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Abstract
In this paper, we discuss the development of an annotation schema to build datasets for evaluating the offline harm
potential of social media texts. We define “harm potential" as the potential for an online public post to cause real-world
physical harm (i.e., violence). Understanding that real-world violence is often spurred by a web of triggers, often
combining several online tactics and pre-existing intersectional fissures in the social milieu, to result in targeted
physical violence, we do not focus on any single divisive aspect (i.e., caste, gender, religion, or other identities of the
victim and perpetrators) nor do we focus on just hate speech or mis/dis-information. Rather, our understanding of
the intersectional causes of such triggers focuses our attempt at measuring the harm potential of online content,
irrespective of whether it is hateful or not. In this paper, we discuss the development of a framework/annotation
schema that allows annotating the data with different aspects of the text including its socio-political grounding and
intent of the speaker (as expressed through mood and modality) that together contribute to it being a trigger for
offline harm. We also give a comparative analysis and mapping of our framework with some of the existing frameworks.
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1. Background and Rationale

India is a country with a rapidly proliferating so-
cial media presence with over 700 million users
(including 81% of teens). However, despite mas-
sive levels of social media usage, digital media
literacy remains low in India. A 2020 survey of a
“highly educated online sample" of Indians found
that roughly 50% of the fake news presented to
them was judged as “accurate" or “very accurate"
in their control group (Guess et al., 2020). The wide
reach of social media content, the high prevalence
of false or misleading information online, and the
extreme communalism/groupthink on social media
(for example, see Al-Zaman (2019) for a study on
communalism in India and Mukherjee (2020) for a
discussion on the impact of online groupthink on
mob violence in India), coupled with low levels of
media discernment skills, have exacerbated long-
standing social divisions in India (Froerer, 2019;
Banerjee and Ghosh, 2018). India has now be-
come a hotbed for online content spurring real-
world physical violence. Online rumours and hate
speech leading to physical violence against tar-
geted communities and the subsequent filming of
lynching is no longer uncommon in India 1.

Online hate has compounded with pre-existing
lines of oppression, incentivizing the publicizing of
violence against targeted groups for the sake of

1In 2018, for example, rumours and accusations of
certain individuals being child-lifters, primarily spread
on social media led to five additional instances of mob
killings.

gaining public recognition and even praise. Sev-
eral incidents of lynching have been triggered by
misinformation around caste (Staff, 2020; Sajlan,
2021), love-jihad (Muslim men eloping with Hindu
women) (NewIndianXpress, 2018), religious dese-
cration etc. There are additional contextual triggers
that often cause increased levels of online content
and subsequent real-world harm. This includes
elections (Deka, 2019), where fake news, rumours,
misleading and divisive content are typically spiked
for political gains, and global crises like the COVID-
19 pandemic (Al-Zaman, 2021), which create a
context in which users want “someone to blame",
often unjustly.

In the last few years, over 60 datasets of vari-
ous sizes and kinds, where a wide variety of abu-
sive language has been annotated, have been re-
leased publicly (Vidgen and Derczynski, 2020; Po-
letto et al., 2021). Existing tools such as Hate-
base.org, or the Twitter-backed Hate-Lab or a
host of other recent studies have focussed on
identifying abusive language (Nobata et al., 2016;
Waseem et al., 2017), toxic language (Kolhatkar
et al., 2020; Kaggle, 2020), aggressive language
(Haddad et al., 2019; Kumar et al., 2018b; Bhat-
tacharya et al., 2020), offensive language (Chen
et al., 2012; Mubarak et al., 2017; Nascimento et al.,
2019; de Pelle and Moreira, 2016; Schäfer and
Burtenshaw, 2019; Zampieri et al., 2019a,b, 2020;
Kumar et al., 2021; Steinberger et al., 2017), hate
speech (several including (Akhtar et al., 2019; Al-
badi et al., 2018; Alfina et al., 2017; Bohra et al.,
2018; Davidson et al., 2017; Malmasi and Zampieri,
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2017; Schmidt and Wiegand, 2017; Del Vigna et al.,
2017; Fernquist et al., 2019; Ishmam and Sharmin,
2019; Sanguinetti et al., 2018)), threatening lan-
guage (Hammer, 2017), or narrower, more spe-
cific dimensions such as sexism (Waseem, 2016;
Waseem and Hovy, 2016)), misogyny, Islamopho-
bia (Chung et al., 2019; Vidgen and Yasseri, 2020),
and homophobia (Akhtar et al., 2019). Some
datasets include a combination of these such as
hate speech and offensive language (Martins et al.,
2018; Mathur et al., 2018)), or sexism and aggres-
sive language (Bhattacharya et al., 2020). How-
ever, while most of these datasets and frameworks
aim to model whether hate or offensive speech has
been used or not, there has been no dataset or
framework that could directly model the relation-
ship and interdependence of online content and
offline incidents of harm and violence.

In this paper, we discuss the development of
a framework - HarmPot - that could be used for
annotating the text with textual and contextual in-
formation such that the annotated dataset could
be used for training models that could predict the
offline harm potential of online content. In the fol-
lowing sections, we discuss the detailed annotation
schema and annotation guidelines, a comparison
with the other popular hate speech schema and fi-
nally some details of a new dataset annotated with
the data.

2. The HarmPot Framework

“Harm Potential" (HarmPot) could be defined as the
potential for an online public post to cause offline,
real-world physical harm (i.e., violence). Targeted
real-world violence is often spurred by a web of
triggers, often combining several online tactics and
pre-existing intersectional fissures in the social mi-
lieu. As such we do not focus on any single divisive
aspect (i.e., caste, gender, religion, or other identi-
ties of the victim and perpetrators) nor do we focus
on just hate speech or mis/dis-information. Rather,
we focus on marking the harm potential of online
content within a specific set of intersectional, con-
textual factors, irrespective of whether it is hateful
or not. The HarmPot framework is designed to an-
swer the following set of questions for a given text
-

Who is being talked to, when, how, why and all
this results in what magnitude of harm potential
for the addressee?

Each of these questions is answered by using
a set of parameters, defined in our tagset. We
discuss each of these in the following subsections.

2.1. Magnitude of Harm Potential
Depending on what kind of offline harm the text
could lead to, we define two broad kinds of harm
potential -

• Physical Harm Potential: It defines the po-
tential of a text to lead to acts of physical vio-
lence such as murder, mob lynching, thrashing
and beating, etc.

