@inproceedings{man-etal-2024-hierarchical,
title = "Hierarchical Selection of Important Context for Generative Event Causality Identification with Optimal Transports",
author = "Man, Hieu and
Nguyen, Chien Van and
Ngo, Nghia Trung and
Ngo, Linh and
Dernoncourt, Franck and
Nguyen, Thien Huu",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.711",
pages = "8122--8132",
abstract = "We study the problem of Event Causality Identification (ECI) that seeks to predict causal relation between event mentions in the text. In contrast to previous classification-based models, a few recent ECI methods have explored generative models to deliver state-of-the-art performance. However, such generative models cannot handle document-level ECI where long context between event mentions must be encoded to secure correct predictions. In addition, previous generative ECI methods tend to rely on external toolkits or human annotation to obtain necessary training signals. To address these limitations, we propose a novel generative framework that leverages Optimal Transport (OT) to automatically select the most important sentences and words from full documents. Specifically, we introduce hierarchical OT alignments between event pairs and the document to extract pertinent contexts. The selected sentences and words are provided as input and output to a T5 encoder-decoder model which is trained to generate both the causal relation label and salient contexts. This allows richer supervision without external tools. We conduct extensive evaluations on different datasets with multiple languages to demonstrate the benefits and state-of-the-art performance of ECI.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="man-etal-2024-hierarchical">
<titleInfo>
<title>Hierarchical Selection of Important Context for Generative Event Causality Identification with Optimal Transports</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hieu</namePart>
<namePart type="family">Man</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chien</namePart>
<namePart type="given">Van</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nghia</namePart>
<namePart type="given">Trung</namePart>
<namePart type="family">Ngo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Linh</namePart>
<namePart type="family">Ngo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Franck</namePart>
<namePart type="family">Dernoncourt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thien</namePart>
<namePart type="given">Huu</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We study the problem of Event Causality Identification (ECI) that seeks to predict causal relation between event mentions in the text. In contrast to previous classification-based models, a few recent ECI methods have explored generative models to deliver state-of-the-art performance. However, such generative models cannot handle document-level ECI where long context between event mentions must be encoded to secure correct predictions. In addition, previous generative ECI methods tend to rely on external toolkits or human annotation to obtain necessary training signals. To address these limitations, we propose a novel generative framework that leverages Optimal Transport (OT) to automatically select the most important sentences and words from full documents. Specifically, we introduce hierarchical OT alignments between event pairs and the document to extract pertinent contexts. The selected sentences and words are provided as input and output to a T5 encoder-decoder model which is trained to generate both the causal relation label and salient contexts. This allows richer supervision without external tools. We conduct extensive evaluations on different datasets with multiple languages to demonstrate the benefits and state-of-the-art performance of ECI.</abstract>
<identifier type="citekey">man-etal-2024-hierarchical</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.711</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>8122</start>
<end>8132</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hierarchical Selection of Important Context for Generative Event Causality Identification with Optimal Transports
%A Man, Hieu
%A Nguyen, Chien Van
%A Ngo, Nghia Trung
%A Ngo, Linh
%A Dernoncourt, Franck
%A Nguyen, Thien Huu
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F man-etal-2024-hierarchical
%X We study the problem of Event Causality Identification (ECI) that seeks to predict causal relation between event mentions in the text. In contrast to previous classification-based models, a few recent ECI methods have explored generative models to deliver state-of-the-art performance. However, such generative models cannot handle document-level ECI where long context between event mentions must be encoded to secure correct predictions. In addition, previous generative ECI methods tend to rely on external toolkits or human annotation to obtain necessary training signals. To address these limitations, we propose a novel generative framework that leverages Optimal Transport (OT) to automatically select the most important sentences and words from full documents. Specifically, we introduce hierarchical OT alignments between event pairs and the document to extract pertinent contexts. The selected sentences and words are provided as input and output to a T5 encoder-decoder model which is trained to generate both the causal relation label and salient contexts. This allows richer supervision without external tools. We conduct extensive evaluations on different datasets with multiple languages to demonstrate the benefits and state-of-the-art performance of ECI.
%U https://aclanthology.org/2024.lrec-main.711
%P 8122-8132
Markdown (Informal)
[Hierarchical Selection of Important Context for Generative Event Causality Identification with Optimal Transports](https://aclanthology.org/2024.lrec-main.711) (Man et al., LREC-COLING 2024)
ACL