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Abstract
Hierarchical topic modeling, which can mine implicit semantics in the corpus and automatically construct topic
hierarchical relationships, has received considerable attention recently. However, the current hierarchical topic
models are mainly based on Euclidean space, which cannot well retain the implicit hierarchical semantic information
in the corpus, leading to irrational structure of the generated topics. On the other hand, the existing Generative
Adversarial Network (GAN) based neural topic models perform satisfactorily, but they remain constrained by pattern
collapse due to the discontinuity of latent space. To solve the above problems, with the hypothesis of hyperbolic
space, we propose a novel GAN-based hierarchical topic model to mine high-quality topics by introducing contrastive
learning to capture information from documents. Furthermore, the distinct tree-like property of hyperbolic space
preserves the implicit hierarchical semantics of documents in topic embeddings, which are projected into the
hyperbolic space. Finally, we use a multi-head self-attention mechanism to learn implicit hierarchical semantics
of topics and mine topic structure information. Experiments on real-world corpora demonstrate the remarkable
performance of our model on topic coherence and topic diversity, as well as the rationality of the topic hierarchy. Our
code is available at https://github.com/Adrian-LZC/hHTM.
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1. Introduction

Recently, Hierarchical Topic Models (HTMs), which
can mine the implicit topic hierarchy in documents,
have received increasing attention. HTMs aim to in-
terpret topics in a coherent word co-occurrence pat-
tern and capture the hierarchical semantic between
topics to build a rational topic structure (Zhang
et al., 2022). HTMs has been successfully applied
to tasks such as hierarchical classification of Web
pages (Ming et al., 2010) and the discovery of hi-
erarchical relationships in academic repositories
(Paisley et al., 2015), and is emerging as one of
the most powerful tools for automatic text analy-
sis (Rubin et al., 2012; Wang et al., 2018; Jelodar
et al., 2020).

Neural Hierarchical Topics Models (NHTMs)
based on Neural Variational Inference (NVI) are
gaining huge attention owing to their high efficiency
and scalability (Chen et al., 2021; Zhang et al.,
2022; Duan et al., 2021a). For example, a Tree-
Structured Neural Topic Model (TSNTM) (Isonuma
et al., 2020) was proposed to learn hierarchical
semantic by parameterizing the hierarchical topic
distribution. Chen et al. (2021) proposed a non-
parametric model named nTSNTM by introduc-
ing the dependency matrix to mine topic struc-
ture based on TSNTM. However, both TSNTM
and nTSNTM generate a topic tree only, which
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limits the extensibility of the topic structure. To
enrich the information of topic structure, Zhang
et al. (2022) proposed a forest-like topic distribu-
tion (nFNTM) and introduced a self-attention mech-
anism (Vaswani et al., 2017) to mine the relation-
ships between topics. To emphasize symmetrical
dependencies between topics at the same level,
Chen et al. (2023) proposed NSEM-GMHTM with
a Gaussian mixture prior distribution to improve the
model’s ability to adapt to sparse data, which ex-
plicitly models hierarchical and symmetric relations
between topics through the introduced dependency
matrices and nonlinear structural equations. In
addition, SawETM (Duan et al., 2021a), which ex-
ploits a sawtooth connection module to mitigate the
problem of posterior collapse, and TopicNet (Duan
et al., 2021b), which introduces external hierarchi-
cal prior knowledge, both target at optimizing the
rationality of topic relations without addressing the
drawback of topic redundancy. Nevertheless, insuf-
ficient information regarding the prior distribution
has significant impacts on the training quality of
NVI-based neural topic models.