• Sexual Harm Potential: It defines the poten-
tial of a text to lead to acts of sexual violence
such as rape (or rape threats), molestation,
sexual harassment, etc.

Both of these harm potentials are classified on a
scale of 0 - 3, defined below.

Value 0: A text will be marked as having ‘0’ harm
potential in the following cases:

1. Texts which are a part of the dataset but do
not relate to any specific incident of violence
or larger narrative campaign.
E.g., “I felt like a bulldozer trying to catch a
butterfly."

2. Texts which are blurbs accompanying links to
news reports.
E.g., “How ‘Kashmir Files’ added to communal
fires in Khargone that ended with bulldozer
injustice https://t.co/hQUQ5tsz26"

3. Texts that criticise public figures and not pro-
tected identities.
E.g., “@AtishiAAP @ArvindKejriwal @UN
madam kuch bulldozer ka bhi bolna tha aaj
desh ki kya haalat hai, woh bolna that".
@AtishiAAP @ArvindKejriwal @UN madam
you ought to have spoken about bulldozer as
well, you ought to have spoken about the situ-
ation in the country today.

Value 1: 2 A text will be marked as having ‘1’
harm potential, if it is likely to lead to offline harm in
very few, specific contexts but more generally is not
expected to trigger incidents of offline harm. The
most stereotypical instances of such texts include

1. Texts that target communities by using slurs
and pejorative terms.

2. Texts that reinforce negative stereotypes re-
garding a particular community.

2The examples of these harm potentials included in
the categories discussed below
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Value 2: A text that is likely to trigger offline harm
in most of the contexts - it is only in very specific
contexts that it may not be interpreted as a call to
violence - is marked as ‘2’ on the harm potential
scale. Some of the most stereotypical instances of
such texts include

1. Explicit cases of attack or accusations against
communities.

2. Justifying violence or discrimination against
communities.

Value 3: Any text that has a high potential of trig-
gering offline harm, irrespective of the context that
it occurs in is marked as ‘3’ on the harm potential
scale. Instances of such texts include

1. Explicit and clear calls to violence against com-
munities or people.

2. Explicit and clear attempts to instigate violence
against communities or people.

The magnitude of harm potential is marked at
two levels -

1. Text Span: It is marked in conjunction with
specific spans of text that are used to refer
to specific identities. It refers to the potential
of that specific span of text to trigger offline
harm/violence against specific identities (refer
to Section 2.2 for details).

2. Document: It is the overall harm potential of
the document - generally it is calculated based
on the harm potential of individual spans; how-
ever, in cases where none of the spans refers
to specific identities then an overall harm po-
tential of the document is independently ascer-
tained.

2.2. Who is being talked to?
This parameter is used to identify the specific types
of identities that are ‘mentioned/referred’ (and not
necessarily targeted) in a particular ‘span of text’.
We discuss the various ontological types of identi-
ties that can be potentially targeted in a text. Since
this parameter works with the magnitude of harm
potential, a text span which simply mentions an
identity without targeting it will have ‘0’ harm poten-
tial.

Three broad annotation instructions are for this
parameter -

1. Intersectionality: If more than one identity of
the same individual is referred to (viz. Female
Dalit or Pakistani Hindu) then the same span
is marked with all the identities and the same
harm potential is ascribed in all instances -

this is how intersectionality is handled in the
framework. If different identities are mentioned
in different spans then also different spans will
carry the same harm potential, considering it
to be an instance of intersectionality.

2. Multiple Identities: If different identities of
different individuals are referred to then they
might have different harm potential.

3. Multiple Spans: If more than one span refers
to the same identity of the same or different
persons, each span could have different harm
potentials.

The framework itself does not enforce a specific
set of identities to be marked. However, for the
current project, the following non-exhaustive set
of identities have been marked in the dataset. If
needed, more, less or different kinds of specific
subtypes of these categories may also be marked
in the text. For each identity and its sub-category,
a set of additional guidelines was used for deciding
whether its harm potential is ‘0’ or not, as discussed
below - if it’s not ‘0’ then the guidelines for marking
the magnitude of harm potential are to be used.

Caste: A span is annotated as targeting this
identity if there are threats of violence, justification
for caste-based discrimination, justification and sup-
port for untouchability and criticism of reservation
(affirmative action) policy that questions the intel-
lectual capability of these groups.

E.g. A Beemtaaa 3, Bairi Naresh from Telangana
has insulted Ayyappa. Then he received treatment
by local Police and some people. Only this treat-
ment can fix who insults our Devi (PHM: 2) 4

Religion: A span is annotated as targeting a
member of a religious community if it calls for or
justifies violence against them. Propounding or jus-
tifying conventional stereotypes associated with the
members of such communities or using religious
slurs will also have a harm potential greater than
‘0’. For example, Muslims being called terrorists or
jihadis, Muslims and Christians being targeted for
alleged forced conversions and Sikhs being called
Khalistanis or secessionists.

E.g. Be it Kairana or Beerabhoom, wherever
Muslims are in a majority, Hindus get killed or have
to face exodus! #lack_of_unity!!" (PHM: 1)

Descent: For our specific case, descent encom-
passes all identities based on inherited status. This
includes ethnicity, race, and place of origin (includ-
ing linguistic or cultural minorities) of a victim (but
not caste given its prevalence in the Indian context).

3A slur for Dalits
4For all the following examples, we have mentioned

the Physical Harm Potential ‘PHM’ and/or Sexual Harm
Potential ‘SHM’ of the text, as applicable
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Spans supporting or justifying attacks based on
places of origin are annotated under this category.

E.g. When the Habshis ruled Bengal I guess all
the Bengali Hindus escaped by hiding inside Durga
Ma’s chuut5 (PHM: 1)

Gender: This label annotates spans attack-
ing gender minorities (LGBTQIA+ community) and
women. Spans propounding or justifying conven-
tional stereotypes or using gendered slurs are also
marked with non-zero harm potential.

