
LREC-COLING 2024, pages 7913–7925
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

7913

Gramble: A Tabular Programming Language
for Collaborative Linguistic Modeling

Patrick Littell1, Darlene Stewart1, Fineen Davis2, Aidan Pine1, Roland Kuhn1

1 National Research Council Canada, 2 Congress of Aboriginal Peoples
1200 Montreal Rd. Ottawa ON, 867 St. Laurent Blvd. Ottawa, ON

{Patrick.Littell, Darlene.Stewart, Aidan.Pine, Roland.Kuhn}@nrc-cnrc.gc.ca, fineen.davis@gmail.com

Abstract
We introduce Gramble, a domain-specific programming language for linguistic parsing and generation, in
the tradition of XFST, TWOLC, and Kleene. Gramble features an intuitive tabular syntax and supports live
group programming, allowing community experts to participate more directly in system development without
having to be programmers themselves. A cross-platform interpreter is available for Windows, MacOS, and UNIX,
supports collaborative programming on the web via Google Sheets, and is released open-source under the MIT license.

Keywords: finite-state transducers, morphology, parsing

1. Introduction

Language technology for “very-low-resource” lan-
guages is usually talked about in the future tense,
e.g., “techniques like these may someday allow for
language technologies for all languages.” However,
there is a considerable amount already available:
spellcheckers, orthography converters, search
tools, conjugators, etc., usually based on a core of
handwritten declarative code rather than machine
learning (Arppe et al., 2016; Littell et al., 2018a;
Kuhn et al., 2020). Many were never associated
with publications and fly under the academic radar;
they are analogous to what Hanselman (2012) calls
the “dark matter” of programming.

Handwritten declarative programs still have ad-
vantages even in the “AI” era, particularly for edu-
cational applications like verb conjugators where
there are known correct answers. We do not want
students acquiring neural fabrications; a beginner
student cannot necessarily catch the lie! Mean-
while, teachers feel strongly that they should have
the ultimate say over system outputs, which cannot
be guaranteed when decisions are made inside
uninterpretable black-box language models.

However, we should also be clear-eyed about
issues developers and their clients face when de-
veloping rule-based models. Especially for morpho-
logically complex languages, the source code tends
to balloon in complexity to the point that it becomes
difficult for anyone except the original programmer
to read and maintain it, making the system another
sort of black box. What can we do to mitigate this?

1.1. Source Code Accessibility and
Language Sovereignty

Our team largely serves community organizations
and schools, in languages without ML-scale data

resources, and most of our products still incorpo-
rate handwritten declarative components at some
level. Some are in domain-specific languages
(DSLs), others in Python or other general-purpose
languages, others in ad-hoc “little languages” (Bent-
ley, 1986). For example, the verb conjugators
Kawennón:nis (Kazantseva et al., 2018) and Li
Verb Kaa-Ooshitahk Di Michif (Davis et al., 2021)
were backed by handwritten finite-state transduc-
ers (FSTs) in XFST/Foma (Beesley and Karttunen,
2003; Hulden, 2009). Even systems that utilize ML,
like Littell et al. (2022), rely on human-written rules
to bridge the gap for sub-tasks where training data
is unavailable.

As our collaborations evolved beyond proofs-of-
concept and student projects, source-code com-
plexity became a growing concern for some com-
munity collaborators: “We appreciate the effort, but
we can’t make heads or tails of the code. If we
need to change something, who is going to do it?
What if the original programmer moves on?”

This is a real but under-discussed issue of lan-
guage sovereignty: how dependent is the language
community on a third party for system updates,
changes, and maintenance?

Many of these are systems for education, and
a product that cannot change along with the cur-
riculum is effectively dead. This parallels an ob-
servation by Reiter (2021) that natural-language
generation systems tend to fall out of real-world
use after a few years, partly because users found
them “hard to configure, tweak, or otherwise mod-
ify... such changes could only be made by the
software developers.”

It became clear that it was not just an issue of
the choice of any particular programming language,
but the nature of the collaboration. Subject-matter
experts (SMEs) like teachers and linguists would
send the programmers knowledge like root lists,



7914

paradigm tables, etc. (usually as an Excel spread-
sheet or Google Sheet), and the programmers
would turn those into code. But this transformation
is irreversible, and effectively cuts the community
out of further development. The “real” project is no
longer the experts’ knowledge but a set of dense
source files in a world of command line interfaces,
code editors, version control, and other systems
that have a high barrier to entry.1

1.2. Three Components of a Solution

Over the course of these projects, we made three
breakthroughs that, together, made it substantially
easier for us to involve SMEs in the development of
rule-based linguistic programs, and early adopters
reported significant productivity increases.2

1. On the modeling side, we adopt a more flexible
transduction model, generalizing Brzozowski
derivatives to multi-tape regular expressions
(§2).

2. We map the resulting expressions onto a tabu-
lar format that is easier to read and write, even
for non-programmers (§3).

3. We embed an interpreter/IDE for the language
into a Google Sheets add-on that enables live
pair-programming between the programmers
and subject-matter experts (§4).

The result is a language in the tradition
of TWOLC (Koskenniemi, 1983, 1986), XFST
(Beesley and Karttunen, 2003), and Kleene
(Beesley, 2012). It is likewise intended for the devel-
opment of applications like interactive verb conju-
gators (e.g. Kazantseva et al., 2018), spellcheckers
(e.g. Arppe et al., 2016), morphological analyzers
(e.g. Strunk, 2020), text completion systems (e.g.
Lane et al., 2022), orthography and grapheme-to-
phoneme converters (e.g. Mortensen et al., 2018),
and other rule-based programs.

The interpreter is written in TypeScript so that
it can run entirely client-side, and is released un-
der the MIT license at github.com/nrc-cnrc/
gramble.

1The obvious objection here is, “Why not teach the
SMEs these systems? Everyone should learn computer
science!” But the typical SME we encounter is a busy
teacher or other language professional juggling other
important projects. Even when they want to become
more involved in the technical side, they simply cannot
afford the time to re-skill in traditional computer science.

2Early adopters reported that they felt about 10x more
productive compared to working in XFST. This probably
would not bear out if we measured it with a stopwatch, but
it is a testament to just how much they preferred working
in the new environment.

Figure 1: A toy grammar of Swahili verbs in Gram-
ble, illustrating multiple tapes (text, root, eng, va-
lence, tense, and subj), symbol embedding, phono-
logical rewrite rules, and successful (green) and
failed (red) test forms. Note that this is not just an
input spreadsheet to be turned into code later; this
is the actual source code and represents a com-
plete project in itself.

1.3. Accessibility to Non-Programmers

The primary differentiator of this language, named
Gramble (a portmanteau of grammar+table), is its
focus on accessibility to non-programmers and fea-
tures that better enable group coding (e.g., names-
paces, built-in unit test capabilities, local isolation
of syntax errors, and immediate interpretation with-
out re-compilation). The goal is that beginner and
non-programmers can meaningfully contribute with-
out being excluded by common barriers to entry,
and realistically be able to inherit and maintain the
project if the original programmer moves on.