The Generative Adversarial Network (GAN)
based architecture introduces a separate neu-
ral network module to fit the difference between
real and fake data distributions, which avoids the
complex derivation in the variational inference ap-
proach and generates topics of higher quality than
the framework based on NVI. ATM (Wang et al.,
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2019) assumes that the topic distribution obeys
a dirichlet distribution, for which, the generator
projects the topic distribution randomly sampled
from a dirichlet prior distribution onto the document-
word distribution, and then ATM uses a discrimi-
nator to distinguish the true document-word dis-
tribution from the document-word distribution gen-
erated by the generator. However, ATM fails to
infer the corresponding topic distribution from a
given document (Wang et al., 2020). BAT (Wang
et al., 2020) generates flat topics by introducing
an encoder module with bi-directional training that
combines the document-topic distribution and the
document as inputs to the discriminator, enabling it
to capture differences in high and low dimensional
distributions. Although the above GAN-based topic
models have achieved satisfactory performance,
the training of GAN needs to find non-convex so-
lutions under continuous high-dimensional param-
eters, and the existing gradient descent methods
usually can only converge to the locally optimal so-
lution, which is prone to problems such as pattern
collapse (Lei et al., 2019). It leads to the difficulty of
the generator to fully fit the probability distribution
of the training data.

As a kind of representation learning methods,
contrastive learning has been widely studied in
both computer vision (Chen et al., 2020; He et al.,
2020) and natural language processing (Gao et al.,
2021; Wu et al., 2022b). Constrative learning can
be effective in mitigating the pattern collapse prob-
lem, and improves the generator’s ability to cap-
ture key information about real data to generate
high-quality pseudo-data. For instance, Yang et al.
(2021) proposed InsGen, which aids the discrim-
inator in learning the implicit features of the data
by introducing contrastive learning, thereby improv-
ing the discriminative ability. Li et al. (2022) pro-
posed FakeCLR, which utilizes contrastive learning
to slove latent discontinuty in GANs, resulting in
improved generative performance of the genera-
tor. Additionally, Nguyen and Luu (2021) proposed
CLNTM to capture the mutual information between
document prototypes and positive samples by mod-
eling the relationship between the contrasting aug-
mentation samples. Wu et al. (2022a) proposed
TSCTM, which utilizes a topic semantics-based
sampling strategy to generate samples as a way
to alleviate the data sparsity problem so that docu-
ment relationships can be properly modeled. Both
of the aforementioned models demonstrate the ef-
fectiveness of contrastive learning in solving the
topic quality problem. However, the existing topic
models based on contrastive learning only focus
on mining topic information and ignore modeling of
topic hierarchical relationships.

Furthermore, most NHTMs mine hierarchical se-
mantics of topics in the Euclidean space. Despite

the commendable achievements, it leads to a fun-
damental limitation in that their ability to model com-
plex patterns (similar to knowledge graphs, and
topic hierarchical structure) is limited by the prop-
erty of the embedding space. Hyperbolic space, a
non-Euclidean space with constant negative curva-
ture, has received much attention in recent years
due to its ability to express hierarchical structure
(Xu et al., 2022). Separately, Ganea et al. (2018)
introduced hyperbolic space into the training of
neural networks by defining arithmetical operations.
HyperMiner (Xu et al., 2022) introduced hyperbolic
space to topic embeddings and word embeddings.
Unfortunately, HyperMiner does not explicitly ex-
ploit the correlation between topics and the gener-
ated topic structure is not flexible sufficiently.

In light of these considerations, with the hy-
pothesis of hyperbolic space, we propose a novel
Hierarchical Topic Model (hHTM) based on the
framework of GAN. To address the problem of
pattern collapse in GAN-based topic models, the
hHTM introduces contrastive learning which im-
proves the ability of the generator to capture infor-
mation from the corpus and enables the model to
generate higher quality topics. Moreover, to better
mine the topic hierarchy in documents, we model
topic relations in the hyperbolic space using a multi-
head attention mechanism and introduce the di-
rected acyclic graph (DAG) constraints to make our
topic hierarchy more reasonable and flexible. To
the best of our knowledge, it’s the first time that con-
trastive learning and hyperbolic space are utilized
to mine high-quality topics and model more sensi-
ble hierarchical topic relationships. Experiments
show that hHTM outperforms state-of-the-art base-
lines on widely-used quantitative metrics, which
validates that our model captures a more rational
topic hierarchy. In addition, the validity of our ap-
proach is further demonstrated through extensive
qualitative analysis.

