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Abstract
Current metrics for evaluating Dialogue State Tracking (DST) systems exhibit three primary limitations. They: i)
erroneously presume a uniform distribution of slots throughout the dialog, ii) neglect to assign partial scores for
individual turns, iii) frequently overestimate or underestimate performance by repeatedly counting the models’
successful or failed predictions. To address these shortcomings, we introduce a novel metric: Granular Change
Accuracy (GCA). GCA focuses on evaluating the predicted changes in dialogue state over the entire dialogue
history. Benchmarking reveals that GCA effectively reduces biases arising from distribution uniformity and the
positioning of errors across turns, resulting in a more precise evaluation. Notably, we find that these biases are
particularly pronounced when evaluating few-shot or zero-shot trained models, becoming even more evident as the
model’s error rate increases. Hence, GCA offers significant promise, particularly for assessing models trained with
limited resources. Our GCA implementation is a useful addition to the pool of DST metrics.

Keywords: Dialogue, Task-oriented Dialogue, Dialogue State Tracking, Evaluation, Performance Metric, Joint
Goal Accuracy, Slot Accuracy, Granular Change Accuracy

1. Introduction

Dialogue State Tracking (DST) is the task of ex-
tracting user preferences from a Task-Oriented Di-
alogue (TOD) to accomplish a task such as book-
ing a hotel room (Henderson et al., 2014). The
community has adopted a several different metrics
to evaluate model performances on this task (Ye
et al., 2022; Feng et al., 2022; Zhu et al., 2022;
Hung et al., 2022); however, these metrics em-
ploy some weaknesses that can result in an im-
balanced assessment, such that strong systems
receive poor scores and vice versa.

Figure 1 presents a sample TOD with two sets
of DST predictions, P1 and P2. P1 predicts five of
seven slots correctly whereas P2 only predicts one
correctly. However, the metrics of Joint Goal Accu-
racy (JGA; Henderson et al. 2014), Flexible Goal
Accuracy (FGA; Dey et al. 2022), Relative Slot Ac-
curacy (RSA; Kim et al. 2022 ) and Average Goal
Accuracy (AGA; Rastogi et al. 2020a) evaluate the
latter P2 as the better prediction. Just as problem-
atic, Slot Accuracy (SA; Wu et al. 2021) gives in-
flated and similar scores to both predictions. The
bottom of the figure depicts the source of these
miss-evaluations in the form of weaknesses that
these metrics employ.

Firstly, their scores are turn-centric, i.e. they uni-
formly treat each turn, averaging their accuracies,
even when certain turns involve more slots and are
inherently more challenging to predict. Secondly,
their turn evaluation is limited to 0/1 scoring lack-
ing a mechanism to assign partial credit for turns
that have only a subset of slots predicted correctly.

I want to book
a hotel with

free internet.
Great, how
about free
parking?

Yes, that
would be

great!
There is a 

cheap
guesthouse.

Please book
for 6 people 4
days starting
this Sunday.

Slot G P1 P2
Hotel-internet yes ❌✅

Slot G P1 P2
Hotel-internet yes❌✅

Hotel-parking yes❌❌

Slot G P1 P2
Hotel-internet yes ❌✅

Hotel-parking yes ❌❌

Hotel-day Sunday ✅❌

Hotel-people 6 ✅❌

Hotel-stay 4 ✅❌

Hotel-price cheap ✅❌

Hotel-type guesthouse✅❌

Double-counting
Scores

The same prediction is
scored multiple times

3
0/1 Scores

Turns do not
get partial

scores

1 Slot

2 Slots

7 Slots

Conversation Dialog State

Sure thing!

Existing Metrics' Weaknesses

JGA, FGA JGA, FGA,
SA, RSA, AGA

JGA, FGA,
SA, RSA, AGA

Turn-centric Scores
Accuracy averaged over

turns assuming 
uniform disribution

1 2

Performance Metric Evaluations

💡P1 makes 5/7 correct predictions whereas P2 makes only 1/7.

Metric P1 P2
JGA 0 33.33
SA 94.44 92.22
AGA 23.81 54.76
RSA 23.81 54.76
FGA 13.12 33.33
GCA (ours) 73.33 15.49

JGA = 0

⚠ 4 out of 5 of the DST metrics
evaluate P2 as the better model.
⚠ SA gives inflated and very
similar scores to both models.