Gramble has already been used to make edu-
cational software in eight languages, ranging in
scale from simple activities for elementary-school
students to university-level reference tools cover-
ing more than a million forms. For example, the
Gramble port of LVKODM (Davis et al., 2021) grew
to cover more, and more complex, phenomena
than the XFST original. The original had grown to
roughly the maximum complexity a human linguist-
programmer could practically manage, but the
greater ease in reading and organizing code in
Gramble allowed the programmer to get past this
complexity wall and cover additional phenomena.

github.com/nrc-cnrc/gramble
github.com/nrc-cnrc/gramble


7915

1.4. A Tabular Programming Language
The other differentiator of Gramble is that it is a tab-
ular programming language akin to Gordon et al.
(2014), where the spreadsheet describing the phe-
nomenon and the code are the same document.

It is important to note that this is not “program-
ming by spreadsheet”; this is not attempting to han-
dle complex phenomena by an awkward soup of
Excel macros. It is simply a language in which
source documents are grids of cells, in the same
way that the canonical form of a Python script is
plain text or a Node-RED project is a flow diagram.
The source files are not tied to the use of any par-
ticular editor; they are simply CSVs.

The tabular syntax is designed so that knowl-
edge workers with a basic familiarity with spread-
sheets and databases can understand and con-
tribute. While their semantics is not exactly the
same, a plain CSV file can often already be inter-
preted as Gramble code as-is.3

2. Modeling Multiple Fields

There is an irreducible complexity to a description
of a complex language, whether you are describing
it in English or XFST or Python. However, there
is also complexity added by the programming lan-
guage itself: complex syntax, awkward construc-
tions, and workarounds for missing features.

2.1. Issues with Flags
XFST and similar languages allow the expression
of complex linguistic phenomena by composing
simpler two-tape relations. This has the benefit of
conceptual simplicity and efficiency when compiled,
but many linguistic phenomena need access to ad-
ditional fields of information (e.g., that a certain affix
or rule only applies when a particular morphologi-
cal feature has a particular value). To handle this,
it is often necessary to interleave the additional
field into one of the tapes, either by ad-hoc markup
(e.g., placing morphological labels into content that
is otherwise phonological) or by the use of “flags”.

Flag diacritics are built-in workarounds in XFST,
in which the programmer can specify custom
tokens that cause a transduction to fail if in-
compatible tokens (e.g. @U.TENSE.PAST@ vs.
@U.TENSE.PRESENT@) are encountered on the
same tape. This allows the programmer to han-
dle long distance co-occurrence restrictions or the
selective application of affixes and rules.

3As an anecdote, we once set aside an afternoon to
convert a linguist’s informal paradigm table to a work-
ing Gramble program, and found that it was so close to
Gramble code already that we had a working prototype
in ten minutes.

Flags are typically necessary to model morpho-
logically complex languages (e.g. Bosch and Pre-
torius, 2006), but their syntax is verbose and can
begin to overwhelm other text content (§3.1), and
they can be difficult to reason about because they
often describe long-distance dependencies with po-
tentially thousands of lines in between them. Also,
since they are hidden characters embedded into
otherwise-ordinary strings, they can make phono-
logical rules more difficult to write by silently de-
stroying adjacency.

2.2. Issues with Two Tapes
Another issue is that limiting the number of tapes
limits the types of queries possible, and thus limits
the possibilities for the model’s flexible re-use. This
may seem minor but it is another source of balloon-
ing complexity as we try to adapt FST-based sys-
tems to additional languages and additional tasks.

It is typical that a morphological FST treats the
lower language as a surface/orthographic form and
the upper language as a morpheme breakdown or
Leipzig-style gloss. But there are many possible
kinds of information one might put in the latter. Do
you use the underlying forms or UniMorph-style
(Kirov et al., 2018) labels? Do you use the native
root or an English translation? Are discontinuous
morphemes labeled in one place or two? What
about structural elements without clear meanings?

It is thus rather difficult in practice to take off-the-
shelf FSTs for different languages, even related
ones, and use them together without significant
adaptation. In Schwartz et al. (2020), for example,
many of the target languages already had mature
FST parsers available, but the upper languages
were too diverse in their conventions to be useful
for cross-linguistic modeling.4

This can be true even when parsing a single tar-
get language, for example in Littell et al. (2018b)
where different downstream tasks required differ-
ent information from parses. Building an FST to
generate one of these representations and then
building systems to adapt that into the other forms
is possible, but would require some information in
the system to be recapitulated in the adaptor.

Similar problems arise when generating surface
forms from glosses. The client must construct a
sentence of the upper language, and thus must
know what morpheme labels are possible and how
exactly the FST expects them to be ordered/for-
matted. This is further complicated when client
systems like paradigm generators need to make

4Or, in some cases, the FST source does have the
same information as other languages’ systems, but only
in source comments (e.g., an English label as information
for the programmer). The information is there but cannot
be accessed by client programs.



7916

“wildcard” queries like “Give me all forms where the
root is X and the subject is Y, but the tense and ob-
ject can be anything.” This cannot be structured as
a single query in an FST because wildcards are not
part of the upper language; the client has to know
all the tense/object possibilities, construct glosses
in the expected format, and transduce each in turn.

For morphologically-complex languages, order-
ing and co-occurrence restrictions can themselves
be quite complicated. In trying to adapt Kazant-
seva et al. (2018) into a language-neutral client
that could work with FSTs for multiple languages,
we found that we would be duplicating grammar
knowledge in adaptor code that should, ideally, be
expressed only in one place, in the grammar itself.

Given these experiences, we decided that the
ability to handle multi-field to multi-field queries was
a priority, not through workarounds like interleaving,
but by assuming n-tape automata at the outset.

2.3. Multi-tape Automata
Multi-tape automata (Rabin and Scott, 1959; El-
got and Mezei, 1965) with n > 2 tapes have been
used to address various phenomena in linguistic
description where two-tape FSTs are inadequate or
awkward. For example, Kay (1987), Habash and
Rambow (2006), and Kiraz (2000) use them to ex-
press nonconcatenative morphology, Wiebe (1992)
to express tone, and Hulden (2017) to recover the
intermediate forms of phonological rewrites that
otherwise would be lost in a two-tape transduction.

In this work, we use multi-tape automata to avoid
the additional syntactic and semantic complexity of
interleaving and flag diacritics, and to enable client
interfaces to construct queries and receive outputs
using any combination of fields. Rather than en-
capsulating additional fields into special characters
on the input/output tapes, they are treated as first-
class tapes in their own right.

This allows the programmer to associate an arbi-
trary number of fields with each entry, rather than
being restricted to two, and to express constraints
that likewise reference any number of fields. Also,
since these additional fields are first-class strings
like any other, the constraints can be expressed
in terms of arbitrary regular expressions on those
fields (i.e., constraints are not limited to the pres-
ence or absence of atomic flags).