2. Related Work

2.1. Hierarchical Topic Model

In recent years, several emerging methods have
attempted to mine high-quality topic hierarchies.
Isonuma et al. (2020) proposed TSNTM, which
utilized doubly recurrent neural networks (DRNN)
(Alvarez-Melis and Jaakkola, 2017) to parameter-
ize the topic distribution. Based on the above study,
Chen et al. (2021) introduced neural variational
inference (NVI) and non-parameterized the topic
distribution, which made the model more flexible
for topic mining. Zhang et al. (2022) proposed a
forest-like neural topic model (nFNTM) and used
self-attention mechanism (Vaswani et al., 2017) to
mine latent relationships between topics, so that
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the hierarchy of topics is not limited to a tree. Also,
non-negative matrix factorization (NMF) (Lee and
Seung, 2000) is used in the hierarchical topic mod-
eling task, where CluHTM (Viegas et al., 2020)
employed NMF to generate hierarchical topics in a
DAG structure. In addition, SawETM (Duan et al.,
2021a) exploited a sawtooth connection module to
mitigate the problem of posterior collapse. NSEM-
GMHTM (Chen et al., 2023) ameliorated the prob-
lem of data sparsity by introducing a Gaussian
mixture prior distribution and focused on the rela-
tionships between topics in the same layer.

2.2. Contrastive Learning

Contrastive learning is often used to learn high-
quality data representations by contrasting the data
with positive and negative samples. Wang and
Isola (2020) demonstrated that contrastive learn-
ing possesses both alignment and uniformity prop-
erties, including: (a) Similar data representations
are closer together in distribution space, while di-
vergent data representations are farther apart. (b)
Data representations can be more uniformly dis-
tributed in the distribution space. Recently, con-
trastive learning has also been applied to neural
topic models. Nguyen and Luu (2021) captured
the relationship between samples from the data
perspective and proposed a new contrasting goal
to help the model uncover more meaningful topics.
Wu et al. (2022a) proposed a semantic contrastive-
based neural topic model named TSCTM, which
introduced an efficient sampling strategy of posi-
tive and negative samples to mitigate data sparsity
for short documents. However, the aforementioned
methods only focus on generating flat topics with-
out exploring the relationship between topics.

2.3. Hyperbolic Embedding

Hyperbolic geometry is a non-Euclidean geome-
try with a constant negative curvature. The abil-
ity to characterize Euclidean space will be limited
when the distribution of documents exhibits non-
Euclidean geometry. Hyperbolic space shows ex-
ponential expansion with increasing radius, and it
can be seen as a continuous tree-structured space
(Ganea et al., 2018), which allows the hyperbolic
space to preserve the hierarchical structure implied
by documents well. The classical models in hyper-
bolic space include Poincaré Ball Model (Nickel
and Kiela, 2017) and Lorentz Model (Nickel and
Kiela, 2018). Ganea et al. (2018) proposed a set of
operators for hyperbolic spaces, which allowed the
training of neural networks in hyperbolic spaces to
become a reality. In topic modeling, HyperMiner
(Xu et al., 2022) projected topic embeddings and
word embeddings into hyperbolic spaces to mine
the hierarchical semantics in the original corpora.

Different from it, we model the topic structure by
projecting the topics into the hyperbolic space un-
der the premise of exploiting contrastive learning
to sufficiently mine high-quality topics. Moreover, a
multi-head self-attention mechanism is combined
with hyperbolic embeddings to exploit the implicit
hierarchical semantics better.

3. Methodology

In this section, we describe in detail all the modules
of hHTM and the corresponding way of working.
As shown in Figure 1, our model is divided into
three parts: encoder, decoder, and discriminator.