Figure 1: Sample task-oriented dialogue with
ground truth belief state G, and two belief state pre-
dictions P1 and P2.
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Lastly, they double-count scores, i.e. they have
a tendency to repeatedly penalize or reward the
same predictions made in earlier turns.

Such shortcomings make the current metrics
sensitive to two spurious characteristics of model
predictions: (1) the timing of mistakes (whether
early or late in the dialog) and (2) the spread of
errors among turns. To address these, we present
Granular Change Accuracy (GCA). GCA gauges
the variance between predictions and the actual
belief states each turn, prevents repeated counting
of predictions, and ensures precise evaluation by
averaging over state alterations rather than turns.

We evaluate GCA on the MultiWOZ 2.1 and
SGD datasets (Eric et al., 2020; Rastogi et al.,
2020b) , conducting benchmarking experiments
with popular baselines and show that GCA posi-
tions in the middle of the spectrum, more optimistic
than JGA and FGA’s strict penalizing scheme, but
not as inflated as SA and AGA.

Our contributions are four-fold:

• Detailed Analysis of current metrics: We
perform a thorough examination of exist-
ing metrics, depicting their inherent biases
sourced from three weaknesses depicted
above.

• Granular Approach: We introduce Granular
Change Accuracy (GCA)1, a new DST evalu-
ation metric that focuses on capturing belief
state changes rather than a simple turn-by-
turn assessment, effectively addressing the
weaknesses prevalent in traditional metrics.

• Comprehensive Benchmarking: We evalu-
ate GCA against other DST metrics on Multi-
WOZ 2.1 and SGD datasets, showcasing its
superior balance in terms of evaluation accu-
racy. We further prove that GCA is signifi-
cantly less correlated by the position of mis-
takes in the dialogue and by the distribution
uniformity of mistakes compared to the most
recent FGA metric.

• Few-shot & Zero-shot Experiments: We
shine a light on the heightened discrepancies
between GCA and traditional metrics in low-
resource settings, emphasizing the increased
effect of the identified weaknesses when mod-
els are trained with less data.

2. Task Definition

DST involves extracting/generating slot values
for specific slot labels in each domain (e.g.,
restaurant-food: Indian). A task-oriented dialogue

1The code is available at https://github.com/
cuthalionn/Granular_Change_Accuracy

is represented as triplets of system and user turn
pairs, and the turn belief state denoted as

D = {(S0, U0, BS0), . . . , (Sn−1, Un−1, BSn−1)}
(1)

, where Si and Ui are system and user utterances
in the ith turn, and BSi is the belief state. Each
turn pair can have zero or more slot–value pairs,
summarized as

BS = {(S0 : V0), . . . , (Sm : Vm)} (2)

, where (Sj : Vj) represents an active slot–value
pair (i.e. all pairs where the value is not “none”)
and m is the number of active slots in the current
turn. The remaining inactive slots are assigned a
“none” value. Previous turn predictions persist un-
less new values are predicted, including “none” val-
ues.

3. Related Work

The evaluation of Dialogue State Tracking (DST)
systems has seen various metrics proposed over
the years, aiming to capture the nuances and com-
plexities of dialogs. Among these, two metrics
stand out due to their widespread adoption and
historical significance: Joint Goal Accuracy (JGA)
and Slot Accuracy (SA).

Joint Goal Accuracy (Henderson et al., 2014)
computes the ratio of turn–pair slots that are cor-
rectly predicted across all turn pairs. For a predic-
tion to be deemed correct, all slot–value sets in a
turn–pair must align between the predicted and the
ground truth belief states. The metric is formulated
as:

JGA =

∑n
t=0 (1 | Gt = Pt)

n
(3)

, where Gt and Pt represent the ground truth and
predicted belief states, respectively. One short-
coming of JGA is its tendency to underestimate re-
sults by not affording partial credit to turns. This
shortcoming can be observed for the example in
Figure 1, JGA scores P2 higher despite P1 obvi-
ously performing better.

