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Abstract
Multilingual neural machine translation handles the translation of multiple languages with one unified model. However,
this joint-training paradigm incurs the notorious issue of parameter interference, where the model compromises with
the language diversity to find a common solution. Recent research has explored avoiding this problem by selecting
certain parameters for each language direction from the original model to form language-specific sub-networks.
However, determining how many parameters to choose and which parameters to select is still a serious challenge.
In this work, we propose an approach called CaPA (Consistency-based Parameter Allocation), which dynamically
allocates parameters of appropriate scale to each language direction based on the consistency between the gradient
of the individual language and the average gradient. Specifically, CaPA allocates more parameters to languages
with higher gradient consistency as these languages tend to have a more positive impact on other languages.
Furthermore, considering the varying levels of interference across different parts of the model, we propose an
adaptive parameter allocation based on module-level gradient consistency. Experimental results show the cor-
relation between gradient consistency and parameter interference, as well as the effectiveness of our proposed method.

Keywords: Multilinguality, Machine Translation

1. Introduction

Neural machine translation (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Vaswani
et al., 2017; Wang et al., 2019) has made great
progress in recent years. Multilingual neural ma-
chine translation (MNMT) (Johnson et al., 2017;
Tan et al., 2019; Fan et al., 2021; Huang et al.,
2022b, 2023) is a variant of NMT that is designed
to handle translation between multiple languages
with one single model, which can be more efficient
and cost-effective.

In the standard MNMT model, different lan-
guages share all of the model parameters. The
paradigm of completely parameters sharing en-
ables the transfer of cross-lingual knowledge, sig-
nificantly enhancing the translation performance of
low-resource languages. However, it also gives
rise to the issue of parameter interference, i.e.,
different languages express a disagreement on
some parameters, which leads to the model a
compromise across all languages. This compro-
mise may not capture the specific nuances of in-
dividual languages, leading to reduced transla-
tion quality. In order to learn language specific
knowledge, researchers have explored various
strategies. These include the incorporation of ad-
ditional language-specific components, such as
the language-specific attention (Blackwood et al.,
2018), adapter (Bapna and Firat, 2019; Baziotis
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et al., 2022), layer (Zhang et al., 2020; Pires et al.,
2023) or the duplication of parameters that give rise
to conflicts among different language pairs (Wang
and Zhang, 2022). However, it is worth noting that
these approaches inevitably lead to a notable in-
crease in the overall model parameters.

Another line of research in language-specific
modeling aims to precisely specify certain param-
eters in the original model through the utilization
of model pruning methodologies (Lin et al., 2021;
Xie et al., 2021). The specified parameters for
each language direction form language-specific
sub-networks, and each sub-network can be di-
vided into two parts: shared parameters, which re-
tain general knowledge, and language-specific pa-
rameters, which capture language-specific knowl-
edge. However, determining how many parameters
for each language direction and selecting which
parameters to include still remains a challenging
task. Lin et al. (2021) manually set a uniform per-
centage for all language directions, which is both
cumbersome and limited in the performance. On
the other hand, traditional methods for learning sub-
networks solely assign parameters based on their
importance within individual languages, disregard-
ing the relevance between languages.

In this work, we propose a novel pruning method
for multilingual machine translation that adaptively
allocates appropriately sized sub-networks for each
language direction. We define the similarity be-
tween the gradient of each language direction and
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the one of the overall training objective as gradi-
ent consistency, and the amount of parameters
allocated to each language direction is determined
based on consistency. Therefore, language direc-
tions with higher inter-language consistency, which
tend to positively contribute to the overall objec-
tive, can be allocated more parameters. On the
contrary, if the language exhibits a low level of gra-
dient consistency, it indicates that this language will
cause interference to the overall performance. In
such cases, the impact of this interference should
be alleviated by reducing the allocated parameter
quantity. Furthermore, the level of interference in
different parts of the model often varies. So we
propose to pertinently allocate parameters based
the module level gradient consistency.