3.1. Encoder

We introduce contrastive learning into the encoder,
for which, two symmetric feedforward neural net-
works are employed to learn the alignment and uni-
formity of data representations and consequently
learn diverse document-topic distributions for real
data. Let Dr = {d | d ∈ R

nV } denotes the set of
document vectors in the form of TF-IDF, where nV

represents the vocabulary size. Each document
vector has a relative positive sample d+ = T (d)

and a batch of negative samples {d−i }Nneg

i=1 , where
T (·) represents the data augmentation function
and Nneg is the number of negative samples. We
employ random masking of some words to achieve
the effect of data augmentation. For the construc-
tion of negative samples, we follow the approach of
Moco (He et al., 2020). Through contrastive learn-
ing between samples, we aim to learn the high
quality latent distribution π of each document vec-
tor d as well as the latent distributions π+ and π− of
d+ and d−, respectively. Therefore, our contrastive
loss function is given below:

LCON (π, π+, {π−
i }Nneg

i=1 , ϑq, ϑk, τ)

= −log
esim(π,π+)/τ

esim(π,π+)/τ +
∑Nneg

i=1 esim(π,π−
i )/τ

,
(1)

where ϑq and ϑk are respectively the parame-
ters of feedforward neural network fq(·) and fk(·),
τ > 0 is temperature coefficient, and sim(·, ·) is
the function of cosine similarity. Moreover, since
the encoder aims to learn the topic distribution of
real documents, its optimisation direction should
be aligned with that of the discriminator. There-
fore, the discriminative loss for real documents
Ed∼Dr [D(d,E(d))] is added to the encoder, where
D(·, ·) and E(·) represent the discriminator and the
encoder, respectively. The objective cost function
of the encoder is given below:

LE = αE · LCON + βE · Ed∼Dr
[D(d,E(d))︸ ︷︷ ︸

Din

], (2)
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Figure 1: The framework of hHTM.

where αE and βE represent the weights of the loss
terms, respectively. In this paper, we set αE = 100
and βE = 1.

3.2. Decoder

In decoder, we sample the topic distribution π′ ∈
R

nk of each fake documents from the Dirichlet prior
distribution, where nk represents the number of top-
ics. We project both topics and words into the em-
bedding space and estimate the topic-word distribu-
tion through the correlation between embeddings.
In addition, we introduce the pre-trained GloVe
model (Pennington et al., 2014) to obtain the ini-
tialization for word embeddings WE ∈ R

nV ×nt and
randomly initialize topic embeddings TE ∈ R

nk×nt ,
where nt is the embedding size.

Poincaré Ball Model We introduce a classical
model in the hyperbolic space: Poincaré Ball Model.
Assuming that the Poincaré Ball is n-dimensional
and has curvature c (i.e., radius 1√

c
), it can be de-

noted as P
n
c = {z ∈ R

n | ‖z‖2 < 1} with its metric
given by gcz = λ2

zg
E , where λz = z

1−c‖z‖2 and gE

is the regular Euclidean metric tensor. Intuitively,
when a point z is near the boundary, its hyperbolic
distance from a neighboring point z

′
will grow at

the rate of 1
1−c‖z‖2 → ∞. This property plays a sig-

nificant role in learning the topic hierarchy implied
by documents. Note that when c → 0, the model
will recover back to Euclidean space R

n.

Hyperbolic Operations To learn the represen-
tation of data in the hyperbolic space, we need to

implement hyperbolic operations, including vector
addition, exponential map, logarithmic map and
parallel transport. Following the framework of gy-
rovector spaces (Ungar, 2009), we can obtain the
addition of two points z, z′ ∈ P

n
c by Möbius addition

as follows:

z ⊕c z
′ =

1 + 2c〈z, z′〉+ c||z′||+ (1− c||z||2)z′
1 + 2c〈z, z′〉+ c2||z||2||z′||2 ,

(3)

where ⊕c denotes the Möbius addition symbol.
For tangent space computations, according to

(Ganea et al., 2018), given any point x ∈ P
n
c , the

exponential map and the logarithmic map are de-
fined for v 	= 0 and y 	= x by:

expc
x(v) = x⊕c (tanh(

√
c
λc
x ||v||
2

)
v√
c ||v|| ),

logc
x(y) =

2√
cλc

x

tanh−1(
√
c ||ϕx,y||) ϕx,y

||ϕx,y|| ,
(4)

where ϕx,y = −x⊕c y. Besides, the parallel trans-
port can map a vector v ∈ T0P

n
c to another tangent

space TxP
n
c is given by the following isometry:

Pc
0→x(v) = logc

x(x⊕c expc
0(v)) =

λc
0

λc
x

v. (5)