Slot Accuracy (Wu et al., 2021) quantifies ac-
curacy across all pre-defined slot labels, incorpo-
rating even those slots with a ”none” value. It is
expressed as:

SA =

∑n
t=0

K−Mt−Wt

K

n
(4)

where Mt and Wt, are the number of missed pre-
dictions and wrong predictions (including slots that
do not exist in the ground truth belief state) in turn
t, and K is the total number of slots specified in

https://github.com/cuthalionn/Granular_Change_Accuracy
https://github.com/cuthalionn/Granular_Change_Accuracy
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the dataset (for instance K = 30 for MultiWOZ 2.1
dataset). A key limitation of SA is its inclination to
overestimate model performance, largely because
it rewards models for correctly identifying inactive
slots. For the dialogue in Figure 1 for instance slot
accuracy scores for P1 and P2 are very close and
inflated despite the large difference they show in
actual performance.

Given the identified weaknesses in JGA and SA,
subsequent research efforts have introduced alter-
native metrics such as Average Goal Accuracy,
Relative Slot Accuracy, and Flexible Goal Accu-
racy to better capture DST performance nuances.

Average Goal Accuracy (Rastogi et al., 2020a)
differs from earlier metrics because it evaluates
only the performance of turns with active slots; i.e.,
if a turn does not have any ground truth values,
it will be discarded during the evaluation. It cal-
culates a recall value for all turns with non-empty
ground truth belief states and returns the average.
AGA takes an average over each turn, leading to
the recurring inclusion of each turn’s mistakes or
accurate predictions. AGA results for P1 and P2 at
Figure 1 show that AGA also mistakenly chooses
P2 as the better performing model.

Relative Slot Accuracy (Kim et al., 2022) ad-
dresses the overestimation problem in SA by cal-
culating the score over active slots in the turn.

RSA =
T ∗ −M −W

T∗
(5)

, where RSA = 0 if T ∗ = 0, and T ∗, M and W
are the number of unique slots in the predicted and
ground truth turns, missed slots, and wrong predic-
tions (including slots that do not exist in the gold be-
lief state), respectively. Despite its advancement
over SA, RSA still computes the average over each
turn, resulting in the repeated counting of errors
and accurate predictions for each turn. P1 in Fig-
ure 1 gets a lower RSA score compared to P2.
Thus it is evident that the RSA metric inherits sim-
ilar weaknesses as AGA.

Flexible Goal Accuracy (Dey et al., 2022)
adapts JGA by treating mistakes in the current
turn as zero, while mimicking JGA’s behavior. Yet,
if all current turn slot values are correctly predicted
with a mistake propagated from a previous turn,
FGA applies a penalty that decreases over time
with the decay ratio parameter λ. Although FGA
softens the strict evaluation of JGA, it inherits a
significant limitation; even a single error in the
current turn results in the metric disregarding all
other correct predictions. It is also evident from
the FGA results in Figure 1, where P2 again gets
the higher score. Note that FGA’s more flexible

definition can be observed in the increased perfor-
mance of P1, however, it still evaluates P2 to be
the outperforming model out of the two.

The preceding discussion underscores the need
for a fresh metric. Both RSA and AGA predomi-
nantly rely on turn-based averaging, leaving them
susceptible to the nuances of dialogue dynamics.
Meanwhile, FGA exhibits an elevated sensitivity
to individual errors. GCA steps in to bridge this
gap by comprehensively addressing dialogue dy-
namics without excessively penalizing or reward-
ing models.

4. Granular Change Accuracy

In developing GCA, our primary objective is to rec-
tify the limitations outlined in the preceding sec-
tion, as illustrated in Figure 1. Contrary to tradi-
tional metrics that emphasize turns, GCA focuses
on slots, specifically evaluating them only when
their value undergoes a modification in the latest
turn. This design choice tackles the issues of 0/1
scores and double counting. Furthermore, by aver-
aging over the total number of such modifications,
GCA shifts away from turn-centric scores. The
name ”Granular Change Accuracy” encapsulates
its essence: a metric dedicated to evaluating accu-
racy based on granular changes in the belief state.
A notable strength of GCA is its resilience against
biases introduced by the temporal location of an er-
ror, whether it occurs early or late, or within a turn
characterized by many or few active slots.