Our contributions can be summarized as follows:

• We propose an innovative pruning method
for multilingual machine translation that dy-
namically allocates parameters of appropriate
scales to each language direction based on
the gradient consistency among different lan-
guage directions.

• We propose an adaptive parameter allocation
based on module-level consistency to effec-
tively alleviate interference and retain more
general knowledge.

• Our method is parameter-efficient and does
not significantly increase the number of pa-
rameters.

• Experimental results demonstrate that our
method facilitates the sharing of general knowl-
edge while suppresses the cross-lingual neg-
ative transfer1.

2. Background

Multilingual Neural Machine Translation The
standard paradigm of MNMT is to use a single
model with completely shared parameters to trans-
late L language pairs {S1 − T 1, S2 − T 2, ..., SL −
TL}, from any source language Sl to its traget T l.
To indicate the translation direction, special lan-
guage token are added at the beginning of source
and target sentences. In this work, we follow John-
son et al. (2017) to employ the Transformer as the
backbone network.

Learning Language Specific Sub-networks
Learning language-specific sub-networks can mit-
igate the interference between languages in mul-
tilingual machine translation model. The shared
parameters tend to retain general knowledge, while
the language-specific parameters focus on learning
language-specific details. In this work, we follow

1https://github.com/huowsh/CaPA

Algorithm 1 Gradient Consistency-based Parame-
ter Allocation
Input: language pairs number L; training data
{Dtrain

l }Ll=1; development data {Ddev
l }Ll=1;

Initialize: MNMT model θ; fine-tune θ for l ∈ [1, L];
1: while θ not converge do
2: train θ for multiple steps with Dtrain

3: for l ∈ [1, L] do
4: sample a batch of data Bdev

l from Ddev
l

5: calculate gradient gradl on Bdev
l

6: end for
7: for l ∈ [1, L] do
8: gradavg =

∑L
i=1,i̸=l grad

i

9: consistency = cos(gradl, gradavg)
10: reallocate a sub-network for l
11: end for
12: end while

Lin et al. (2021) and selectively allocate parameters
using the method of model pruning. A sub-network
for language pair l is indicated by a binary mask
vector Ml ∈ {0, 1}θ in base model θ. Each element
indicates whether the weight w is retained for lan-
guage pair l. During training and inference, only
the parameters belonging to sub-network l are in-
volved in the computations, rather than the entire
model.

3. Approach

In this section, we describe the proposed parameter
allocation approach. We first introduce the overall
process of CaPA. And we compare the difference
between our method and previous work on learning
language specific sub-networks. Then, we provide
a detailed description of CaPA, which dynamically
allocates parameters for each language direction
based on the gradient consistency observed during
the training process.

Furthermore, we found that the gradient consis-
tency between translation directions varies across
different parts of the network. Therefore, we pro-
pose a parameter allocation scheme based on
module-level gradient consistency.

3.1. Overall
Algorithm 1 lists the overall process of our method.
Initially, we train an entire parameter-shared multi-
lingual translation model θ. Subsequently, similar
to the approach in LaSS (Lin et al., 2021), we fine-
tune the model θ on each language direction to iden-
tify the language-specific important weights based
on their magnitudes. Different from their method,
we proceed to train θ while adaptively allocating
varying sizes of sub-networks to each language di-
rection, taking into account the degree of gradient
consistency.
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Figure 1: The illustration of LaSS (a) and the proposed methods CaPA (b) and CaPA-m (c) in learning
language sub-network. (a) prunes the model weights by a uniform percentage R for all language pairs to
obtain language-specific sub-networks, where R is a manually set hyper-parameter. (b) allocates different
percentages of weights to each language based on the level of gradient consistency. (c) further evaluates
the gradient consistency at the module level and only prunes the weights in the modules that exhibit
conflict.