Topic Relation To mine the structural seman-
tics implied between topics, we project TE into
the hyperbolic space and mine the structural se-
mantics using multi-head self-attention mechanism
(Vaswani et al., 2017), as follows:

Qi = (
λc
0

λc
x

TE)WQ
i , Ki = (

λc
0

λc
x

TE)WK
i , (6)
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Q = Concat(Q1, . . . ,Qnh),

K = Concat(K1, . . . ,Knh),
(7)

C = Softmax(
QKT

nQ

τc
), (8)

where Q ∈ R
nk×nQ and K ∈ R

nk×nQ are learn-
able parameters, nQ = nt/nh, nh is the num-
ber of attention heads, τc denotes the tempera-
ture value, C ∈ R

nk×nk is the relationship ma-
trix, which implies a hierarchical relationship be-
tween topics. Each element of the relationship
matrix C represents the degree of relevance of
the parent-child relationship between topics. The
Softmax operation guarantees the discretization of
the relationship matrix C and avoids redundancy
in the topic hierarchy. However, a reasonable hi-
erarchy should be DAG-structured. According to
(Zheng et al., 2018), we ensure that the relational
weight matrix C is a structure of DAG if and only
if h(C) = tr(e(C◦C)) − nk = 0, where ◦ is the
Hadamard product.

Data Reconstruction Intuitively, the semantic
information of both parent and child topics should
be available for generating complete documents.
First, we compute the topic word distribution Φ =
Softmax(TE ·W T

E ). Then, we compute the parent
topic distribution πp = π′ and child topic distribution
πc = π′×C simultaneously. Under the constraint of
h(C) = 0, we also need to ensure that documents
constructed by parent topic distributions and child
topic distributions are as similar as possible, with
the following objective cost function:

min
C

LC =
1

2
||(πp − πc)× Φ||2F

+
ρ

2
|h(C)2|+ εh(C),

(9)

where ρ is a penalty parameters and ε is the La-
grange multiplier. We follow (Zheng et al., 2018) to
update ρ and ε, i.e.,

ρi = 2ρi−1,

εi = εi−1 + ρhi−1,
(10)

where ρ0 = 1, ε0 = 0, and h is the value of h(C).
To summarize, in decoder, our objective cost

function is given below:

LDe = −Eπ′∼Dir(−→α )[D(G(π′), π′
︸ ︷︷ ︸

Din

)] + LC , (11)

where −Eπ′∼Dir(−→α )[D(G(π′), π′)] is the fake loss
(Arjovsky et al., 2017) and G(·) is the generator.

3.3. Discriminator

In discriminator, we consider documents and topic
distributions as inputs to the discriminator, and

while training the discriminator, we also prompt the
generator to generate documents that better match
real topic distributions. Following (Arjovsky et al.,
2017), the objective cost function of the discrimina-
tor is given below:

LD = Eπ′∼Dir(−→α )[D(G(π′), π′)]

− Ed∼Dr
[D(d,E(d))].

(12)

Our algorithm is shown in Algorithm 1.

Algorithm 1: Algorithm of hHTM
Input :The embedding of words WE and

documents {d1, . . . , dnD
};

Output :Topic-word distribution Φ, topic
relationship matrix C

1 Randomly initialize query matrices Q, key
matrices K, and topic embeddings TE .

2 repeat
3 for documents d ∈ {d1, . . . , dnD

} do
4 Obtain π by the encoder E;
5 Sample document-topic distribution

π′ ∼ Dir(−→α );
6 Project TE to the hyperbolic space by

Eq. (5);
7 Compute C by Eqs. (6-8);
8 Compute LD by Eq. (12);
9 Update the discriminator D by

RMSprop;
10 for l ∈ D do
11 Update the l − th layer weights of

D by spectral normalization;

12 W l
D =

W l
D

σ(W l
D)

;

13 Compute LE by Eq. (2);
14 Compute LC by Eq. (9);
15 Compute LDe by Eq. (11);
16 Update the encoder E;
17 Update the decoder De;
18 until convergence;
19 Topic structure are built from C and Φ.