Put another way, this solution generalizes string-
to-string transduction to “dict-to-dict” transduction.
In a typical morphological FST, we can transduce
either from a gloss to a surface form (e.g., inputting
1SG-PR-pend-V and receiving ninapenda), or
vice-versa. In Gramble, that remains possible, but
you can also look up these forms from any com-
bination of other fields. For example, a verb con-
jugator could generate the text from an unordered
set of query fields {root:pend, subj:1SG,

tense:PR} without constructing them into a gloss,
or one could query {text: ninapenda} and
receive the other fields in return.

When a field is missing from a query it is treated
as a wildcard. For example, a query consisting only
of {root:pend} returns all entries with this root;
the empty query {} returns all entries.

The API is thus essentially that of a NoSQL
database, greatly simplifying lookup operations for
clients like the paradigm generators discussed in
§2.2. We achieve this with a multi-tape regular ex-
pression evaluator that can be queried using any
field or combination of fields.

2.4. Brzozowski Derivatives
Brzozowski (1964) introduced an alternative DFSA
construction algorithm based on derivatives of reg-
ular expressions.5 The algorithm remained rather
under-appreciated and under-cited in the parsing
literature until its rehabilitation by Owens et al.
(2009) and Might et al. (2011), who showed that
despite its very poor worst-case runtime complexity
when unoptimized (O(22nG2) where G is the size of
the grammar), an optimized version can approach
O(nG) in practice, and constructs more compact
graphs than many better-known algorithms.

Brzozowski presented a principled way to add
additional operators to regular expressions, and
subsequent work has shown that it also straight-
forwardly extends to context-free languages (Might
et al., 2011), and even to objects that are not strings,
like trees (Attou et al., 2021). All that is necessary
is to define two functions for each new operation6:

• A derivative function DcL that returns the lan-
guage consisting of strings in L that begin with
c, with c removed from the beginning (Figure
2a). E.g., if L denotes a language equal to the
set {"abc", "bobo", "b"}, DbL denotes
{"obo", ""}.

• A nullability function δL, which returns the triv-
ial language ϵ (consisting only of the empty
string) if L contains the empty string and ∅ oth-
erwise (Figure 2b). E.g., if L denotes {"abc",
""}, δL denotes {""}.

One then specifies algorithms in terms of these
two functions, allowing the expression of lookup
and compilation algorithms in a polymorphic way,
agnostic to the exact types of the objects on which
they are operating.

5Antimirov (1995) introduced partial derivatives of
regular expressions; internally the Gramble interpreter
mostly uses partial derivatives for efficiency until opera-
tors are encountered that require the full derivative, such
as negation. We present the Brzozowski formulation in
Figure 2, however, for clarity.

6We follow Might’s (2011) naming conventions here.



7917

Dc∅ =∅
Dcϵ =∅

Dca =

{
ϵ, if c = a

∅, otherwise
Dc(A·B) =DcA·B + δA·DcB

Dc(A+B) =DcA+DcB

Dc(A∗) =DcA·A∗

(a) The derivative function DcL returns the members of L
that begin with c, when c has been removed.

δ∅ =∅
δϵ =ϵ

δa =∅

δ(A·B) =δA·δB
δ(A+B) =δA+ δB

δ(A∗) =ϵ

(b) The nullability function δL returns the trivial language ϵ
when L contains the empty string and ∅ otherwise.

Figure 2: Brzozowski’s derivative for Kleene regular expressions

A simple lookup algorithm allows membership
tests even without compilation to a DFSA. One
can look up whether “abc” is in L by evaluating
δDcDbDaL; if the result is ϵ the word is present,
otherwise it is not. One can also construct a DFSA
by generating the graph of all unique derivatives.7
The lookup algorithm can be viewed as the lazy con-
struction of a DFSA, only creating nodes and tran-
sitions necessary to evaluate the query at hand.8

2.5. Generalizing Derivatives to n Tapes
Brzozowski’s algorithm has several advantages
for our situation. Just as it is possible to gener-
alize these formulae beyond strings to trees, it also
proved possible to generalize them to arbitrary sets
of ⟨key,value⟩ tuples. Our generalized formulae
only ended up differing from the single-tape case
in a few details.

The “lazy” construction of the graph is also an ad-
vantage. In a two-tape FST, we can compile once
and support both query directions (upper↔lower)
using the same graph. Trying to extend this flexibil-
ity to any number of tapes, with any of them being
the input tapes, would result in an explosion in the
number of nodes and transitions needed. Instead,
we can construct only the nodes and transitions
necessary to evaluate the provided query.

We generalize the one-tape formulation in Figure
2 to n tapes in Figure 3. A language L is no longer a

7It is also necessary to simplify the results of these
derivatives (e.g., ∅ + X = X or ϵ·X = X), both to
ensure that DFSA construction terminates and because
vestigial structure introduced in previous derivatives can
substantially degrade performance (Owens et al., 2009;
Might et al., 2011).

8Similarly, Guingne et al. (2003) lazily construct “vir-
tual networks” in order to avoid high time/memory require-
ments for the evaluation of priority union, and discover an
algorithm much like Brzozowski’s, with their “arcset” func-
tion paralleling Brzozowski’s derivative and their “finality”
function paralleling Brzozowski’s nullability.

set of strings, but a set of sets of ⟨key,value⟩ tuples;
for brevity we will denote the tuples as K:v. When
a key is undefined in an entry, we stipulate that it
contains the empty string (that is, {root:"pend"}
and {root:"pend", subj:""} are identical).
The trivial language ϵ is now the set of empty sets
– i.e., the language with only one entry that has an
empty string for all keys.

The first, minor change to the equations is that
string literals, D, and δ are now relative to a partic-
ular tape T .

The crucial change lies in the semantics of δ.
Brzozowski’s δ is effectively a boolean return: we
could as easily return T and F as ϵ and ∅.9 This
formulation would not work, however, when there
are additional tapes beyond T ; it would “drop” mate-
rial on those tapes as soon as the end-of-string on
tape T was reached. Instead, material on unrelated
tapes must be preserved; that is to say, δTX:a must
not just return ϵ or ∅ when queried on an irrelevant
tape, but return X:a intact.

Consider the simple multi-tape regular expres-
sion A:a·B:b, and the question of whether the en-
try {A:a,B:b} can be generated. If we adopt
a naive solution identical to the single-tape for-
mulation, where δTX:a = ϵ, then evaluating
DB:bDA:a(A:a·B:b) and DA:aDB:b(A:a·B:b) would
incorrectly produce different results; the latter would
return ∅ because the term A:a would be dropped
when evaluating DB:b. However, if δTX:a = X:a
when T ̸= X, these both correctly evaluate to ϵ.