3.2. Gradient Consistency-based
Parameter Allocation

As shown in (a) and (b) of Figure 1, unlike Lin et al.
(2021) which prunes the weights at a fixed rate for
all language directions, CaPA observes the gra-
dient consistency during the training process and
allocate different size of sub-networks to each lan-
guage direction based on the degree of interfer-
ence. Our main idea is that when the update objec-
tive for a language-pair significantly deviates from
the average one, it means that this language is neg-
atively interfering with the overall goal and should
allocate fewer parameters. On the other hand, if the
update targets are more similar, it means that the
language is promoting the overall goal and should
have more parameters. We define the similarity
between the gradient of language pair l and the
average gradient as consistency Cl:

Cl = cos(gradl, gradavg), (1)

the greater the Cl, the more l can promote the over-
all training goal. On the contrary, it indicates that l
will cause interference and more parameters should
be pruned for l. So the pruning rate R of l can be
defined as:

Rl = σ
(
1− 2

1 + exp
(
− β(Cl − λ)

)), (2)

where Rl and Cl are negatively correlated; the hy-
perparameters λ and β respectively determine the
starting point of pruning and the sensitivity of prun-
ing rate to the influence of Cl; σ represents the
taking only of values greater than 0. When (Cl − λ)
is greater than 0, it indicates a strong correlation
between l and others . Therefore, we set Rl = 0.

And when (Cl − λ) is less than 0, the range of val-
ues for Rl is between (0, 1), and the smaller the
value of Cl the fewer parameters are allocated to l
with a bigger Rl.

Considering that the gradient similarity situation
will change during training, we will dynamically up-
date the pruning rate. The method for calculating
the pruning rate Rl

t of language l at time t is as
follows:

Rl
t = σ

(
(1− 2

1 + exp
(
−β(Cl − λ)

) )
(1−Rl

t−1) +Rl
t−1

)
,

(3)

Rl
t is calculated based on Rl

t−1 from the previous
iteration. (1 − Rl

t−1) represents the ratio of the
parameters that are still related to l after the pre-
vious pruning to the total number of parameters
in the model. The new sub-network is formed by
merging the required changes with the previous
sub-network.

3.3. Module-level Gradient
Consistency-based Parameter
Allocation

Through Section 3.2, we calculate the pruning rate
based on the consistency of each language pair
on the entire model. And similar to LaSS(Lin et al.,
2021), we apply the Rl to each module in the net-
work, as illustrated in (a) and (b) of Figure 1. How-
ever, the degree of interference in different parts
of the model is often not the same. Therefore, we
can calculate the consistency of each language
on each component of the model. Formally, the
consistency of the language pair l on module m in
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TED-8-Diverse TED-8-Related WMT
language #num language #num language #num
bos (Bosnian) 5,664 bel (Belarusian) 4,509 tr (Turkish) 5,000
mar (Marathi) 9,840 aze (Azerbaijani) 5,946 ro (Romanian)) 10,000
hin (Hindi) 18,798 glg (Glacian) 10,017 et (Estonian) 80,000
mkd (Macedonian) 25,335 slk (Slovak) 61,470 zh (Chinese)) 400,000
ell (Greek) 134,327 cse (Czech) 103,093 de (German) 1,500,000
bul (Bulgarian) 174,444 tur (Turkish) 182,470 fr (French) 3,000,000
fra (French) 192,304 por (Portuguese) 184,755
kor (Korean) 205,640 rus (Russian) 208,458

Table 1: Data statistics for the TED-8-Diverse dataset, the TED-8-Related dataset and the WMT dataset.
‘#num’ refers to the number of sentence pairs in the training set.

the MNMT model is defined by:

Clm = cos(gradlm , gradavgm), (4)

gradlm represents the backpropagated gradient for
language direction l on module m, while gradavgm

denotes the average gradient of all language di-
rections on module m. Then we will obtain the
adaptive pruning rate of each module based on the
local consistency:

Rlm
t = σ

(
(1− 2

1 + exp
(
−β(Clm − λ)

) )
(1−Rlm

t−1) +Rlm
t−1

)
.