4. Experiments

4.1. Experimental Setting

Datasets We validate the effectiveness of our
model on three widely used benchmark corpora,
including NIPS (Tan et al., 2017), 20News (Miao
et al., 2017) and Wikitext-103 (Merity et al., 2017).
These datasets have been processed to remove
stop words and filter low frequency words by fol-
lowing Chen et al. (2023). Table 1 summarizes the
statistics of the three corpora.

Baselines In order to make a comprehensive
evaluation for our model, the benchmark models
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Dataset #Docs (Train) #Docs (Test) Vocabulary size

NIPS 1,350 149 3,531
20News 11,314 7,531 3,997
Wikitext-103 28,472 120 20,000

Table 1: The statistics of corpora.

mainly include hierarchical topic models with tree,
forest, and DAG structures.

SawETM1 (Duan et al., 2021a): The hierarchical
topic model which introduces a sawtooth connec-
tion module to mitigate the problem of posterior
collapse.

HyperMiner2 (Xu et al., 2022): The hierarchical
topic model which exploits hyperbolic embeddings
for topic and word representations.

nTSNTM3 (Chen et al., 2021): The tree-like topic
model that introduces non-parameterization in the
number of topics.

nFNTM4 (Zhang et al., 2022): The forest topic
model which employs the self-attention mechanism
to capture parent-child topic relations.

CluHTM5 (Viegas et al., 2020): The DAG-
structured topic model based on non-negative ma-
trix factorization.

NSEM-GMHTM6(Chen et al., 2023): A deep
topic model with a Gaussian mixture prior distribu-
tion and nonlinear structural equations to capture
topic relations.

Hyperparameter Settings In our experiments,
for the nonparametric models (i.e., nTSNTM and
nFNTM), we set their maximum number of topics
to 200. For all parametric models (i.e., SawETM,
HyperMiner, CluHTM, NSEM-GMHTM, and hHTM),
the number of topics is uniformly set to 200. All
other hyperparameters of those baselines are set
according to the original paper. For hHTM, we
set the weight parameter dt to 300 for the self-
attention module and the temperature τ to 0.07.
The optimisation of hHTM is achieved by rmsprop
with a learning rate of 5e-4 and batch size of 256.

4.2. Quantitative Analysis of Topic
Hierarchy

To quantitatively compare the performance of
our model and other baselines, we employ the
Normalized Pointwise Mutual Information (NPMI)

1https://github.com/BoChenGroup/SawETM
2https://github.com/NoviceStone/

HyperMiner
3https://github.com/hostnlp/nTSNTM
4https://github.com/Angr4Mainyu/nFNTM
5https://github.com/feliperviegas/

cluhtm
6https://github.com/nbnbhwyy/

NSEM-GMHTM

(Zhang et al., 2022; Chen et al., 2021), the Cross-
Level Normalized Point-wise Mutual Information
(CLNPMI) (Chen et al., 2021), the Topic Unique-
ness (TU) (Nan et al., 2019), the Topic Quality (TQ)
(Dieng et al., 2020) and the Topic Specialization
(TS) (Kim et al., 2012) as the evaluation metrics on
the quality of model-mined hierarchical topics from
different perspectives.

Interpretability of Topics The topic hierarchy
generated by an exceptional hierarchical topic
model should have the following properties. First,
the semantics of individual topics should ensure
high coherence. Second, there is some similar-
ity between the child topic and the correspond-
ing parent topic. Therefore, we employ NPMI
scores to evaluate the coherence between indi-
vidual topics and CLNPMI scores to evaluate the
similarity between parent and child topics. NPMI
(Zhang et al., 2022), a widely adopted metric in
the field of topic modeling, allows assessing the
interpretability of the generated topics. CLNPMI
is proposed by Chen et al. (2021) to measure
the subordination of topics by calculating the aver-
age NPMI scores of parent-child topics, as follows:
CLNPMI(Wp,Wc) =

∑
wi∈W ′

p

∑
wj∈W ′

c

NPMI(wi,wj)

|W ′
p||W ′

c |
,

where W
′
p = Wp − Wc and W

′
c = Wc − Wp, in

which, Wp and Wc represent the top N words of
the parent topic and its child topics, respectively.