9For the single-tape formulation, the only real need
for the range of δ to be expressed as ϵ and ∅ is to enable
the cleverly succinct expression of Dc(A·B) in Figure 2,
where the term δA·DcB is “toggled on” by ϵ being the
multiplicative identity and “off” by ∅ being multiplicative
annihilation. We could as easily express this toggling
with boolean values and if/otherwise cases.

However, in the multi-tape formulation, the range of
δ is not two-valued, and the expression of δTA·DT :cB
as a product is necessary, since the term δTA may be
non-trivial.



7918

DT :c∅ =∅ δT ∅ =∅
DT :cϵ =∅ δT ϵ =ϵ

DT :cX:a =

{
ϵ, if T = X and c = a

∅, otherwise
δTX:a =

{
∅, if T = X

X:a, otherwise
DT :c(A·B) =DT :cA·B + δTA·DT :cB δT (A·B) =δTA·δTB

DT :c(A+B) =DT :cA+DT :cB δT (A+B) =δTA+ δTB

DT :c(A∗) =δT (A∗)·DT :cA·A∗ δT (A∗) =(δTA)∗

Figure 3: Brzozowski’s derivative for multi-tape regular expressions. Highlighted are particularly important
parts for multi-tape evaluation; when taking derivatives with respect to tape T , they serve to preserve
material relevant to the other tapes.

A similar concern is seen in the formulation
of DT :c(A∗); the multi-tape formulation contains
an additional term. Consider the expression
((A:a·B:b) +A:x)∗; you can read this as “Any num-
ber of times, either consume an a on tape A along-
side a b on tape B, or consume only x on tape A
and nothing on tape B.” Consider the derivative of
this formula with respect to B:b. This will later re-
quire the consumption of the corresponding A:a –
that is the second term DT :cA – but before one gets
to that a, one could consume an infinite number of
A:x first – this is the initial term δT (A∗).

2.6. Additional Operators
Extending the basic objects of the system to multi-
tape databases requires giving the programmer
operators to handle this greater complexity, so we
also implement familiar operations from relational
algebra (Codd, 1983): natural join, selection, pro-
jection, and renaming.

The natural join and selection are implemented
as special cases of intersection. The implementa-
tion of the rename operation (where ρT/SL should
be read as “rename the S tape to T in L”) is as
follows.

DT :cρT/SA =

{
ρT/SDS:cA, if S ̸= T

∅, otherwise
(1)

δT ρT/SA =

{
ρT/SδSA, if S ̸= T

ϵ, otherwise
(2)

The inequality condition effectively says that the
renamed tape S is unique – if there happens to be
another tape of the same name in the grammar, and
we attempt to take the derivative of this formula with
respect to that tape, the derivation fails. (That is,
this formula contains no content on tape S from the
global point-of-view.) Renaming thus “hides” tape
names from the global point of view, and we also
use this property to implement projection. Tapes

not included in the projection undergo Python-like
“name mangling” to globally unique names so as not
to clash with other names in the global namespace.

Projection is of practical importance in multi-
programmer projects, because it allows encapsu-
lation of local content. Since invoking a new tape
is trivially easy (one simply starts a new column),
Gramble grammars often grow to include many
tapes – 10–20 is common – but many exist only to
support locally-important selections (e.g., a suffix
only attaches to roots of a particular class, but will
not play a role in any decisions or interfaces down-
stream). That tape can be hidden and not form a
part of that sub-grammar’s “public interface”, so
even if one programmer names that tape class,
it does not necessarily mean that the tape name
class is off-limits for the rest of the project.10

We also implement phonological rewrite rules,
roughly as in Kaplan and Kay (1994), and compose
them using joins and renaming in such a way that in-
termediate representations are recoverable, similar
to Hulden (2017). We do not, however, implement
the full slate of possible rewrite rules (e.g., where
rule contexts can reference material on the rule’s
output tape). We also have not yet implemented the
lenient composition necessary for the treatment of
Optimality Theory (Karttunen, 1998). For projects
with complex phonology needs, a language with a
richer set of phonological operations like XFST is
probably still more appropriate.

3. Tabular Syntax

Gramble was originally envisioned as a “visual
programming language” along the lines of Blockly

10For similar reasons, Gramble also supports the
namespacing of identifiers. Small, academic DSLs often
treat all identifiers as global, but this can lead to name
clashes when projects grow from small scripts to multi-
programmer codebases; e.g., one programmer defines V
to denote the verbs and another inadvertantly re-defines
it to denote the vowels.



7919

(Fraser, 2015; Pasternak et al., 2017) for beginner
programmers, Vi-xfst (Oflazer and Yilmaz, 2004)
for FST development, or Galaxy-LAPPs (Ide et al.,
2016) for NLP pipeline development. We had no-
ticed beginners making frequent syntax errors in
XFST/LEXC (e.g., unbalanced parentheses, miss-
ing semicolons, unescaped 0) and thought that a
“puzzle piece” interface might help mitigate these.

However, component-based visual programming
typically shines for projects with perhaps 10–30
components, and the projects we had hoped to port
had thousands of individual parts. Porting these to
a drag-and-drop visual editor would involve creating
and connecting thousands of tiny components, and
result in visual tableaux that would probably be
impossible to read at a glance.

In our discussions it had already become clear
that the main “visual component” would need to
be tabular. Most of what our SMEs deliver is in
tabular form – lists of lexical roots, paradigm tables,
orthographic equivalency charts, etc. – and ideally
those should remain in their original forms. Also,
tables naturally scale to thousands of components
without hindering their readability.

This led to the thought, “If we need a tabular
component, do we need anything else? What if
everything were tabular?” Gramble thus grew into
a tabular programming language akin to Tabular
(Gordon et al., 2014), avoiding the need to bundle
it with a custom editor (§3.4).

Common operations are expressed as spatial re-
lationships between cells in such a way that the
familiar columnar representation of a database
maps to the multi-tape regex that would gener-
ate it. A header cell and a content cell in its
column express a tape:text relationship, horizon-
tal adjacency expresses concatenation, and ver-
tical adjacency between rows expresses alterna-
tion. For a concrete example, the simple ta-
ble below would compile roughly to the formula
(text:pend·gloss:love)+(text:on·gloss:see).11

text gloss
pend love
on see

Special operators and headers like replace
and embed, seen in the source code in Figure 1,
introduce additional interpretation rules resulting in
more complex formula.

We admit that tabular programming is an uncon-
ventional choice, but it ended up having many un-

11Gramble also performs automatic detection of possi-
ble multi-character tokens, evaluating them as an atomic
unit in contexts where doing so would not change the
results. If we were to apply a rewrite rule to this equation,
however, it would not be safe to interpret pend as a unit
and this optimization would not apply.

foreseen advantages (§3.1–3.4), as well as a few
disadvantages (§3.5).

3.1. Conciseness
In practice, much of the text of a multi-tape regu-
lar expression ends up being the specification of
tape names. Especially when (as is often the case)
each line references the same tapes line after line,
columnar organization is considerably more read-
able. Consider the expression of the same root list
in LEXC vs. Python vs. Gramble.