A critical distinction in GCA’s design is its recog-
nition of the two-step prediction required in DST,
a nuance often overlooked in previous metrics. In-
stead of merely categorizing predictions as right or
wrong, GCA acknowledges that DST models first
determine if a slot is active within the dialogue con-
text, and subsequently predict its value. Conse-
quently, GCA computes state changes using four
distinct counts, as illustrated in Figure 2 (c.f. Algo-
rithm 1):

Missed predictions (M ): Number of slots val-
ued in the ground truth Belief State (BS) but ab-
sent in the predicted BS. Wrong predictions (W ):
Number of mismatched slot values present in both
ground truth and predicted BS. Overshot predic-
tions (O): Number of slots valued in the predicted
BS but absent in the ground truth BS. Correct pre-
dictions (C): Number of matching slot-value pairs
in both ground truth and predicted BS. While sim-
ilar counts have been outlined by Smith (2014),
they presented them discretely, without consolidat-
ing them into a singular evaluation metric, a gap
GCA bridges.

Building on the dual-layer prediction challenge
inherent to DST, our proposed metric goes beyond
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Algorithm 1 Calculating missed (M), wrong (W),
overshot (O), and correct (C) predictions.
1: G−1 = [],P−1= []
2: M, W, O, C = 0
3: for t = 0, 1, . . . do
4: Get Gt and Pt for turn t.
5: G′

t = Gt \Gt−1, P ′
t = Pt \ Pt−1

6: Cset, Wset = 0
7: for s, v pair in G′

t do
8: if s not in Pt then
9: M += 1

10: else if {s, v} not in Pt then
11: W += 1
12: add s to Wset
13: else
14: C += 1
15: Add s to Cset
16: end if
17: end for
18: for s, v pair in P ′

t do
19: if s not in Gt then
20: O += 1
21: else if {s, v} not in Pt & s not in Wset then
22: W += 1
23: else if s not in Cset then
24: C += 1
25: else
26: continue
27: end if
28: end for
29: end for
30: return M, W, O, C

Correct

Wrong

Overshot

Missed

Ground Truth | PredictionSlot label

Train
Destination

Train
Source

Train
Arrive-by

Train
Leave-at

Cambridge

Birmingham

17:00

"None"

"None"

London

17:00

14:00

Count Type

Figure 2: An illustrative breakdown of the four
counts used in evaluating DST model predictions.
Each row represents a slot label, with correspond-
ing ground truth and model predictions. The color-
coded ’Count Type’ column categorizes each pre-
diction as ’Missed’, ’Wrong’, ’Correct’, or ’Overshot’,
based on the comparison between the ground
truth and the predicted values.

raw counts to offer a more granular evaluation. We
translate the aforementioned counts into four inter-
mediate metrics, each tailored to assess either the

act of recognizing an active slot (the slot label) or
predicting its exact value (the slot value):

Value Precision: This metric evaluates the accu-
racy of value predictions for detected active slots.
It’s formulated as: VP = C

P , where P = C+W +O
represents the total number of predictions.

Value Recall: This metric evaluates how well the
model recalls actual slot values from the dialogue
context: VR = C

G , where G = C + W + M is the
total number of gold values.

Label Precision: This metric captures the preci-
sion with which the model identifies a slot as active,
irrespective of the value’s accuracy: LP = C+W

P

Label Recall: Analogous to Label Precision,
this measure gauges the model’s ability to recall
active slots: LR = C+W

G

The combined countsC+W pertain to instances
where the slot detection was correct, even if the
subsequent value prediction might not be accu-
rate.

These intermediate products help dissect model
performance at both levels of DST prediction, of-
fering insights not captured by previous monolithic
accuracy scores. Finally, we formulate GCA using
a weighted harmonic mean of the four intermediate
metrics as adopted in the F1 score for its efficacy
in balancing precision and recall 2:

GCA = Harmonic_mean(VP , VR, LP , LR) (6)
For the two predictions P1 and P2 in Figure 1,

GCA attributes significantly higher performance to
the former reflecting the real performance they de-
pict unlike all previous metrics.

5. Experiments and Analysis

To study how GCA’s design affects popular bench-
marks and assess its effectiveness in address-
ing previous metrics’ under/overestimation ten-
dencies, we conduct experiments with MultiWOZ
2.1 and SGD datasets, evaluating 6 DST mod-
els: TRADE (Wu et al., 2021), SOM-DST (Kim
et al., 2020), Trippy (Heck et al., 2020),T5 based
model by Lin et al. (2021b), TransferQA (Lin
et al., 2021a) and FlanT5 (Chung et al., 2022).
For TRADE and SOM-DST we re-use the predic-
tions reported in Dey et al. (2022).