(5)

So, we can distinguish whether each module has
interference and prune according to the degree of
interference as (c) in Figure 1. While more perti-
nently relieving interference, retain more general
knowledge.

4. Experiments

4.1. Settings
Datasets We conducted experiments on pub-
licly available multilingual datasets, including the
widely-used benchmark TED-8-Diverse and TED-
8-Related (Wang et al., 2020a), and a relative large-
scale WMT dataset(Bojar et al., 2014, 2016, 2017,
2018) .

The TED-8-diverse dataset contains 4 low-
resource languages (bos, mar, hin, mkd) and 4
high-resource languages (ell, bul, fra, kor).
The TED-8-Related contains 4 low-resource lan-
guages (aze, bel, glg, slk) and 4 related high-
resource language (tur, rus, por, ces). We
follow Wang et al. (2020a) to apply sentencepiec
(Kudo and Richardson, 2018) to preprocess sen-
tences with vocabulary sizes of 8k for both TED-8-
related and TED-8-diverse datasets.

For the WMT dataset, it includes 3 low-resource
languages (et, ro, tr) and 3 high-resource lan-

guages (fr, de, zh) to English from WMT14,
WMT16, WMT17, and WMT18.

In each dataset, we conduct experiments for
two multilingual translation tasks: 1) Many-to-One
(M2O), where multiple languages are translated
into English; 2) One-to-Many (O2M), where English
is translated into various other languages. The de-
tails of the datasets are listed in Table 1

Model Settings In this work, we follow Johnson
et al. (2017) to employ the transformer as the back-
bone network. In order to maintain consistency
with previous work, we perform our experiments
with variants of transformer architecture for differ-
ent datasets. For TED-8-Diverse dataset and the
TED-8-Related dataset, we adopt the transformer
base setting which includes 6 encoder and decoder
layers, 512/1024 hidden dimensions and 4 atten-
tion heads. And for the larger dataset WMT, the
architecture we adopt includes 6 encoder and de-
coder layers, 512/2048 hidden dimensions and 8
attention heads. All the translation models are im-
plemented with the fairseq-py2 (Ott et al., 2019).
The following are the hyperparameters details:

• We use Adam optimizer with β1 = 0.9, β2 = 0.98,
and the learning rate is set to 0.0005.

• The values of β and λ are set to 50 and 0.03,
respectively.

• Before commencing the parameter reallocation,
we conduct a warm-up training of 1000 steps.

• The interval for calculating gradient consistency
and reassigning subnetworks is one epoch

• The batch size is configured as 64K.
• We apply dropout with a rate of 0.1.
• We employ temperature-based sampling with a

temperature parameter (τ ) of 1.
• We employ beam search with a beam width of 5.

2https://github.com/facebookresearch/
fairseq.

https://github.com/facebookresearch/fairseq
https://github.com/facebookresearch/fairseq
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Method TED-8-Diverse TED-8-Related WMT
O2M M2O O2M M2O O2M M2O

Baselines
multilingual 20.67 26.81 19.42 25.29 19.41 20.17

LaSS (Lin et al., 2021) 21.2 27.14 19.61 25.9 19.86 19.7
MultiDDS-S (Wang et al., 2020a)∗ 18.24 27.00 17.32 25.52 – –

LaGMD (Pham et al., 2022)∗ 20.1 27.7 19.3 26.3 – –

Our Proposed Approaches
CaPA 21.81 27.92 20.31 26.29 20.36 20.24

CaPA-m 21.64 27.88 20.07 26.37 20.34 20.31

Table 2: BLEU score on TED-8-Diverse, TED-8-Related and WMT datasets. Our method surpasses
other multilingual baselines. CaPA and CaPA-m represent our parameter allocation method based on the
overall gradient consistency and the module-level gradient consistency respectively. ‘*’ represents results
taken from original papers. Bold indicates the best performance.