1LEXICON Root
2pend@U.POS.V@@U.VAL.TR@:love

@U.POS.V@@U.VAL.TR@ NextMorph;
3on@U.POS.V@@U.VAL.TR@:see

@U.POS.V@@U.VAL.TR@ NextMorph;

1root = [{
2"text": "pend",
3"gloss": "love",
4"pos": "v",
5"val": "tr"
6},
7{
8"text": "on",
9"gloss": "see",
10"pos": "v",
11"val": "tr"
12}]

Root = text gloss pos val
pend love v tr
on see v tr

Moving the tape names to column headers, and
handling separation and hierarchy spatially, re-
moves much of the error-prone boilerplate involved
in expressing tabular information as plain text. Even
if the LEXC code above were clarified with a syntax
highlighter12, the requirement that field names be
specified in each flag, and (for bidirectional FSTs)
that flags need to be repeated for each tape, means
that each line above requires 38 added characters
just to express 3 characters’ worth of information.

3.2. Avoidance of Special Characters
For beginners, part of the additional complexity of
programming (beyond the irreducible complexity of
describing a complex system, cf. §2), is a result of
the wealth of special characters and the rules for
using them. For example, some special characters
must be escaped to be used literally, but the escape

12E.g., https://marketplace.visualstudio.
com/items?itemName=eddieantonio.lexc

https://marketplace.visualstudio.com/items?itemName=eddieantonio.lexc
https://marketplace.visualstudio.com/items?itemName=eddieantonio.lexc


7920

character is also special and thus must also be es-
caped; brackets must be closed (unless escaped),
etc. For a non-programmer these are new ideas
that must be explained before the collaborator can
modify the code without breaking it.

Gramble’s tabular syntax eliminates some of the
common pitfalls associated with structured plain
text. Expressing the gross hierarchical structure,
tape naming, alternation, concatenation, and simi-
lar operations through cell relationships eliminates
the need for these very frequent operations to be
expressed as special characters.

With a few systematic exceptions, like # and _
having special meanings inside a rewrite rule, al-
most every character inside an ordinary Gramble
table is interpreted literally. This is particularly im-
portant when working with linguistic glosses, which
are full of special characters with special meanings
(e.g., the Leipzig Glossing Rules, 2008–2015). Be-
cause of this, Gramble attempts to reserve as few
special characters as possible, and have as many
cells as possible default to a literal interpretation.

On the other hand, using a spreadsheet editor
comes with its own set of special characters (e.g.,
an equals sign at the beginning of the cell indicating
that it represents a formula), and working around
these is admittedly rather frustrating.

3.3. Recovery from Syntax Errors
In plain-text programming languages, errors like
mismatched brackets can cause an entire project
not to compile, or completely change its interpreta-
tion. We have found that unhelpful error messages
have been a major issue in teaching beginner pro-
grammers XFST; it can be difficult to know exactly
what the error is and where it lies.

Gramble does not use bracketing for its
document-level structure.13 The interpreter does
not parse strings except inside individual cells,
meaning that when someone does make a syn-
tax error like a mismatched bracket, it can affect
only a limited region and is easy to pinpoint.

The limited scope of syntax errors also helps
recover from them. For most errors, Gramble at-
tempts to recover from them by interpreting the
affected code as if it is ϵ – that is, the code will not
contribute any content to resulting forms, but unlike
∅ it does not prevent them from being generated.
This ability to “turn off” parts of the grammar when
syntactically erroneous without compromising the
ability to interpret other parts ends up being very

13The larger-scale structure of a Gramble document
is determined by a Python-like “off-side rule”. This ac-
tually ends up being more ergonomic in a spreadsheet;
columns are much wider than characters so it is unam-
biguous to which column content belongs, and there is
no tab/space ambiguity.

useful in the multi-user live coding environment,
since one user’s syntax error will typically not have
a work-stopping effect on other users.

3.4. Available Editors

When considering Gramble as a possible “visual
programming language”, we reviewed many exam-
ples of such, but their long-term survival prospects
gave us pause. Many ended up inalienably wedded
to custom development environments, and did not
survive when the computing world switched to new
operating systems or paradigms. Porting them to a
new system meant porting their custom editors/en-
vironments, and by that point plain-text languages
had already proliferated.

Spreadsheet editors, on the other hand, are ubiq-
uitous; they will almost certainly be available on all
major operating systems for the foreseeable future,
and we will not have to write them ourselves. While
we did write a custom plug-in (§4), we did not have
to write the entire editor, let alone the sharing infras-
tructure. Not including the interpreter library itself,
the entire plug-in is only about 1,000 lines of code.

Also, it is an interface that most knowledge work-
ers already know intimately; we do not have to
explain the intricacies of a new editor.

3.5. Downsides of Tabular Syntax

A rich ecosystem of tools has evolved to support
conventional plain-text programming, and teams
should consider whether the downsides of leaving
that ecosystem outweigh the advantages.

In plain-text programming languages, we can use
directory structure as scaffolding to organize and
understand large projects. Spreadsheet editors
typically lack the ability to engage with directory
structure; instead, they typically use “workbooks”,
flat collections of worksheets with no subordinate
hierarchical structure. While this flatness does help
new contributors because they do not have to be
taught a complex file structure, it is not ideal for a
large, mature project where the possibility of such
structure would help manage complexity.

It is also difficult to integrate with existing prod-
ucts to help manage complex multi-user projects.
There is no good bridge between Google Sheets
and git, for example; one must download the
project as CSV files and manually commit them
to a repository. Again, this has some advantages
for the new contributor – they can use the famil-
iar Google history feature for rollbacks rather than
learn git, which is always a speed bump for non-
programmers – but is a downside for a more expe-
rienced team that needs a richer versioning system
than a history rollback.



7921

4. Google Sheets Plug-in

We mention above that programmers transforming
the SMEs’ spreadsheets into working code is an
irreversible process, but this is not just due to SMEs
not being able to read code. It is also because this
process moves the focus of development out of the
SMEs’ usual workspace (usually office software
like Excel or Google Sheets) into the unfamiliar
ecosystem of programmers.

For this reason, we have written a plug-in for
Google Sheets that embeds a Gramble interpreter.
Teams can add a Gramble interpreter to any sheet,
which allows the system’s full functionality without
leaving the spreadsheet environment including:

• Syntax highlighting and the display of er-
rors/warnings within the affected cells.

• The expression of test cases alongside gram-
mars. The Gramble plug-in can execute these
tests and highlight them green or red.

• A sidebar interface that allows the user to
lookup/generate/sample forms.

Putting these abilities within the spreadsheet in-
terface, combined with the built-in sharing and col-
laborative editing features, has led to a much faster
iteration loop between our SMEs and programmers,
since they can pair-program on a shared document.