E.g. Bengali girls are greatest wokes of all. Even
God Himself can’t make them understand the truth
of Love Jehad. No sympathy for them. (SHM: 1)

Political Ideology: Political violence includ-
ing murder, lynching, thrashing, etc of opposing
party members or people of different political ide-
ologies happens regularly. Spans calling for or
justifying violence, supporting discrimination or fur-
thering stereotypes against the supporters of a po-
litical party or ideology are assigned harm potential
greater than ‘0’. However, a criticism of the polit-
ical ideologies, political leaders, policies, etc are
assigned a ‘0’ harm potential.

E.g. Isn’t?? It is a dictator ruling! @INCIndia
Slated slaves don’t question their masters duplicate
Gandhi! (PHM: 0)

2.3. When is the discourse happening?
This parameter indicates if a text is posted online
about or during a major, public event or happen-
ing that might add to its harm potential. The harm
potential of the content may increase when posted
during or before such sensitive occasions and may
lead to real-world violence in the form of mob lynch-
ings and even ethnic cleansing. The major cate-
gories that we marked under this parameter are
discussed below. This parameter is marked at the
text/document level and the same text could take
multiple labels. Since generally the dates of the
events are already well-known, these labels could
be mostly assigned automatically and could be
seen as a grouping of multiple dates in a single
category.

Riots: In general, violent public disorders are
called riots. In India, in the past few years, hate
speeches in social media have made a significant
contribution to the amplification of violence during
the riots. As such posts related to riots at the time
of riots (or otherwise) are likely to have higher harm
potential than otherwise.

Elections: Elections in India often see violence
by supporters of rival political parties, and they
are adopted in various themes such as communal-
ism, terrorism allegations, anti-national, systemized
threats and disruption of harmony.

5Slur for vagina

Pandemic: A huge number of potentially harmful
online content were posted during COVID-19, and
so, needs to be included as a separate category.

Extremist Attack: An extremist attack on state
forces or the public may also lead to online hate
against particular communities. The Pulwama
suicide attack of February 2019 in India led to
widespread hate speech and real-world violence
against Kashmiri Muslims throughout India.

Festivals: Religious festivals have recently be-
come flashpoints for communal violence with dif-
ferent sides accusing each other of attacking pro-
cessions or interfering with rituals. Online hate and
disinformation often spikes during these situations.

Group-Specific State Decisions: This context
pertains to when the government introduces or im-
plements legislation/decisions affecting a particular
community. The government’s decisions may be
criticised or protested against by the community
followed by online and offline attacks by the gov-
ernment’s supporters. Recent examples in India
have been the Citizenship Amendment Act, Farm
Laws and the abrogation of Article 370.

Generic: These refer to the posts related to the
incidents that are recurring in nature (like the pre-
vious factors) but generally do not have a fixed or
pre-determined start or end time (viz. mob lynch-
ing on the suspicion of being child-lifters or those
related to cow vigilantism in India).

Others: The posts that do not co-occur with
any of the above-mentioned contextual factors -
seemingly one-off incidents of hate and violence at
no specific time - are marked as others.

2.4. How is it being said?
Since we focus on the harm potential of social me-
dia content, the methodology developed here is
sensitive to the fact that the core objects of study
are linguistic events themselves and so it is es-
sential to model the textual features viz its lexical,
syntactic and semantic properties that co-occur
with the contextual features discussed in the earlier
subsections. For the current project, we have de-
fined a set of semantic features (specifically mood
and modality) and lexical features (affective expres-
sions) that are marked in the text. Since the other
morphosyntactic features could be marked auto-
matically using the earlier existing systems or are
implicity learnt by modern transformers-based mul-
tilingual models, we have not marked those sepa-
rately. The labels for this parameter are marked at
the span level and generally, but not necessarily,
overlap with the spans of the ‘who’ parameter.

There is an abstract link that can be sketched
between the language that a speaker uses to con-
vey harm vis-a-vis how that language is particularly
structured to reflect the speaker’s intentions and the
speaker’s evaluation of what they say as possible or
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necessary. The variation in the speaker’s intention
and their evaluation of what they say could have
a significant impact on the harm potential of what
is being said. These could be modelled using the
linguistic categories of mood and modality. We dis-
cuss the different subtypes of these two categories
used for annotation below -

Mood Type: The category of mood is a “gram-
matical reflection of the speaker’s purpose in speak-
ing" (Kroeger, 2005) or an indication of “what the
speaker wants to do with the proposition" in a par-
ticular discourse context (Bybee, 1985). The gram-
matical form of the construction changes depending
on whether the speaker wants to talk about a situa-
tion that has or will actualize in their perspective or
whether they want to talk about an event that has
not actualized. We annotate three broad kinds of
mood types -

• Realis Mood: The Realis mood portrays situ-
ations as actualized, as having occurred or
occurring, knowable through direct percep-
tion (Palmer, 2001). Indicative mood (that ex-
presses actions that did take place, are taking
place or will take place) is the canonical bearer
of realis mood in a language.
E.g. No Brahmin says that we need the daugh-
ters of Rajputs, Baniyas and Dalits! (PHM: 2)

• Irrealis Mood: The irrealis portrays situations
as purely within the realm of thought, knowable
only through imagination (Palmer, 2001). It is
used to denote situations or actions that are not
known to have happened. Modality-marked
constructions, conditionals (that convey de-
pendency of a situation on another situation),
counterfactuals (that convey a conditional situ-
ation in an alternate reality i.e. a situation that
cannot actualise because it is contrary to some
fact in the actual world), optatives, hortatives
and subjunctives (that express contrary to fact
situations) are all grouped under the label of
irrealis modality.
E.g. if you let this fester a moment longer this
too will become #ShaheenBagh. (PHM: 1)

• Neither: Imperatives (that are used to direct
the behaviour of the addressee and get them to
act a certain way), interrogatives (that are used
to ask some information from the addressee),
future-tense marked constructions (that indi-
cate that some event will take place in future
as compared to speech time) and negative
constructions (that assert that something has
not taken place) are marked as ‘neither’.
E.g. Don’t expect anything better from an ex
Hindu ricebag convert. (PHM: 1)

Illocutionary Mood: Illocutionary mood draws
upon Austin and Searle’s idea of illocution (what

the speaker intends to do via his/her speech) act
and encodes speaker intention (in illocution) as a
category of mood. There is an expected correlation
between a speech act and a sentence type since
there is a language-independent tendency for cer-
tain illocutionary acts to be mapped onto specific
grammatical forms. We have used the following
subtypes of illocutionary mood -

• Declaratives: Declaratives can be either ‘di-
rect’ (indicative mood) or ‘indirect’ (mainly us-
ing the rhetorical forms). A rhetorical ques-
tion is an indirect speech act (a mismatch
between the sentence type and the intended
force) which involves the use of the interroga-
tive form for some purpose other than asking
questions (Kroeger, 2005). It can be used to
indirectly assert something and thereby is an
indirect declarative.
E.g. Nagas eat dogs ,they are of Han decent.
(PHM: 1)

• Interrogatives: These are primarily the ques-
tion sentences.