As shown in Table 2, our model achieves the best
NPMI score on Wikitext-103 as well as sub-optimal
results on the other two datasets. On the other
hand, our model received the best CLNPMI score
relative to the other benchmark models. Com-
pared to our model, although NSEM-GMHTM cap-
tures more consistent topics, it performs much
worse than our model in terms of CLNPMI and
TU scores, which suggests that the topics mined
by NSEM-GMHTM are redundant to a certain ex-
tent, and also do not capture reasonable topic hi-
erarchies well. Comparing with HyperMiner, our
model achieves better performance on all metrics,
which suggests that contrastive learning (Wang
and Isola, 2020) leads to a better distribution of
topics generated by the model on the hypersphere.
It is worth mentioning that our model and Hyper-
Miner, based on the hyperbolic space assumption,
achieve optimal and sub-optimal performance on
CLNPMI, respectively, which verifies that learning
topic embeddings in the hyperbolic space allows
topics to retain more information about the seman-
tic structure implicit in the corpus. In summary,
these results show that our model guarantees high
quality topics while better capturing the seman-
tic relationships between parent and child topics,
which fully demonstrates that our model can mine
more reasonable topic hierarchies.
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Dataset Metric SawETM HyperMiner nTSNTM nFNTM CluHTM NSEM-GMHTM hHTM

NIPS
NPMI↑ 0.135 0.134 0.100 0.113 0.137 0.147 0.137

CLNPMI↑ 0.071 0.060 0.022 0.025 0.027 0.028 0.097
TU↑ 0.659 0.640 0.373 0.765 0.554 0.719 0.766
TQ↑ 0.089 0.086 0.037 0.086 0.076 0.106 0.105

20News
NPMI↑ 0.256 0.266 0.284 0.246 0.219 0.307 0.288

CLNPMI↑ 0.137 0.164 0.156 0.150 0.164 0.146 0.215
TU↑ 0.380 0.471 0.757 0.844 0.577 0.811 0.864
TQ↑ 0.097 0.125 0.215 0.208 0.126 0.249 0.249

Wikitext-103
NPMI↑ 0.243 0.239 0.225 0.228 - 0.255 0.274

CLNPMI↑ 0.131 0.137 0.121 0.147 - 0.090 0.175
TU↑ 0.533 0.640 0.662 0.739 - 0.797 0.912
TQ↑ 0.130 0.153 0.149 0.168 - 0.203 0.250

Table 2: The performance of all hierarchical topic models, where - indicates that the model has not
converged after 48 hours of training.

Topic Diversity In the real world, in addition to
the semantic consistency of the topics, it is equally
important that the topics found are diverse. If the
topics are redundant, the topic structure is unrea-
sonable and the resulting topics are less meaning-
ful. Therefore, we adopt topic uniqueness (TU) to
evaluate the diversity of hierarchical topics gener-
ated, which is calculated as follows:

TU =
1

NK

K∑
k=1

N∑
n=1

1

cnt(n, k)
, (13)

where K represents the number of topics and
cnt(n, k) is the total number of times the nth top
word in the kth topic appears in the top N words of
all topics. As shown in Table 2, on all datasets, our
model outperforms benchmark models in terms of
topic diversity, which is mainly due to the unifor-
mity property of contrastive learning (Wang and
Isola, 2020). It facilitates the model learn high-
quality latent spaces and alleviates the problem of
discontinuities in latent space, thus improves the
performance of the generator and generates more
diverse topics.

Topic Quality Intuitively, higher NPMI scores im-
ply that the correlations within topics are better,
which may then result in increased redundancy be-
tween topics, and thus the TU scores will become
lower. Conversely, higher TU scores tend to be
accompanied by lower NPMI scores, because for
most of topics with higher TU scores, they tend to
be marginal topics (Wu et al., 2020b), which are
often represented by less coherent words. There-
fore, in order to provide a more comprehensive
evaluation of the overall topic quality, we use topic
quality (TQ) to evaluate the quality of topics, which
is calculated as follows:

TQ = NPMI× TU. (14)

As shown in Table 2, on 20News and Wikitext-
103, our model achieves the best performance,

and sub-optimal results on NIPS. This illustrates
the relatively high quality of the topics generated
by our model.