2We use weighted harmonic mean to weigh value ac-
curacies differently from label accuracies. Since value
accuracy is an exact match whereas label accuracy is a
partial match we believe the former should have a higher
value. Thus, in our experiments, we set the weight of VP

and VR to 0.9, whereas the weight of LP and LR to 0.1.
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(a) Full-shot results – MultiWOZ 2.1
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(b) Zero-shot results – MultiWOZ 2.1
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(c) Zero-shot results – SGD

Figure 3: Full and Zero-shot Results for MultiWOZ 2.1 and SGD datasets with various metrics.

5.1. Benchmarking Results
In this section, we present comprehensive bench-
marking results over the listed datasets and mod-
els under varying training conditions. We catego-
rize our results based on full-shot, zero-shot, and
few-shot training scenarios.

5.1.1. Full-shot Results

Figure 3a shows the full-shot results. We set λ =
0.5 for FGA following Dey et al. (2022). Notably,
JGA and FGA tend to produce lower performance
scores owing to their binary scoring approach. On
the contrary, SA and AGA exhibit inflated scores,
reflecting their tendency to overestimate. GCA and
RSA scores are positioned between these two ex-
tremes. It’s noteworthy to point out the fluctuations
in model rankings based on different metrics. For
example, while GCA ranks SOM-DST as the top-
performing model, RSA places T5 at the top. This
emphasizes that the choice of evaluation metric
can indeed lead to distinct model hierarchies.

5.1.2. Zero-shot Results

Zero-shot results are shown in Figure 3b and Fig-
ure 3c. One can observe that various weaknesses
described in Figure 1 are at work in these re-
sults. Due to the cross-domain nature of Multi-
WOZ, most turns within zero-shot adaptation do
not have any active slots. This leads to the is-
sue of double-counting (early mistakes are multiply
counted for most turns), which ultimately results in
lower scores for JGA. FGA addresses this prob-
lem by decaying the mistakes; however, the turn-
centric scoring it employs counts most empty turns
as successful predictions of the model, which de-
ceptively boosts the final score of a model. RSA
has scores that float at the bottom as whenever a
turn does not have any active slots it scores that
turn as 0 which drags the average score of the
dialogue down (turn-centric scoring). GCA takes
the middle ground between these metrics since it
counts each mistake once at the first encounter
and calculates the performance by aggregating ac-

curacy over the model’s actions rather than turns
(c.f Section 5.4 for an extensive explanation on a
running example).
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(a) Performance by TO measure normalized by mean
normalization.
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(b) Performance by NU measure normalized by mean
normalization.

Figure 4: 4a and 4b depict how spurious traits af-
fect GCA and FGA scoring.

5.1.3. Few-shot Results

In an effort to further understand the disparities be-
tween zero and full-shot for GCA in comparison to
other metrics, we incrementally increased the num-
ber of shots used during training. The results, for
the MultiWOZ dataset with the T5 model, are dis-
played in Figure 5. A clear observation is that the
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Figure 5: Variation in the absolute difference between GCA and other metrics based on the ratio of shots
used during training. Red plots signify a decreasing difference, while blue plots denote an increasing
difference as shots increase.

disparity between GCA and other metrics intensi-
fies as the number of shots diminishes, that is, as
the model’s error rate climbs. From the figure, we
derive the following observations:

Predominant Effect: A significant majority of
the metrics exhibit increased differences in com-
parison to GCA when models are trained with
scarcer data. In the figure, this trend is depicted
through color: red plots indicate a higher differ-
ence, while blue plots signify a lower difference.
This reinforces the idea that for the majority of met-
rics, the identified weaknesses become more pro-
nounced when evaluating models trained on lim-
ited data.

RSA’s Unique Behavior: Contrary to other met-
rics, RSA showcases an inverse effect. Notably, it
produces markedly lower scores in the zero-shot
scenarios (as seen in 2-b and 2-c). This is largely

due to its behavior of assigning a score of zero for
turns without active slots—a frequent occurrence
in zero-shot evaluations—subsequently dragging
the overall dialogue score downward.

In essence, the variance in metrics under-
scores the need for nuanced evaluations, espe-
cially in few-shot scenarios, to garner insights into
a model’s actual capabilities and limitations.