TED-8-Diverse M2O bos mar hin mkd ell bul fra kor Avg
LaSS +0.9 -0.2 +0.09 +0.93 +0.28 +0.11 +0.32 +0.26 +0.33
CaPA +1.76 +0.39 +0.99 +1.28 +1.3 +1.18 +0.98 +1.09 +1.11

TED-8-Diverse O2M bos mar hin mkd ell bul fra kor Avg
LaSS +0.48 +0.12 -0.03 +1.26 +0.83 +0.51 +0.79 +0.19 +0.53
CaPA +1.36 +0.63 +0.9 +1.65 +1.22 +1.4 +1.36 +0.55 +1.14

TED-8-Related M2O aze bel glg slk tur rus por ces Avg
LaSS +0.24 +0.45 +0.95 +0.89 +0.76 +0.47 +0.52 +0.7 +0.61
CaPA +0.22 +0.88 +1.26 +1.29 +1.3 +0.71 +1.14 +1.16 +1.0

TED-8-Related O2M aze bel glg slk tur rus por ces Avg
LaSS -0.08 -0.3 +0.08 +0.08 +0.4 +0.43 +0.53 +0.35 +0.19
CaPA +0.26 +0.3 +0.5 +0.88 +1.64 +1.23 +1.26 +1.07 +0.89

Table 3: BLEU score improvements of LaSS and our CaPA over the multilingual baseline. CaPA
outperforms the multilingual baseline in every language direction. Bold indicates the best performance.
Languages are ordered increasingly by data size from left to right.

• We detokenize the final translation results and
evaluate the quality with 4-gram BLEU (Papineni
et al., 2002) score by SacreBLEU 3(Post, 2018).

Baselines We compare our methods with: 1) mul-
tilingual, the standard paradigm of MNMT (John-
son et al., 2017); 2) LaSS(Lin et al., 2021), the most
related study to our approach, learns language-
specific sub-networks based solely on the impor-
tance of parameters. To re-implement LaSS, we
tried pruning rates from 0.1 to 0.9 to partition the
language-specific sub-network for all language di-
rections; 3) MultiDDS-S (Wang et al., 2020a) uti-
lizes gradient similarity to dynamically adjust the
sampling rate for each language direction, achiev-
ing a balanced training for MNMT; 4) LaMGD (Pham
et al., 2022), which also aims to map sub-networks
to language directions by masking the output of

3https://github.com/mjpost/sacrebleu

each layer.

4.2. Main Results

The experimental results in Table 2 demonstrate
the effectiveness of our methods. It shows that our
approaches outperform all baselines on the TED-8-
Diverse and TED-8-related datasets. Compared to
LaSS(Lin et al., 2021), our approach exhibits supe-
rior performance on both the M2O and O2M tasks,
indicating its enhanced ability to facilitate positive
transfer among different language directions while
suppressing negative transfer.

For the WMT dataset, on the M2O translation
task, LaSS did not surpass the baseline, and the
improvements achieved by our method were also
limited. This could be attributed to the phenomenon
of parameter interference is not severe in the M2O
task(Zhu et al., 2021; Shaham et al., 2022) in mul-
tilingual machine translation. Our method, which

https://github.com/mjpost/sacrebleu
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→ de → en → it → nl → ro
de → – 34.62 / 35.39 21.82 / 22.64 23.39 / 23.71 18.52 / 18.64
en → 28.68 / 29.64 – 29.96 / 30.32 29.84 / 30.49 26.05 / 26.48
it → 20.72 / 21.03 33.74 / 34.03 – 21.38 / 22.22 19.44 / 19.80
nl → 22.36 / 22.76 33.84 / 34.59 20.99 / 21.35 – 18.45 / 18.85
ro → 22.09 / 22.43 36.06 / 36.72 23.84 / 24.06 22.02 / 22.10 –

Table 4: The M2M translation results on the IWSLT dataset. The BLEU scores are reported in the format
of multilingual/Ours. Bold indicates the better result. CaPA outperforms the multilingual baseline in
every language direction.

is oriented to address the cross-lingual negative
interference problem, is more valuable for O2M. A
more in-depth analysis of this is provided in Section
5.1.