• Imperatives: It could be in the form of a com-
mand, a request, advice, a plea, permission,
an offer or an invitation.
E.g. Boycott all sickular actors, politicians and
social activists. (PHM: 1)

• Admonitive: Admonitives are the warnings
that a speaker issues to the addressee(s).
E.g. Once Hindus take up swords against rice
bags, the bag distributors will quickly find their
way to Africa. (PHM: 1)

• Prohibitive: Prohibitives curtail the ad-
dressee’s actions and stop them from engag-
ing with some situation or action.
E.g Do not comment on personal matters, Mr
Reporter. (PHM: 0)

• Hortative: It is used for softened commands
or exhortations and so shares properties
with imperatives (Puskás, 2018). It is often
used with first-person inclusive reference (‘let
us. . . ’).
E.g. Provided the ADC bill moved by the
hill committee is within the constitution valley
brothers should not take the hill brothers oth-
erwise let us learn how to co exist peacefully
let us get rid of bais attitude. (PHM: 0)

• Optative: Sentences in an optative mood ex-
press a wish or a desire of the speaker that
some situation be brought about.
E.g. If riots happen or there is khalistani activity
(in any state and if links are traced back to
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Punjab) then the central government will take
over the control of Punjab. (PHM: 1)

• Imprecative: It indicates that the speaker
wishes for an unfavourable proposition to come
about.
E.g. They must be beaten more mercilessly,
what is done is not enough , they are not stu-
dents but roadside goondas in disguise. (PHM:
2)

• Exclamative: These are primarily the excla-
mation sentences.

Modality: Modality can be viewed as speaker mod-
ification of a state of affairs concerning how the
basic event/situation is construed by the speaker.
Modalities come in two flavours - whether the
speech event is ‘possible’ or ‘necessary’ given the
particular set of conditions. We have used the fol-
lowing modalities for marking the text spans -

• Epistemic: It deals with “an estimation, typ-
ically but not necessarily by the speaker, of
the chances or the likelihood that the state of
affairs expressed in the clause applied in the
world" (Nuyts and van der Auwera, 2016). It
is marked for a sentence if that sentence con-
cerns the speaker’s knowing or believing that
the state of affairs described in the sentence is
possibly (possibility or dubitative) or certainly
(necessity) true.
E.g. #ShaheenBagh #AntiCAAprotest #Jami-
aViolence r all part of Gazwa-E-Hind. Such
massive pan-India violent protest is impossible
without foreign support. (PHM: 1)

• Deontic: Deontic modality can be defined as
“an indication of the degree of moral desirabil-
ity of the state of affairs expressed in the utter-
ance, typically but not necessarily on behalf
of the speaker" (Nuyts and van der Auwera,
2016). The conception of morality includes “so-
cietal norms as well as personal ethical criteria
of the person responsible for deontic assess-
ment" (Nuyts and van der Auwera, 2016). This
modality involves an evaluation of the state of
affairs that ranges from absolute moral neces-
sity to moral acceptability.
E.g. Secularism has no importance in the face
of rigorous jihad and bigotry. Apart from this, in
front of bio weapons, everyone is forced to be
helpless, it has also been proved that religion
did not work before them. Now is the time to
think about them all. (PHM: 0)

• Dynamic: Dynamic modality is concerned
with (a) an ability or a capacity ascribed to
the participants of the action/ situation; (b) a
need/necessity imposed on the participant by

external circumstances that lie beyond their
control; (c) a possibility/potential or neces-
sity/inevitability inherent in the state of affairs
described in the sentence and not related to
the participants in that state of affairs.
E.g. If ’fear of Bulldozer’ is the new norm
through which law n order can be maintained,
then I whole heartedly welcome it. (PHM: 1)

• Teleological: Teleological modality concerns
“what means are possible or necessary for
achieving a particular goal" (Von Fintel, 2006).
E.g. Only this treatment can fix who insults our
Devi (PHM: 1)

In addition to these, the presence of affective
expressions is marked if there is some word in the
text that conveys the speaker’s evaluative attitude
or some emotional state towards some part of the
information being conveyed by the sentence.

2.5. Why is it being said?
This parameter analyses the discursive role of the
text placed within its context and checks for the
reason or rationale behind posting the text. It is a
direct induction of the ‘discursive roles’ by Kumar
et al. (2022a) in this framework. We discuss the five
categories and their relationship to the magnitude
of harm potential here -

Attack: This label is used when any com-
ment/post poses an attack on any individual or
group based on any of their identities. Not all at-
tacks are accompanied by a positive harm potential.
For example, criticisms, which are not likely to trig-
ger real-world harm against them are tagged as
‘attack’ with harm potential ‘0’.

E.g Let #ShaheenBagh rot.... All anti-nationals
to rot - is their God watching or busy in hal.... ??
https://t.co/BBazCKFx9c (PHM: 2)

Defend: This label is used when any com-
ment/post defends or counter-attacks a previous
comment/post. Again not all instances of defend
have ‘0’ harm potential - in instances where the
defense of the perceived ‘victim’ has the possibility
of triggering real-world harm against the attacker,
they are marked with non-zero harm potential.

Abet: This label is used when any comment/post
lends support and/or encourages an aggressive act
which has a harm potential.

E.g. If ‘fear of Bulldozer’ is the new norm through
which law n order can be maintained, then I whole
heartedly welcome it. (PHM: 1)

Instigate: This label is used when any com-
ment/post encourages someone to perform an ag-
gressive act. The comment itself may or may not be
aggressive but the purpose must be to instigate an
act that is potentially harmful in the real world. In-
stigation happens before the event and its purpose
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is to trigger or provoke a harmful act unlike abet
which occurs during or after the harmful act and
its purpose is to praise, support, and/or encourage
that act as well as other such acts in the future.