This pair-programming helps distribute under-
standing system knowledge throughout the team
– the SME comes to better understand the Gram-
ble syntax and semantics, but meanwhile the pro-
grammer also comes to understand the linguistic
phenomena by their closer collaboration.

An obvious concern with the use of the plug-in
is that it introduces a dependency on the Google
ecosystem, which raises potential privacy, trust,
and longevity issues; we describe these in the ethic-
s/limitations section following the conclusion.

5. Future Work

An important remaining question is how to optimally
determine tape ordering. Although our derivative
equations are specified in a way that derivatives on
different tapes are commutative (i.e. DA:aDB:bL =
DB:bDA:aL), when looking up forms or constructing
a DFSA they must be queried in some order. Deter-
mining the optimal order for doing so is non-trivial.
Although in the end the answer will be the same, it
is possible to calculate derivatives in a tape order
that causes the system to go down garden paths,
e.g., evaluating DA:x repeatedly before evaluating
a DB:x that reveals that the result is ∅.

This is made more difficult by the fact that, unlike
most previous projects using multi-tape automata,
we do not know the set of tapes in advance and

Figure 4: The Google Sheets plugin can open
a sidebar allowing quick lookup/generation/sam-
pling; here the user samples a form matching
{subj:2SG, root:pend}.

do not necessarily know what the programmer is
using them for. While we use heuristics to try to
infer an optimal order, we have not managed to
show that any particular order is optimal, or that an
optimal order necessarily exists. (E.g., for some
grammar X+Y , X might be optimally evaluated as
DA:aDB:bX and Y as DB:bDA:aY .) Understanding
the performance consequences of different tape-
order decisions remains for future work.

Also remaining for future work is to find efficient
multi-tape implementations of operators like lenient
composition (§2.6), allowing Gramble to be used
for more phonologically sophisticated programs.

6. Conclusion

While there is still much to be done in making Gram-
ble more user-friendly, powerful, and efficient, we
feel that it has greatly improved the quality and
productivity of our community collaborations. Our
collaborators have welcomed the ability to partici-
pate more directly in the programming aspects, and
some have created or taken over Gramble projects
without any prior programming experience.

We release Gramble under an open-source li-
cense in hope that future projects will see similar
benefits, or evolve these ideas to support additional
kinds of projects or modes of collaboration.



7922

Ethical Considerations & Limitations

Language sovereignty discussions in NLP largely
center around data ownership/storage/access (Kee-
gan, 2019), and while that is obviously a crucial
concern, another less-talked-about concern is the
accessibility of code and the community’s abil-
ity to meaningfully change it. Source code for
hand-written rule-based grammars of complex lan-
guages exists in a middle ground between “data”
and “code”. And, as discussed in §1.1, the com-
plexity of the programming language and ecosys-
tem around rule-based grammars often means that
simply having them available to a community does
not necessarily mean they are accessible. This
typically sets up a dependence on the continued
availability of the original programmer, or at least
their institution/lab. While the programmer/institu-
tion may be entirely willing to maintain this availabil-
ity, it is still a dependency that needs to be taken
into account before embarking on this kind of col-
laboration.14

The goal of this project was therefore to put col-
laborative dependencies in the spotlight and re-
think how we approached them. In other words,
we asked the question: how do the tools we use
shape the types of collaborations that emerge from
language modelling projects? This work attempted
to address some of the technical reasons that con-
tribute to the dynamics of division and dependence
that can occur in language modelling projects. How-
ever, trying to avoid exclusion is not the same thing
as actively seeking inclusion, and simply using
Gramble should not be understood as a sole ap-
proach to mitigating the myriad causes that NLP col-
laborations can be harmful and disempowering (cf.
Brinklow et al., 2019; Leonard, 2021; Bird, 2022).

3rd party data privacy As discussed in §4, our
implementation is somewhat dependent on third
party tools which could have varying safeguards
with respect to data privacy and access. Also, it
creates a dependency on another third-party; e.g.,
to trust that Google will continue to make Sheets
available, and not make major API changes that
render the plug-in inoperable.

To mitigate this, Gramble itself has been de-
signed to avoid dependence on Google systems.
The interpreter compiles to vanilla JavaScript with
no framework dependencies, and can be run in
any browser, or on the command line using node.
Gramble source documents are ordinary comma-
separated value (CSV) files and do not use any
proprietary file formats; they could even be writ-
ten in a plain text editor if the programmer prefers.

14See https://fpcc.ca/resource/check-before-you-tech/
for a check list to consider before adopting any technol-
ogy.

Moreover, as previously mentioned, the plug-in it-
self is small; including both the server-side code
and the GUI presented to the user, it is only 1,000
lines of code. If Google Sheets were to disappear
or restrict API access, it would probably not be par-
ticularly onerous to port it to another editor that
provides similar functionality.

Accessibility One of the benefits of the tabular
nature of Gramble is a variety of spreadsheet edi-
tors already exist that have built-in considerations
surrounding accessibility. Both Google Sheets and
Microsoft Excel come with accessibility checker
tools that, for example, analyze spreadsheets with
respect to contrast ratio, missing titles, among other
considerations, and provide services like screen
reading to users.

Acknowledgments

This work would not have been possible without
extensive feedback and encouragement from our
community collaborators, including but not limited
to Onkwawenna Kentyohkwa, the Prairies to Wood-
lands Indigenous Language Revitalization Circle,
the Oneida Nation of the Thames, the WSÁNEĆ
School Board, and the Kitigan Zibi Cultural Edu-
cation Center. Immeasurable thanks also goes
to Eddie Antonio Santos, Anna Kazantseva, Sky-
lar Maguire, Kendra Hicks, Delaney Lothian, Ak-
wiratékha’ Martin, Yanfei Lu, and Michael Running
Wolf, whose feedback, advice, and testing helped
shape Gramble into its current form. Funding for
this project was provided by the National Research
Council Ideation Small Teams grant Speech Gen-
eration for Indigenous Language Education.

7. Bibliographical References

Valentin Antimirov. 1995. Partial derivatives of regu-
lar expressions and finite automata constructions.
In STACS 95, pages 455–466, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Antti Arppe, Jordan Lachler, Lene Antonsen, Trond
Trosterud, and Sjur N. Moshagen. 2016. Ba-
sic language resource kits for endangered lan-
guages: A case study of Plains Cree. In Pro-
ceedings of the 2016 CCURL Workshop. Col-
laboration and Computing for Under-Resourced
Languages: Towards an Alliance for Digital Lan-
guage Diversity, LREC 2016, May 23, 2016,
pages 1–9.

Samira Attou, Ludovic Mignot, and Djelloul Ziadi.
2021. Bottom-up derivatives of tree expressions.
CoRR, abs/2107.13373.

https://fpcc.ca/resource/check-before-you-tech/
http://arxiv.org/abs/2107.13373


7923

Kenneth R. Beesley. 2012. Kleene, a free and
open-source language for finite-state program-
ming. In Proceedings of the 10th International
Workshop on Finite State Methods and Natural
Language Processing, pages 50–54, Donostia–
San Sebastián. Association for Computational
Linguistics.

