of training data remains
constant at 320B tokens. Table 10 lists the num-
ber of epochs for each individual dataset needed
to achieve these conditions. Note that English
datasets are mostly downsampled, while the North
Germanic languages are upsampled.

B. Scaling Analysis

Scaling laws describe how the upstream or down-
stream performance of LLMs depend on the model
size N and dataset size D. Hoffmann et al. (2022b)
showed that the loss for their family of monolingual,
English models can accurately be described by the
functional form

L(N,D) = E +
A

Nα
+

B

Dβ
(2)

with fit parameters E = 1.69, A = 406.4, B =
410.7, α = 0.34 and β = 0.28. This assumes that
the learning rate follows the schedule depicted in
Figure 1 for all dataset sizes D. For this reason,
we can only apply the above scaling law for the
dataset size D ≈ 320B tokens (cf. Sec. 5). In that
case, Eq. (2) reduces to

L̃(N) := L(N,D = 320B)

= Ẽ +
A

Nα
(3)

with Ẽ := E +B/(320 · 109)β = 1.94.
In Figure 3, we show the validation loss L̃(N)

for our models as a function of the model size.
Note that the loss for the 20B parameter model is
exceptionally large. A comparison with Figure 2
reveals that the learning curve for this very model
size displays exceptional behaviour around D ≈
320B tokens ≈ 156M samples. We thus treat it as
an anomaly and exclude it from the fit to our data.
In that case, our model’s scaling behaviour can
accurately be described by the functional form of
Eq. (3), with the fit parameters

ẼGPT-SW3 = 1.942± 0.002 (4)
AGPT-SW3 = 702.6± 15.2 (5)
αGPT-SW3 = 0.348± 0.001 (6)

Figure 3: Scaling behaviour of GPT-SW3. The vali-
dation loss is shown as a function of the model
size, while the dataset size is kept constant at
320B tokens for all models. The 20B parame-
ter model (empty circle) is excluded from the fit
(dashed curve). The gray, solid curve represents
the scaling law from Hoffmann et al. (2022b).

Note that while ẼGPT-SW3 and αGPT-SW3 are very
much in accordance with the results from Hoff-
mann et al. (2022b), AGPT-SW3 ≫ A deviates signifi-
cantly from its counterpart. Whether this is can be
attributed to our multilingual setting or has other
causes is an interesting research question which
we leave for future work.
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Swedish English Norwegian Danish Icelandic Code Total

Articles 2.27 1.96 0.03 4.25
Books 0.12 5.78 5.90
Conversational 10.34 6.19 0.11 0.49 0.03 17.17
Math 1.59 0.70 2.29
Miscellaneous 4.09 3.33 9.56 4.79 1.97 23.73
Web CC 15.49 1.87 7.54 9.11 0.72 34.73
Web Sources 1.10 0.23 1.34
Wikipedia 0.29 3.59 0.12 0.10 0.01 4.11
Code 6.48 6.48

Total 35.30 23.41 17.33 14.75 2.73 6.48 100.0

Table 9: Target distribution in terms of languages and categories. The numbers denote the fraction of the
total dataset in percent. Empty cells correspond to non-existing datasets, equivalent to 0. Compare to
Table 2.

Swedish English Norwegian Danish Icelandic Code

Articles 1.90 0.15 1.90
Books 2.11 0.84
Conversational 2.11 0.84 2.11 2.11 2.11
Math 1.69 0.67
Miscellaneous 2.11 0.84 2.11 2.11 2.11
Web CC 1.05 0.42 1.05 1.05 1.05
Web Sources 1.69 1.69
Wikipedia 3.16 3.16 3.16 3.16 3.16
Code 0.74

Table 10: Epochs needed in order to achieve the target distribution (see Table 9) while keeping the total
amount of data constant. Empty cells correspond to non-existing datasets, equivalent to 0.
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