E.g. @desimojito all the nations of the world are
fighting #coronavirus and India is fighting the illiter-
ates and morons of #peaceful_religion. All of them
should be burnt alive; it will save the country from
#biojihad #CoronaJihad along with #coronavirus
(PHM: 3)

Counterspeech: Texts that diffuse the poten-
tially harmful situation will be tagged as counter-
speech. Just as influential speakers can make
violence seem acceptable and necessary, they can
also favourably influence discourse through coun-
terspeech.

E.g. @ANI BUT Shaheen Bagh has not moved
an INCH. Road is reopened, can you open your
eyes NOW to look for the reason why it was shut?
(PHM: 0)

3. Data Collection and Annotation

The framework discussed in Section 2 is devel-
oped over several stages and iterations. In order to
test the reliability and validity of the framework, we
collected a dataset from different social media plat-
forms and annotated those using the framework.
As a first step towards data collection, we focussed
on a few incidents of physical harm (riots, lynch-
ings etc.) that had a link to online disinformation
and hate campaigns from 2016 – 2022 6. Finding
relevant government-published data related to hate
crimes was a challenge as the Indian government
stopped collecting data on hate crimes in 2017.
Therefore, we decided to use databases from non-
governmental organisations like Documentation of
the Oppressed (DOTO). This database consisted
of a list of over 1,100 incidents of offline hate crimes
and violence since 2016. Out of these, we sam-
pled a little over 150 crimes since they had a link to
social media discourse. We extracted social media
data related to these incidents from different social
media platforms viz Twitter, YouTube, Facebook,
Telegram and WhatsApp. We also ensured that
we collected data both from before and after the
incident separately. This approach ensured that
we got data that had links to offline harm incidents
so they could be considered as potential triggers
for the offline harm incident; at the same time, we
also got data that might be triggers for a related
post-event incident. We collected a total of over
574,000 datapoints in Hindi and English using this

6This time period was decided given the introduction
of low-cost data and smartphones by Reliance Jio in
2016 which led to a manifold increase in per-capita data
usage

Figure 1: Broad Themes in Dataset

methodology (Figure 1) 7.

3.1. Inter-Annotator Agreement

Approximately 5 - 10 data points were selected
from approximately 50 incidents for running the
inter-annotator agreement experiments. Each of
these was annotated by 3 annotators and Krippen-
dorff’s Kappa was calculated for the magnitude of
harm potential. The first round of experiments with
around 500 data points gave a rather dismal Kappa
of 0.25. Following this, we made certain changes
to the tagset such as merging different categories
to reduce overlap across categories (for example,
race, ethnicity and nationality under ‘Who’ were
combined into a single category of ‘Descent’) and
introducing new categories to better classify differ-
ent kinds of categories (for example, several new
categories under mood and modality were added
for a better analysis). We also made changes to the
annotation guidelines for clarity. These changes
led to significant improvements in the alpha - the
second round of experiments gave a final value of
0.53.

While the Kappa value still remained low, for a
highly subjective task such as predicting the mag-
nitude of harm potential as reasonably good. We
started conducting focus group discussions to un-
derstand the reason behind disagreements. As it
has been argued earlier as well (for example, Ku-
mar et al. (2022b) and also the Perspectivist Data
Manifesto 8), most of these disagreements seemed
reasonable. As such we decided not to push for
further agreement - instead, we will be making the
disaggregated annotations by different annotators
publicly available.

7The complete dataset, along with the hate crimes
they were associated with is available here - https:
//github.com/unrealtecellp/harmpot

8http://pdai.info/

https://github.com/unrealtecellp/harmpot
https://github.com/unrealtecellp/harmpot
http://pdai.info/
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3.2. Data Annotation
We have annotated a total dataset of approximately
2,000 data points (taking around 15 - 20 data points
from over 100 incidents) to demonstrate the validity
of the presented framework. We made use of an
online app - LiFE App (Singh et al., 2022) - for data
annotation since it allowed us to annotate the data
simultaneously at the document and the span level.
Each data point was annotated by 3 annotators
working independently.

4. HarmPot and Other Frameworks: A
Comparison

As we mentioned earlier, most of the existing frame-
works attempt to only model hateful, aggressive, of-
fensive (or one of the other similar flavours) speech
but do not attempt to predict the potential of the text
to trigger offline harm incidents. However, such
language usage is expected to have some correla-
tion with offline harm. Moreover, prior studies have
also pointed out the need to flesh out the interre-
lationship between different frameworks so as to
ensure interoperability and cross-use of datasets
annotated with different hate speech frameworks
(Poletto et al., 2021; Kumar et al., 2022b). In or-
der to understand this relationship, we carried out
a comparative study between our framework and
three of the other popular frameworks. We took
500 texts annotated with each of these different
frameworks, annotated those with the HarmPot
framework and carried out a comparative study.
The results of these are discussed in the following
subsections.

4.1. HarmPot and HASOC
Hate Speech and Offensive Content Identification
in Indo-European Languages (HASOC) is a series
of workshops/shared tasks that have been held
since 2019 and that makes data available for Indo-
European languages, marked with hate and offen-
sive labels (Modha et al., 2019; Mandl et al., 2020,
2021; Amjad et al., 2021; Mandl et al., 2022). The
first level of the schema distinguishes between Hate
and Offensive (HOF) and Not hate and offensive
(NOT). The second level of the schema classified
HOF into three classes - Hate, Offensive and Pro-
fane. In the 2022 and 2023 editions, the second
level of the schema was a multiclass annotation
indicating Standalone Hate (hate by itself), Con-
textual Hate (hate in the context of its parent) and
Non-hate (not hate by itself). In the 2023 edition,
the task of identifying spans of hate was also intro-
duced in the HateNorm track. We took a total of
500 texts each from the 2019 and 2023 editions of
the task and annotated those using the HarmPot
framework. to understand their interrelationship.