Kenneth R Beesley and Lauri Karttunen. 2003. Fi-
nite State Morphology. CSLI Publications.

Jon Bentley. 1986. Programming pearls: Little lan-
guages. Commun. ACM, 29(8):711–721.

Steven Bird. 2022. Local languages, third spaces,
and other high-resource scenarios. In Proceed-
ings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1:
Long Papers), pages 7817–7829.

Sonja E. Bosch and Laurette Pretorius. 2006. A
finite-state approach to linguistic constraints in
Zulu morphological analysis. In Studia Orientalia
Electronica, pages 205–228.

Nathan Thanyehténhas Brinklow, Patrick Littell, De-
laney Lothian, Aidan Pine, and Heather Souter.
2019. Indigenous language technologies & lan-
guage reclamation in Canada. Proceedings of
the 1st International Conference on Language
Technologies for All, pages 402–406.

Janusz A. Brzozowski. 1964. Derivatives of regular
expressions. J. ACM, 11(4):481–494.

Edgar F. Codd. 1983. A relational model of data
for large shared data banks. Commun. ACM,
26(1):64–69.

Fineen Davis, Eddie Antonio Santos, and Heather
Souter. 2021. On the computational modelling of
Michif verbal morphology. In Proceedings of the
16th Conference of the European Chapter of the
Association for Computational Linguistics: Main
Volume, pages 2631–2636, Online. Association
for Computational Linguistics.

C. C. Elgot and J. E. Mezei. 1965. On relations
defined by generalized finite automata. IBM J.
Res. Dev., 9(1):47–68.

Neil Fraser. 2015. Ten things we’ve learned from
Blockly. In 2015 IEEE Blocks and Beyond Work-
shop, pages 49–50.

Andy Gordon, Thore Graepel, Nicolas Rolland,
Claudio Russo, Johannes Borgström, and John
Guiver. 2014. Tabular: A schema-driven prob-
abilistic programming language. In POPL ’14
Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Lan-
guages, pages 321–334. ACM Press.

Franck Guingne, Florent Nicart, Jean-Marc Cham-
parnaud, Lauri Karttunen, Tamás Gaál, and An-
dré Kempe. 2003. Virtual operations on vir-
tual networks: The priority union. International
Journal of Foundations of Computer Science,
14:1055–1070.

Nizar Habash and Owen Rambow. 2006. MAGEAD:
A morphological analyzer and generator for the
Arabic dialects. In Proceedings of the 21st Inter-
national Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association
for Computational Linguistics, pages 681–688,
Sydney, Australia. Association for Computational
Linguistics.

Scott Hanselman. 2012. Dark mat-
ter developers: The unseen 99%.
https://www.hanselman.com/blog/
dark-matter-developers-the-unseen-99.

Mans Hulden. 2009. Foma: a finite-state com-
piler and library. In Proceedings of the Demon-
strations Session at EACL 2009, pages 29–32,
Athens, Greece. Association for Computational
Linguistics.

Mans Hulden. 2017. Rewrite rule grammars with
multitape automata. J. Lang. Model., 5:107–130.

Nancy Ide, Keith Suderman, James Pustejovsky,
Marc Verhagen, and Christopher Cieri. 2016.
The Language Application Grid and Galaxy. In
Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation
(LREC’16), pages 457–462, Portorož, Slove-
nia. European Language Resources Association
(ELRA).

Ronald M. Kaplan and Martin Kay. 1994. Regular
models of phonological rule systems. Computa-
tional Linguistics, 20(3):331–378.

Lauri Karttunen. 1998. The proper treatment of
optimality theory in computational linguistics. In
Proceedings of the International Workshop on
Finite State Methods in Natural Language Pro-
cessing (FSMNLP).

Martin Kay. 1987. Nonconcatenative finite-state
morphology. In Proceedings of EACL 1987.

Anna Kazantseva, Owennatekha Brian Maracle,
Ronkwe’tiyóhstha Josiah Maracle, and Aidan
Pine. 2018. Kawennón:nis: the wordmaker for
Kanyen’kéha. In Proc. Workshop Computational
Modeling Polysynthetic Languages, pages 53–
64, Santa Fe, New Mexico, USA.

Te Taka Keegan. 2019. Issues with Māori
sovereignty over Māori language data.

https://aclanthology.org/W12-6209
https://aclanthology.org/W12-6209
https://aclanthology.org/W12-6209
https://doi.org/10.1145/6424.315691
https://doi.org/10.1145/6424.315691
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/357980.358007
https://doi.org/10.1145/357980.358007
https://doi.org/10.18653/v1/2021.eacl-main.226
https://doi.org/10.18653/v1/2021.eacl-main.226
https://doi.org/10.1147/rd.91.0047
https://doi.org/10.1147/rd.91.0047
https://www.microsoft.com/en-us/research/publication/tabular-a-schema-driven-probabilistic-programming-language/
https://www.microsoft.com/en-us/research/publication/tabular-a-schema-driven-probabilistic-programming-language/
https://doi.org/10.1142/S0129054103002175
https://doi.org/10.1142/S0129054103002175
https://doi.org/10.3115/1220175.1220261
https://doi.org/10.3115/1220175.1220261
https://doi.org/10.3115/1220175.1220261
https://www.hanselman.com/blog/dark-matter-developers-the-unseen-99
https://www.hanselman.com/blog/dark-matter-developers-the-unseen-99
https://aclanthology.org/E09-2008
https://aclanthology.org/E09-2008
https://api.semanticscholar.org/CorpusID:29330403
https://api.semanticscholar.org/CorpusID:29330403
https://aclanthology.org/L16-1073
https://aclanthology.org/J94-3001
https://aclanthology.org/J94-3001
https://video.web.gov.bc.ca/public/fpcc/letlanguageslive.html
https://video.web.gov.bc.ca/public/fpcc/letlanguageslive.html


7924

George Anton Kiraz. 2000. Multitiered nonlinear
morphology using multitape finite automata: a
case study on syriac and arabic. Computational
Linguistics, 26(1):77–105.

Christo Kirov, Ryan Cotterell, John Sylak-
Glassman, Géraldine Walther, Ekaterina
Vylomova, Patrick Xia, Manaal Faruqui, Se-
bastian Mielke, Arya McCarthy, Sandra Kübler,
David Yarowsky, Jason Eisner, and Mans Hulden.
2018. UniMorph 2.0: Universal morphology.
In Proceedings of the Eleventh International
Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan.
European Language Resources Association
(ELRA).

Kimmo Koskenniemi. 1983. Two-level morphology:
A general computational model for word-form
recognition and production. University of Helsinki,
Department of General Linguistics.

Kimmo Koskenniemi. 1986. Compilation of au-
tomata from morphological two-level rules. In
Papers from the Fifth Scandinavian Conference
on Computational Linguistics.