The module-level CaPA achieves better results
than the baseline; however, there is no significant
improvement relative to CaPA. This observation
suggests that, in contrast to the overall gradient
consistency differences between language pairs,
the module-level gradient consistency differences
may have a relatively minor impact. Further analy-
sis is provided in Section 5.4.

4.3. Results On Each Language Direction
We calculated the differences between CaPA and
LaSS results compared to the multilingual base-
line in each language direction, as shown in Table
3. CaPA outperforms the multilingual baseline in
every language direction.

Both CaPA and LaSS tend to achieve more sig-
nificant improvements in high-resource languages.
This is because in multilingual machine transla-
tion, there’s often a trade-off where performance in
high-resource language directions is sacrificed to
boost low-resource directions, resulting in more se-
vere cross-lingual interference challenges in high-
resource directions(Aharoni et al., 2019; Yang et al.,
2022; Shaham et al., 2022). LaSS and our method,
both of which can mitigate the issue of cross-lingual
negative interference, lead to more significant im-
provements in high-resource directions. This is a
reasonable outcome.

While LaSS performs well in high-resource lan-
guage directions, it suffers from diminished ef-
fectiveness in low-resource language directions.
CaPA addresses this issue.

4.4. M2M Results
We conducted experiments on the
IWSLT17(Cettolo et al., 2017) dataset for
the many-to-many (M2M) scenario, which encom-
passes data for all 20 language directions of 5
languages (en, it, de, nl, ro). The results are
shown in Table 4. Our method outperforms the
baseline in all 20 translation directions.

TED-Diverse-M2O

TED-Related-M2O

TED-Diverse-O2M

TED-Related-O2M

Figure 2: The gradient consistency on each lan-
guage direction during the training process for
CaPA and the baseline. CaPA exhibits superior
performance compared to the baseline in almost
all language directions. The results are derived
from the TED-8-Diverse dataset and the TED-8-
Related dataset.

5. Analysis

5.1. Consistency Among Languages

We extracted the average proficiency level of con-
sistency from CaPA and multilingual throughout
the training process, until reaching optimal perfor-
mance, as depicted in Figure 2. CaPA demon-
strates superior performance compared to the base-
line in almost all language directions. This indicates
that CaPA is effective in suppressing cross-lingual
negative interference and promoting positive cross-
lingual knowledge transfer.

In multilingual machine translation, the negative
interference problem is more severe in the One-to-
Many (O2M) task (Zhu et al., 2021; Shaham et al.,
2022). This is due to O2M requiring the decod-
ing of text into multiple languages, which necessi-
tates considering differences in vocabulary, syntax,
style, and more in the target language. Observ-
ing Figure 2, it becomes apparent that whether we
consider the baseline or our proposed approach,
M2O consistently exhibits higher gradient consis-
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Figure 3: Gradient similarity between each language direction in TED-8-Related for the O2M translation
task. When dataset scales align, there is a correlation between gradient similarity and language similarity.
The yellow columns highlight languages that belong to the same language family. Languages are ordered
increasingly by data size from left to right.

tency across various language directions. This in-
dicates a correlation between gradient consistency
and cross-lingual interference. This finding also
suggest that leveraging the degree of gradient con-
sistency may play a pivotal role in mitigating the
challenges posed by cross-lingual interference.

5.2. The Relationship Between The Data
Size And Gradient consistency

In view of Figure 2, we observe that gradient consis-
tency is generally higher in low-resource directions,
especially in the O2M direction.