The study showed that most of the NOT texts had
‘0’ harm potential but the vice-versa was not neces-
sarily true. On the other hand, probably because
of the broad definition of HOF (which includes texts
with swear words and profanity), unexpectedly, at
least some of the offensive texts carried ‘1’ and
even ‘0’ harm potential. At the second level, the
mapping becomes clearer as most of the ‘Profane’
texts are marked with ‘1’ or ‘0’ harm potential, most
of the ‘hate’ texts were marked as ‘3’ harm potential
(or in some cases ‘2’ as well). The offensive texts
were marked with ‘2’, ‘1’ and even ‘0’ harm potential.
Table 1 illustrates the mapping between the two. In
our comparison of the spans being marked using
the HarmPot framework and those marked in the
HateNorm task, we did not find many exact over-
lap of the spans selected in the two datasets. In
most instances, the spans marked in the HateNorm
task were a substring of those marked using the
HarmPot framework and the total number of spans
was also less in the HateNorm task - this is mainly
because we do not mark hate spans, rather it’s the
identity spans that are marked in our framework.
Level 2 of 2022 and 2023 editions, which mark
whether it is contextual or standalone hate do not
have a direct relationship to any of the levels in
HarmPot - the main reason being that our defini-
tion of ‘context’ is more rooted in how it is defined
in discourse analysis and pragmatics as different
socio-cultural factors affecting the interpretation of
the text (and not just parent / previous text in the
thread).

4.2. HarmPot and OLID
The Offensive Language Identification Dataset
(OLID) contains a collection of over 14k annotated
English tweets using a three-level annotation frame-
work. Level A distinguishes between Offensive and
Non-offensive texts. At Level B offensive texts are
further classified into targeted and untargeted in-
sults. Level C categorises targeted insults into In-
dividual, Group and Other targets (Zampieri et al.,
2019a). It’s a comparatively coarse-grained tagset
but unlike the HASOC tagset, it addresses the two
questions of ‘who’ is being targeted and ‘magnitude’
of the attack.

For level A, the results of the comparative study
were similar to the HASOC dataset. The rest of
the two levels in the OLID framework relate to the
‘who’ parameter in HarmPot but work at different
axes - while OLID marks whether an individual or
a group is being attacked, HarmPot looks at the
specific identities irrespective of it being that of an
individual or a group (more appropriately they rep-
resent the identity of an individual as a member
of a group). All the texts with spans mentioning
one of the identities and carrying a harm potential
greater than ‘0’ were marked as ‘Targeted Insult’
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HASOC Framework
Level A Level B Span

HarmPot Harm Potential HOF ϵ{0, 1, 2, 3}
NOT ϵ{0, 1}

Offensive ϵ{0, 1, 2}
Hate ϵ{2, 3}

Profane ϵ{0, 1}
–

HarmPot ‘Who’ – – HASOC ⊂ HarmPot
HASOC ϵ{1, 2, 3}

OLID Framework
Level A Level B Level C

HarmPot Harm Potential OFF ϵ{0, 1, 2, 3}
NOT ϵ{0, 1}

TIN ϵ{{1, 2, 3}∪
{Caste, Religion...} }

{IND,GRP} ϵ
{Caste, Religion...}

ComMA Framework
Aggression Aggression Intensity Threat and Bias

HarmPot Harm Potential
OAG ϵ{0, 1, 2, 3}
CAG ϵ{0, 1, 2}
NOT ϵ{0, 1}

{PTH, STH} ϵ{1, 2, 3}
NtAG, CuAG ϵ{0, 1, 2} –

HarmPot ‘Who’ – – ComMA ⊂ HarmPot
ComMA ϵ{1, 2, 3}

HarmPot ‘Why’ ComMA ϵ{Attack,Defend, Instigate,Abet, Counterspeech}

Table 1: Mapping of HarmPot and Other Frameworks

at OLID’s Level B. Any text without mention of any
of the identities was mostly marked ‘Untargeted’ -
however, the magnitude of harm potential for such
texts varied. This follows from the fact that the use
of profane or unacceptable language may not nec-
essarily trigger offline harm - one such instance
could be friendly banter, which will have ‘0’ harm
potential. Texts marked as ‘Individual’ or ‘Group’ at
Level C in the OLID dataset were marked for one of
the identities in HarmPot. However, those marked
as ‘Other’ were not marked for identities (although
the number of such texts was very small in the over-
all dataset). Also, the mapping of these categories
to harm potential is quite unpredictable. The ten-
tative mapping of OLID framework to HarmPot is
summarised in Table 1.

4.3. HarmPot and ComMA
Lastly we also conducted a comparative study be-
tween the HarmPot and ComMA framework (Ku-
mar et al., 2018b, 2022b). The top level of the
framework distinguishes between overtly, covertly
and non-aggressive texts. At the second level,
the aggression intensity of the aggressive texts -
physical threat, sexual threat, non-threatening ag-
gression and curse/abuse - are marked. Parallel
to this, bias and threats of four kinds - religious,
caste/class, gender and racial/ethnic - are marked.
It also marks the discursive roles - attack, defend,
counterspeech, abet and instigate and gaslighting -
of the text. These discursive roles are already bor-
rowed and incorporated in the HarmPot framework.
Besides this, there are several parallels between
the ComMA and HarmPot frameworks and also
since social or physical ‘harm’ is inherent to the

idea of aggression, we expected a good mapping
between the notion of verbal aggression and the
harm potential of a text.

The study showed that most of the non-
aggressive texts (NAG) are at Level 0 but the
vice-versa is not necessarily true. Also, most
of the ‘covertly aggressive’ (CAG) texts are cat-
egorised with level ‘1’ harm potential. At the sec-
ond level, physical and sexual threats were mostly
marked as having ‘2’ or ‘3’ harm potential while non-
threatening aggression is mostly marked as ‘1’. As
in the earlier instances, some of the curse/abuse
texts were also marked with ‘0’ harm potential. At
the level of threat and bias, even though religious,
caste and gender bias have direct parallels in Harm-
Pot since we are marking all mentions of these iden-
tities and not just biased or threatening ones (unlike
the ComMA dataset), the instances of such spans
were higher in our case. However, threats gener-
ally carried a harm potential of ‘2’ or ‘3’ while bias
carried a harm potential of ‘1’ or ‘2’. Some of the
comments marked as non-biased in the ComMA
dataset also carried a harm potential of ‘1’ or even
‘2’. Moreover, the ComMA dataset marked the bi-
ases at the document level while HarmPot marks
these at the span level.