5.2. Fine-Grained Analysis

To analyze edge cases, we examined 20 predic-
tions of TRADE and SOM-DST models where FGA
and GCA show the largest disagreement. We
chose FGA for detailed examination because of its
one of the most recent metrics, contrasted to com-
munity standard JGA (Joint Goal Accuracy). We
observe that FGA overestimates the performance
when errors are accumulated in a few turns, i.e.
the mistakes are not uniformly distributed. Espe-
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Hotel-name el-shaddai✅

Hotel-name el-shaddai✅

Hotel-name el-shaddai✅
Attraction-type museum 🅼

TURN

1

2

3

4
Hotel-name el-shaddai✅

Attraction-type museum 🅼

5
Hotel-name el-shaddai✅

Attraction-type museum 🅼

Attraction-area dontcare 🅼

Attraction-name dontcare ❌

6
Hotel-name el-shaddai✅

Attraction-type museum 🅼

Attraction-area dontcare 🅼

Attraction-name dontcare ❌

7

Dialog State
Slot | Ground Truth | Prediction

Hotel-name el-shaddai✅
Attraction-type museum 🅼

Attraction-area dontcare 🅼

Attraction-name dontcare ❌

Figure 6: Sample dialogue from MultiWOZ 2.1
dataset, (MUL1110) with ground truth and pre-
dicted belief states. GCA: 31.43, FGA: 48.84

cially if these accumulations occur in the later part
of the dialog, i.e. when the mistakes show a tail-
oriented distribution (c.f. samples in Section 5.3).

Tail-Oriented Mistake Distribution. To exam-
ine the impact of tail-oriented mistakes on FGA
and GCA evaluation, we introduce a new measure,
TO:

TO =
Et − (n−1

2 )

n
(7)

Et =

∑m
i=0 ti
m

(8)

, where n is the total number of turns, ti is the turn
index of mistake i, and m is the total number of mis-
takes. It calculates the average distance of each
mistake’s turn from the middle turn of the dialog.
Figure 4a illustrates the performance distribution
based on TO. Despite GCA consistently yielding
higher results for lower values of TO ≊ (−2.5)
to (−1.0), we observe that FGA shows similar or
even higher scores at the right-hand side of the
figure. This suggests that as dialog state mistakes

Hotel-pricerange expensive✅
Hotel-parking yes ✅

Hotel-type hotel ✅

TURN

1

2

3

Hotel-pricerange expensive✅
Hotel-parking yes ✅

Hotel-type hotel ✅

Hotel-area dontcare 🅼

Hotel-pricerange expensive✅
Hotel-parking yes ✅

Hotel-type hotel ✅

Hotel-area dontcare 🅼

Hotel-name none 🅾

4

Hotel-pricerange expensive✅
Hotel-parking yes ✅

Hotel-type hotel ✅

Hotel-area dontcare 🅼

Hotel-name none 🅾

Dialog State
Slot | Ground Truth | Prediction

Figure 7: Sample dialogue from MultiWOZ 2.1
dataset, (SNG0779) with ground truth and pre-
dicted belief states. GCA: 75, FGA: 34.84

become more tail-oriented, FGA tends to overesti-
mate the performance.

Non-Uniform Mistake Distribution. In a similar
manner we define a non-uniformity measure, NU,

NU =

∑n
t=0 |mt − Em|

Em
(9)

Em =
m

n
(10)

, where mt is the number of mistaken predictions
(missed, over-shot or wrong) in turn t. Em is the
expected number of mistakes per turn under a uni-
form distribution, and n is the total number of turns.
Figure 4b demonstrates the performance distribu-
tion by NU . The results are mean-normalized,
causing the NU measure to have otherwise impos-
sible negative values. For lower NU ≊ (−2.5) to
(−1.5), FGA generally exhibits lower values com-
pared to GCA, however, one can observe it going
higher as NU values increase — i.e. for NU ≥
(−1.0). This suggests that FGA is adversely af-
fected by the uniform spread of prediction errors.

Finally, we further calculate the Pearson Cor-
relation Coefficients of both FGA and GCA with
both spurious traits across dialogs. The correla-
tions between TO and FGA/GCA are 0.08/−0.05,
whereas between NU and FGA/GCA are 0.59/0.40
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respectively. The differences between these cor-
relations are significant according to Zou (2008)’s
confidence interval tests. FGA’s correlation with
both features is significantly stronger with a 95%
confidence level. These results show that GCA is
less susceptible to spurious features than FGA.