In multilingual machine translation, high-
resource language directions are more sus-
ceptible to severe cross-lingual interference
challenges(Aharoni et al., 2019; Yang et al., 2022;
Shaham et al., 2022). We speculate that this may
be due to the lower translation performance in
low-resource directions, which tends to learn more
general knowledge. In contrast, high-resource
language directions need to learn more com-
plex language-specific knowledge. The lower
gradient consistency in high-resource language
directions also offers evidence of a correlation
between gradient consistency and cross-lingual
interference.

5.3. The Relationship Between Language
Similarity And Gradient Similarity

In multilingual machine translation, language simi-
larity is an intuitively important factor to consider(Lin

et al., 2019; Wang et al., 2020c; Chronopoulou
et al., 2023). Therefore, we are investigating the
correlation between language relatedness and gra-
dient similarity.

The TED-Related-8 dataset includes four sets
of related languages: aze and tur (Turkic), bel and
rus (Slavic), glg and por (Romance), ces and slk
(Czech-Slovak). We calculate the pairwise gradient
similarity between each language direction in the
dataset during the training process. We present
the result on TED-Related-8 O2M in Figure 3. In
each bar chart, every column represents the gra-
dient similarity between a specific language and
all the other languages in the dataset. From left
to right, the dataset scales incrementally. The yel-
low columns highlight languages that belong to the
same language family.

We observed that the gradient similarity between
similar languages is not consistently the highest but
frequently exceeds that of adjacent columns. This
observation suggests that as the dataset scales
align, a correlation emerges between gradient sim-
ilarity and language relatedness. Furthermore, the
result also highlights the influence of dataset scale
on gradient similarity.

5.4. Analysis Of The Results For CaPA
And CaPA-m

Our method in Section 3.3 learning sparse sub-
networks based on module-level interference. The-
oretically, CaPA-m should outperform CaPA due
to stronger flexibility. Unfortunately, this doesn’t
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TED-8-Diverse O2M bos mar hin mkd ell bul fra kor
CaPA 5.6% 3.7% 5.4% 3.2% 6.2% 4.6% 8.2% 5.1%

CaPA-m 0~18.1% 0~16.1% 0~15.1% 0~17.0% 0~18.9% 0~18.7% 0~20.6% 0~19.2%

TED-8-Diverse M2O bos mar hin mkd ell bul fra kor
CaPA 0.1% 0.1% 0.1% 1.5% 2.0% 1.9% 1.4% 1.0%

CaPA-m 0~9.2% 0~11.3% 0~7.1% 0~9.9% 0~7.4% 0~9.8% 0~11.3% 0~14.1%

TED-8-Related O2M aze bel glg slk tur rus por ces
CaPA 5.8% 7.7% 5.2% 3.2% 6.9% 9.5% 5.6% 5.0%

CaPA-m 0~18.0% 0~17.6% 0~23.6% 0~16.9% 0~16.2% 0~18.2% 0~18.5% 0~18.3%

TED-8-Related M2O aze bel glg slk tur rus por ces
CaPA 0.1% 0.2% 0.2% 0.6% 1.8% 1.4% 1.7% 2.1%

CaPA-m 0~7.8% 0~8.2% 0~9.5% 0~9.0% 0~3.6% 0~5.4% 0~3.6% 0~3.6%

Table 5: The average magnitude of parameter count changes caused by our method during the training
process in the TED-8-Diverse and the TED-8-Related datasets.

always hold. We aim to evaluate whether CaPA-m
brings about improvements in gradient consistency
across every module. Due to space constraints,
we are unable to provide details for each module.
Therefore, we have computed the average consis-
tency across all modules within each layer to deter-
mine the cross-layer distribution of consistency, as
presented in Figure 4. We observed that CaPA-m
exhibits an improvement in gradient consistency
when compared to CaPA. However, this enhance-
ment does not consistently align with the experi-
mental outcomes in Section 4.2. This suggests
that, apart from consistency, there are other factors
at play influencing translation performance.