5. Conclusion

In this paper, we have presented a new frame-
work that could be used for annotating social me-
dia text with its potential for triggering offline harm.
The framework incorporates contextual informa-
tion such as the identity of the victim (as men-
tioned/referred to in the text), the broad socio-
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political situation in which the post is situated and
the role that the text assumes in the discourse. We
have also proposed using mood and modality as
relevant categories for marking the speaker’s in-
tention, intended goal and their own evaluation of
whether what they are saying is ‘necessary’ or ‘pos-
sible’. These semantic categories have been rarely
utilised in NLP but they could prove to be extremely
useful in the identification of subjective phenom-
ena like harm potential. We have annotated a total
dataset of 4,000 texts - 2,000 related to the possi-
ble triggers of offline harm incidents and another
2,000 from datasets available for aggressive and
hateful language identification. We use these 2,000
to carry out a comparative study of HarmPot with
three popular frameworks and establish that a one-
to-one mapping between these frameworks is not
possible mainly because HarmPot does not mark
hateful language; rather offline harm potential of
the text. It shows some correlation between hateful
language and its harm potential but neither entails
the other. We are currently annotating some more
data and also conducting experiments for the auto-
matic identification of harm potential to understand
the practical efficacy of the framework.

6. Ethical Considerations

The nature of the task - the creation of datasets
with high harm potential and its annotation - in itself
raises several ethical issues of bias and psycho-
logical impact on the annotators working with the
data. In order to reduce the impact of working with
such data, we took 3 steps - (a) a ‘maximum’ limit of
200 texts per week was set for the annotators - the
annotators were barred from going through more
than this number of texts in a week; (b) we had
made arrangements for psychological counselling
of the annotators working on the data; (c) a compul-
sory weekly ‘venting out’ meeting was organised to
enable annotators to talk to each other and other
members of the project that allowed them to talk
about, discuss and (hopefully) figure out the ridicu-
lousness of the data that they were going through.
We made a very conscious decision not to use
crowdsourcing or even third-party annotators for
data annotation and collection to ensure that these
mechanisms are put in place.

In order to minimise the bias in the annotations
and also make different perspectives on the data
public, we have decided to release the disaggre-
gated dataset with the annotations of all the anno-
tators (with their disagreements). We were very
conscious not to push for an agreement where it
was not possible. Moreover, our in-house anno-
tators were from mutually distinct socio-political,
religious, cultural, and educational backgrounds,
providing an innate cancelling out of any one type

of bias overpowering the data analysis and interpre-
tation - we have tried to annotate the data in such a
way as to reflect different perspectives on the data
(and not propound a single, homogeneous view).

7. Limitations

One of the primary limitations of the framework and
the dataset is the lack of multimodal information
being included in it. A large number of hateful and
abusive language used on social media, with a
high potential for harm, is expected to be accom-
panied by visuals including images and video. We
are working on expanding the dataset to include
multimodal data and see how well the framework
adapts to that and also what kind of modifications
would be needed for handling those cases. The
second limitation is the pipeline-based workflow
that the framework enforces, which has a greater
chance of error propagation - if, for example, the
system makes an error in recognising mood and
modality, that might ultimately lead to an error in the
prediction of harm potential itself. This is a general
limitation of the hierarchical frameworks.
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A. Data Statement

A.1. Header
Dataset Title: HarmPot Dataset

Dataset Curator(s):

– Ojaswee Bhalla, Council for Strategic
and Defense Research, New Delhi

– Madhu Vanthi, Council for Strategic and
Defense Research, New Delhi

– Shehlat Maknoon Wani, Council for
Strategic and Defense Research, New
Delhi

Dataset Version: Version 0.1, September 30,
2023

Dataset Citation: NA

Data Statement Authors:

– Ritesh Kumar, Council for Strategic and
Defense Research, New Delhi

Data Statement Citation and DOI: NA

Links to versions of this data statement in other
languages: NA

A.2. Executive Summary
The HarmPot dataset is collected to develop a com-
putational system that could automatically identify
the potential of social media content to trigger offline
incidents of harm and violence (such as lynching,
murder, etc). The dataset currently contains approx-
imately 2,000 manually annotated data instances
in Hindi and (Indian) English and approximately
20,000 data instances automatically mapped from
the ComMA dataset in Bangla, Hindi, Meitei and (In-
dian) English. The automatically mapped instances
are marked only for a few parameters specified in
the HarmPot framework.

A.3. Curation Rationale
This dataset was created with the ultimate goal of
developing a system that is able to identify and
mark the potential of social media content to cause
real-world, offline harm (such as murder, rape, etc).
“Harm Potential" (HarmPot) could be defined as the
potential for an online public post to cause offline,
real-world physical harm (i.e., violence). Targeted
real-world violence is often spurred by a web of
triggers, often combining several online tactics and
pre-existing intersectional fissures in the social mi-
lieu. The HarmPot framework is designed to an-
swer the following set of questions for a given text
-

Who is being talked to, when, how, why and all
this results in what magnitude of harm potential for
the addressee?

Given this task, we followed an event-driven
methodology to collect the data - we first identified
the events where offline harm events have been
triggered by some social media content (using a
database of harm events in India, called the DOTO
database) and then automatically crawled the data
related to that event from different social media plat-
forms viz Twitter, Facebook, YouTube, Telegram
and WhatsApp. The dataset has been manually
annotated by multiple annotators in order to identify
the linguistic and pragmatic features that charac-
terize harm potential and is meant to answer the
following questions -

• Who is being talked to: This marks the cat-
egory of the different identities mentioned or
referred to in the data instance, viz., caste, re-
ligion, descent, gender and political ideology.

• When: It marks the broader event within which
the text is situated and includes events such
as riots, elections, pandemic, extremist at-
tack, festivals, group specific state decisions,
generic and others.

• How: It marks the linguistic devices being
used by the speakers and includes four broad
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categories of mood type, illocutionary mood,
modality and presence of affective expres-
sions.

• Why: It marks the discursive role of the spe-
cific data instance viz., attack, defend, abet,
instigate and counterspeech.

• Magnitude of Harm Potential: Physical and
Sexual Harm potential for each identity (‘who’)
and that of overall document is marked on a
scale of 0 (no harm potential) to 3 (harm po-
tential in all contexts).