5.3. Sample GCA and FGA Scores
This section presents two sample dialogs from the
MultiWOZ 2.1 dataset along with DST model pre-
dictions, and FGA/GCA evaluations.

The dialogue in Figure 6 is an example where
FGA overestimates the performance of a dialogue
even though it only predicts one out of four slots
correctly. This is because the majority of mistakes
in the dialogue occur closer to the tail of the dia-
logue and correct prediction done at the first turn
is counted multiple times — i.e. Double-counting
score weakness.

Figure 7 on the other hand presents an exam-
ple where FGA underestimates the performance
of a model even though it predicts three out of five
slots correctly – significantly better compared to
the performance in Figure 6. This is because, un-
like the prior example, the dialog is shorter, leading
to fewer repeated predictions by FGA.

5.4. Fine-grained Explanation of
Zero-shot Results

Slot G P1 P2
Train-dest. Sheraton✅❌

TURN

1

2

3

Dialog State

6

...

Slot G P1 P2
Train-dest. Sheraton ✅❌

Train-arrival Mcdonald's❌✅

Slot G P1 P2
Train-dest. Sheraton✅❌

Slot G P1 P2
Train-dest. Sheraton✅❌

Figure 8: Hypothetical dialog

In zero-shot evaluations, given their cross-
domain nature focused on a single domain, most
turns don’t contain active slots. This characteris-
tic poses a challenge for existing metrics, leading
to skewed evaluations. To elucidate, let’s delve
into a hypothetical dialogue depicted in Figure 8.
This dialogue has two active slots: one at the first

turn and another at the last. Such scenarios aren’t
uncommon in datasets like MultiWOZ, where, for
instance, taxi domain dialogues primarily discuss
hotel or restaurant bookings, leaving taxi booking
for the final turns.

Now, let’s analyze two prediction scenarios for
this dialogue, represented as P1 and P2. In P1,
the first slot is predicted correctly, but the final
slot is amiss. Conversely, P2 nails the final slot
prediction but misses the initial one. With JGA,
scores for P1 and P2 are 83.33 and 0, respec-
tively. Such an overestimation for P1 arises be-
cause JGA rewards every empty turn, while P2 is
harshly penalized due to JGA’s all-or-nothing ap-
proach. RSA paints a similar picture, scoring 91.67
for P1 and 8.33 for P2. FGA nuances it a bit with
83.33 for P1 and 59.75 for P2. Though it aligns
with JGA for P1, it is more generous for P2 by pos-
itively scoring empty turns, explaining FGA’s infla-
tion in zero-shot contexts. Contrarily, GCA offers
a balanced perspective with 52.38 for both, as it
gauges changes in dialogue state uniformly, penal-
izing and rewarding predictions only once.

6. Conclusion

In this work, we have delved deep into the inher-
ent weaknesses of prevalent DST evaluation met-
rics. Specifically, we spotlighted their propensity
to over or underestimate model performance, the
pitfalls of 0/1 scoring, the turn-centric nature of
their scoring systems, and the double-counting of
errors. Addressing these shortcomings, we intro-
duce GCA, a novel metric that prioritizes accuracy
based on belief state changes, offering a more
nuanced evaluation approach than simple turn-by-
turn assessments. Through rigorous analyses, we
demonstrate that GCA provides a more balanced
and representative evaluation, effectively sidestep-
ping the pitfalls within other metrics. Additionally,
GCA showcases a notably diminished correlation
with certain dialog traits that shouldn’t influence
metric performance, such as the non-uniform dis-
tribution or tail-skewness of mistakes. Most cru-
cially, our results emphasize GCA’s robustness
in evaluations of models trained under data con-
straints. In the complex landscapes of few-shot
and zero-shot learning, where standard measure-
ments become unstable due to increased model
errors, GCA stands out as a reliable benchmark
for precise assessment. We are convinced that the
DST community will see long-term benefits from in-
tegrating GCA into their array of metrics for model
benchmarking.

7. Limitations

We list two main limitations of our work as follows:
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1) We do not address partial credits at the slot
level. Though GCA is more exhaustive than exist-
ing metrics, there is still room for improvement by
partial credit of slot values; i.e. by calculating the
similarity of ground-truth and predicted values.
2) We do not report results with larger models.
We have not conducted experiments with larger
models. It would be interesting to see whether
these results are consistent among different sizes
of models.
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