Drastic adjustments in model scale might lead to
the anomaly. Given that our approach dynamically
adjusts the scale of subnetworks throughout train-
ing, a sudden change (increasing or decreasing)
in the number of parameters during training can
introduce instability. This instability does not signif-
icantly impact performance when the magnitude of
change is minor; however, it may damage perfor-
mance when the magnitude of change is intense.
We calculated the average magnitude of parame-
ter count changes caused by our method during
the training process. The results are presented in
Table 5. For CaPA, this value remains the same
across each module, while for CaPA-m, it varies
across modules. We observed that for the O2M
task, CaPA-m leads to significant parameter scale
changes in certain modules. For the Related M2O
dataset, even though CaPA-m also induces larger
parameter scale changes compared to CaPA, the
actual values are not substantial. This also explains
why CaPA-m might perform better on the M2O task.
Additionally, it’s worth mentioning that the relatively
higher magnitude of parameter count changes in
O2M confirm the more severe negative interference
in O2M compared to M2O, as mentioned in Section

Figure 4: Average gradient consistency at each
layer on the TED-8-Diverse and TED-8-Related
datasets for the O2M task. CaPA-m exhibits an im-
provement in gradient consistency when compared
to CaPA.

5.1.

6. Related Work

Multilingual neural machine translation can facili-
tate cross-lingual knowledge transfer through pa-
rameter sharing, but it also lead to interference
issue. To retain beneficial transfer and avoid nega-
tive interference, previous research has made sig-
nificant efforts. Blackwood et al. (2018); Bapna



7909

and Firat (2019); Zhang et al. (2020); Baziotis et al.
(2022); Wang and Zhang (2022); Pires et al. (2023);
Yuan et al. (2023) involve the language-specific
components to learn language-specific knowledge.
Arivazhagan et al. (2019b); Conneau et al. (2019);
Wang et al. (2020a); Wu et al. (2021); Li and Gong
(2021) address the issue of imbalanced data dis-
tribution in multilingual training. Arivazhagan et al.
(2019a); Wei et al. (2020); Pan et al. (2021); Gu
and Feng (2022); Gao et al. (2023) focus on pro-
moting cross-lingual knowledge transfer by aligning
semantic consistency representations.

Our work is also closely related to model prun-
ing(See et al., 2016; Lan et al., 2019; Frankle and
Carbin, 2018; Wang et al., 2020b), which typically
remove unnecessary parameters from the model
to compress its size and improve inference effi-
ciency. Sun et al. (2020) first propose a sparsity-
constrained parameter sharing mechanism that
combines pruning methods for multi-task learning,
Lin et al. (2021) and Xie et al. (2021) applied this
strategy in the field of multilingual neural machine
translation. It is noteworthy that the methods pro-
posed by Sun et al. (2020),Lin et al. (2021) and Xie
et al. (2021) are aimed at enhancing performance
rather than compressing the model.

7. Conclusion

In this paper, we propose an adaptive transfer of
cross-lingual knowledge in a multilingual machine
translation model by dynamically allocating param-
eters of different scales to each language direction
based on the gradient consistency. The experiment
proved that our method can effectively improve
translation results by relieving interference and
promoting positive cross-lingual knowledge trans-
fer. This paper also demonstrates a correlation
between gradient consistency and cross-lingual in-
terference. Future research can continue to focus
on enhancing gradient consistency to mitigate the
challenges of cross-lingual interference in multilin-
gual machine translation.

8. Limitations

CaPA allocates fewer parameters for language
pairs that interfere with the overall goal, but when
the size of the sub-network is too small, it may
cause a significant decline in performance. Our
method is unable to automatically detect this situa-
tion, so we set a threshold to control the minimum
size of the sub-network. Additionally, similar to Lin
et al. (2021), our work also requires multiple steps
of training to sort the parameters by their impor-
tance for each language direction. When dealing
with a large number of language pairs, it can be

quite tedious. We hope to improve above issues in
future work.
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