Depending on the data source, a single post,
tweet or comment is taken as one document for
annotation. The annotations of ‘who’ and ‘how’ in-
clude marking the span of texts with the appropriate
categories, while other aspects are marked at the
document level. In order to represent this complex
structure of the annotations, the dataset and its an-
notations has been stored in a MongoDB database
and is accessed and edited using a custom We-
bApp build for this purpose. The complete dataset
is made publicly available in a JSON format. Some
specific parts of the dataset has also been made
available in CSV and other tabular formats.

A.4. Documentation for Source Datasets
A part of the current dataset - approximately
20,000 data instances - have been automati-
cally mapped from the ComMA dataset, available
here https://github.com/unrealtecellp/
ComMA. These instances are marked only for two
aspects - (a) the overall harm potential; (b) ‘who’ is
being addressed. Moreover, there is no span-level
annotation in these instances.

A.5. Language Varieties
The languages included in this dataset, listed with
their respective BCP-47 language tags, include:

• mni-IN: Meitei as spoken by the Meitei com-
munity in Manipur, India.

• bn-IN and bn-BD: Bangla (and its varieties)
as spoken in India and Bangladesh.

• he-IN: Hindi (and its varieties) as spoken in
various parts of India.

• en-IN: English (and its varieties) as spoken
in India, otherwise known as Indian English.

Since this dataset has been exclusively collected
from online sources, the users writing the com-
ments are assumed to be multilingual and may be
based in any part of the world, not just in the places
these languages are primarily spoken in. However,
the language varieties used in the dataset are pri-
marily those mentioned in the list above.

A.6. Speaker Demographic
This dataset has been sourced exclusively from
the internet, hence the speaker demographic of the
dataset cannot be identified beyond the language
they speak. It is assumed that the speakers could
be of any age, gender, sexual orientation, educa-
tional background, nationality, caste, class, religion,
race, tribe, or ethnicity.

The speakers are probably multilingual as well,
with the language they post in being one of the
many they would know or be fluent in. It is a safe
assumption to make that many of these comments
are made by Indians (specifically people who have
Meitei, Bangla, and Hindi as their first or primary
language) and Bangladeshis given the nature and
reach of the topics selected, but this assumption is
not backed by any data or statistical findings.

A.7. Annotator Demographic
The annotation scheme and guidelines for this
dataset has been developed by Dr Ritesh Kumar,
the principal investigator of the HarmPot Project, fel-
low and lead of the Division of Artifical Intelligence
and Linguistics at the Council for Strategic and De-
fense Research and a co-founder and CEO of the
UnReaL-TecE LLP. He was assisted by the research
associates of the project and the annotators of this
dataset, who have been listed below. Further, these
annotators have manually identified the appropriate
events and content to work on, crawled the data,
and then annotated and analysed the processed
data in their respective languages.

• A 32-year-old Punjabi Hindu woman from
Chandigarh. She has a PhD in Linguistics,
speaks Pubnjabj, Hindi, and English, and her
ideological leanings are non-right.

• A 29-year-old Kashmiri Muslim man. He was
a journalist before joining the project. His re-
search looks at technology policy and digital
governance, and he has extensively covered
the Kashmir conflict, internet shutdowns and
online hate speech in India.

• A 30-year-old Tamil Hindu woman. She has
an UG in computer science and a postgrad-
uate degree in geopolitics and international
relations before joining the project.

A.8. Speech Situation and Text
Characteristics

This dataset comprises of online comments written
by users of various social media platforms. The
comments collected range from 2016 to 2022, and
form part of an extensive and intensive social media
discourse.

https://github.com/unrealtecellp/ComMA
https://github.com/unrealtecellp/ComMA
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• Time and place of linguistic activity - Online

• Date(s) of data collection - August 2022 -
September 2023

• Modality - Written

• Scripted/edited vs. spontaneous - Sponta-
neous

• Synchronous vs. asynchronous interac-
tion - Asynchronous (online comments)

• Speakers’ intended audience - Other users
of the respective social media platforms and
channels

• Genre - Social media

• Topic - Content related to the incidents of of-
fline harm that were linked to activity on social
media. It includes incidents such as murder,
lynching, etc

• Non-linguistic context - Incidents of offline
harm.

• Additional details about the cultural con-
text - The data instances are mainly posted
by the users of social media who live in a so-
ciopolitically polarised enevironment.

A.9. Preprocessing and Data Formatting

The preprocessing of the raw data involves delet-
ing all duplicates of a data instance, deleting data
instances with urls and texts with less than three
words, and removing data instances which occur
in languages apart from Hindi and English.

A.10. Capture Quality

The data is collected using an event-driven method-
ology, which means that we have first identified the
incidents of offline harm and then crawled data
related to those incidents. This implies that the
dataset represents data instances related to only
these incidents. This also implies that we do not
have a class-balanced dataset. The incidents them-
selves are not balanced in the sense that certain
kinds of incidents (for example, communal inci-
dents) are much higher in number than others (for
example, incidents related to the descent).

A.11. Limitations

Adequate representation of different kinds of inci-
dents and sufficient representation of all the tags
could not be ensured in this version of the data.

A.12. Metadata
The relevant links to the metadata for this dataset
have been provided below:

License: CC BY-NC-SA 4.0

Annotation Guidelines: https:
//docs.google.com/document/d/
1x-ZMMWlw5ajtykCMKY1SySaadNsywwdrMrpMPVPDdN4/
edit?usp=sharing

Annotation Process: Manual annotation and
automatic mapping from an existing dataset

Dataset Quality Metrics: Krippendorff’s Al-
pha for IAA. We are also releasing a disaggre-
gated dataset available.

Errata: NA

A.13. Disclosures and Ethical Review
This dataset has been partially funded by Logically
Inc and UnReaL-TecE LLP.

https://docs.google.com/document/d/1x-ZMMWlw5ajtykCMKY1SySaadNsywwdrMrpMPVPDdN4/edit?usp=sharing
https://docs.google.com/document/d/1x-ZMMWlw5ajtykCMKY1SySaadNsywwdrMrpMPVPDdN4/edit?usp=sharing
https://docs.google.com/document/d/1x-ZMMWlw5ajtykCMKY1SySaadNsywwdrMrpMPVPDdN4/edit?usp=sharing
https://docs.google.com/document/d/1x-ZMMWlw5ajtykCMKY1SySaadNsywwdrMrpMPVPDdN4/edit?usp=sharing
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