Roland Kuhn, Fineen Davis, Alain Désilets, Eric
Joanis, Anna Kazantseva, Rebecca Knowles,
Patrick Littell, Delaney Lothian, Aidan Pine, Car-
oline Running Wolf, Eddie Santos, Darlene Stew-
art, Gilles Boulianne, Vishwa Gupta, Brian Mara-
cle Owennatékha, Akwiratékha’ Martin, Christo-
pher Cox, Marie-Odile Junker, Olivia Sammons,
Delasie Torkornoo, Nathan Thanyehténhas Brin-
klow, Sara Child, Benoît Farley, David Huggins-
Daines, Daisy Rosenblum, and Heather Souter.
2020. The Indigenous languages technology
project at NRC Canada: An empowerment-
oriented approach to developing language soft-
ware. In Proceedings of the 28th International
Conference on Computational Linguistics, pages
5866–5878, Barcelona, Spain (Online). Interna-
tional Committee on Computational Linguistics.

William Lane, Atticus Harrigan, and Antti Arppe.
2022. Interactive word completion for Plains
Cree. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3284–3294,
Dublin, Ireland. Association for Computational
Linguistics.

Wesley Y Leonard. 2021. Centering Indigenous
ways of knowing in collaborative language work.
Sustaining Indigenous languages: Connecting
communities, teachers, and scholars, pages 21–
33.

Patrick Littell, Eric Joanis, Aidan Pine, Marc Tessier,
David Huggins Daines, and Delasie Torkornoo.

2022. ReadAlong studio: Practical zero-shot
text-speech alignment for indigenous language
audiobooks. In Proceedings of the 1st An-
nual Meeting of the ELRA/ISCA Special Interest
Group on Under-Resourced Languages, pages
23–32, Marseille, France. European Language
Resources Association.

Patrick Littell, Anna Kazantseva, Roland Kuhn,
Aidan Pine, Antti Arppe, Christopher Cox, and
Marie-Odile Junker. 2018a. Indigenous lan-
guage technologies in Canada: Assessment,
challenges, and successes. In Proceedings of
the 27th International Conference on Compu-
tational Linguistics, pages 2620–2632, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Patrick Littell, Tian Tian, Ruochen Xu, Zaid Sheikh,
David Mortensen, Lori Levin, Francis Tyers, Hi-
roaki Hayashi, Graham Horwood, Steve Sloto,
Emily Tagtow, Alan Black, Yiming Yang, Teruko
Mitamura, and Eduard Hovy. 2018b. The
ARIEL-CMU situation frame detection pipeline
for LoReHLT16: a model translation approach.
Machine Translation, 32(1–2):105–126.

Matthew Might, David Darais, and Daniel Spiewak.
2011. Parsing with derivatives: A functional pearl.
SIGPLAN Not., 46(9):189–195.

David R. Mortensen, Siddharth Dalmia, and Patrick
Littell. 2018. Epitran: Precision G2P for many lan-
guages. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Kemal Oflazer and Yasin Yilmaz. 2004. Vi-xfst: A
Visual Regular Expression Development Envi-
ronment for Xerox Finite State Tool.

Scott Owens, John Reppy, and Aaron Turon. 2009.
Regular-expression derivatives re-examined. J.
Funct. Program., 19(2):173–190.

Eric Pasternak, Rachel Fenichel, and Andrew N.
Marshall. 2017. Tips for creating a block lan-
guage with Blockly. In 2017 IEEE Blocks and
Beyond Workshop, pages 21–24.

Michael Rabin and Dana Scott. 1959. Finite au-
tomata and their decision problems. IBM Journal
of Research and Development, 3:114–125.

Ehud Reiter. 2021. NLG systems
must be customisable. https:
//ehudreiter.com/2021/02/17/
nlg-systems-must-be-customisable/.

Lane Schwartz, Francis Tyers, Lori Levin,
Christo Kirov, Patrick Littell, Chi kiu Lo, Emily

https://www.aclweb.org/anthology/L18-1293
https://doi.org/10.18653/v1/2020.coling-main.516
https://doi.org/10.18653/v1/2020.coling-main.516
https://doi.org/10.18653/v1/2020.coling-main.516
https://doi.org/10.18653/v1/2020.coling-main.516
https://doi.org/10.18653/v1/2022.acl-long.232
https://doi.org/10.18653/v1/2022.acl-long.232
https://aclanthology.org/2022.sigul-1.4
https://aclanthology.org/2022.sigul-1.4
https://aclanthology.org/2022.sigul-1.4
https://aclanthology.org/C18-1222
https://aclanthology.org/C18-1222
https://aclanthology.org/C18-1222
https://doi.org/10.1007/s10590-017-9205-3
https://doi.org/10.1007/s10590-017-9205-3
https://doi.org/10.1007/s10590-017-9205-3
https://doi.org/10.1145/2034574.2034801
https://aclanthology.org/L18-1429
https://aclanthology.org/L18-1429
https://doi.org/10.1184/R1/6377378.v1
https://doi.org/10.1184/R1/6377378.v1
https://doi.org/10.1184/R1/6377378.v1
https://doi.org/10.1017/S0956796808007090
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://ehudreiter.com/2021/02/17/nlg-systems-must-be-customisable/
https://ehudreiter.com/2021/02/17/nlg-systems-must-be-customisable/
https://ehudreiter.com/2021/02/17/nlg-systems-must-be-customisable/


7925

Prud’hommeaux, Hyunji Hayley Park, Kenneth
Steimel, Rebecca Knowles, Jeffrey Micher,
Lonny Strunk, Han Liu, Coleman Haley, Kather-
ine J. Zhang, Robbie Jimmerson, Vasilisa
Andriyanets, Aldrian Obaja Muis, Naoki Otani,
Jong Hyuk Park, and Zhisong Zhang. 2020.
Neural polysynthetic language modelling.
arXiv:2005.05477.

Lonny Alaskuk Strunk. 2020. A Finite-State Mor-
phological Analyzer for Central Alaskan Yup’Ik.
University of Washington.

Bruce Wiebe. 1992. Modelling autosegmental
phonology with multi-tape finite state transducers.
M.Sc. thesis, Simon Fraser University.

http://arxiv.org/abs/2005.05477

	Introduction
	Source Code Accessibility and Language Sovereignty
	Three Components of a Solution
	Accessibility to Non-Programmers
	A Tabular Programming Language

	Modeling Multiple Fields
	Issues with Flags
	Issues with Two Tapes
	Multi-tape Automata
	Brzozowski Derivatives
	Generalizing Derivatives to n Tapes
	Additional Operators

	Tabular Syntax
	Conciseness
	Avoidance of Special Characters
	Recovery from Syntax Errors
	Available Editors
	Downsides of Tabular Syntax

	Google Sheets Plug-in
	Future Work
	Conclusion
	Bibliographical References