Figure 2: Topic specialization of different topic
structure generated on all datasets.

Topic Structure Rationality For the hierarchical
topic model, topics closer to the root node should
be more general, while topics closer to the leaf
node should be more specific. Topic specialization
(Kim et al., 2012) score measures the generaliza-
tion of topics by comparing the word distribution of
each topic with that of the entire corpus. A topic
with a higher score indicates a more specific se-
mantic. The formula for topic specialization is given
below:

TS(Φ) = 1− cos(Φ,ΦNorm) = 1− Φ · ΦNorm

|Φ||ΦNorm| , (15)

where Φ and ΦNorm denote a topic-word distribu-
tion and the word distribution of the entire corpus,
respectively.
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For the sake of fairness and uniformity, we cal-
culate the average topic specialization score of
the three layers generated by all models to assess
the rationality of the topic structure. As shown in
Figure 2, our model exhibits a gradual increase in
topic specialization scores with increasing levels
on all three datasets, and the closer to the leaf
nodes, the more topic-specific it is relative to the
other benchmark models. It is worth noting that
the score of topic specialization could not be com-
puted for CluHTM since it could not be converged
by training on Wikitext-103. The topic specializa-
tion scores of CluHTM on 20News and NIPS also
show a decreasing trend with the increase in the
number of layers, which indicates the irrationality
of topic structure.

4.3. Qualitative Analysis of Topics

Visualization of the Topic Embedding Space
We show the distribution of topic embeddings in
the hyperbolic space to analyze the distribution of
topics in the embedding space. As shown in Fig-
ure 3, parent topics are positioned closer to the
center in the embedding space, while child top-
ics are distributed at the boundaries. Due to the
characteristic of hyperbolic space, the distance be-
tween child topic embeddings is exponential, which
also demonstrates the soundness of the hierarchi-
cal structure mined by our model.
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image
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Figure 3: Visualization of the topic embedding
space on NIPS.

Visualization of the Topic Structure As shown
in Figure 4, we exhibit some of the topic structure
of NIPS. For example, the parent topic of [objec-
tive, gradient, gradients, stochastic, descent] is
about the gradient of neural networks, and its next-
level child topics are about the detailed solution ap-
proach [stochastic sgd gradients gradient descent]
and [newton descent update coordinate updates].
Further child topics [online batch update zt offline]
and [xt zt dt ut yt] are related to specific gradient for-

Datasets Model NPMI↑ TU↑ TQ↑ CLNPMI↑

NIPS

Ours 0.137 0.766 0.105 0.097
Ours w/o Con 0.141 0.726 0.102 0.077
Ours w/o Hyper 0.144 0.741 0.107 0.032
Ours w/o M-att 0.130 0.641 0.083 -

20News

Ours 0.288 0.864 0.249 0.215
Ours w/o Con 0.301 0.767 0.231 0.213
Ours w/o Hyper 0.279 0.857 0.239 0.096
Ours w/o M-att 0.265 0.641 0.170 -

Wikitext-103

Ours 0.274 0.912 0.250 0.175
Ours w/o Con 0.259 0.909 0.235 0.089
Ours w/o Hyper 0.274 0.905 0.248 0.062
Ours w/o M-att 0.271 0.867 0.235 -

Table 3: Results of ablation evaluation on all
datasets.

mulas. These results demonstrate that our model
captures a reasonable hierarchy of topics, with par-
ent topics being general and child topics becoming
more specific with increasing depth.

policy action policies actions mdp

agent agents actions 
action environment

mdp policy mdps policies discounted

hidden units trained rnn recurrent

sequences sequence symbol 
length symbols

layer layers deep mnist 
architectures

layer layers deep convolutional 
pooling

recurrent rnn recognition trained 
missing

reward rewards reinforcement 
action st

stochastic sgd gradients 
gradient descent

online batch update zt offline

xt zt dt ut yt

objective gradient gradients 
stochastic descent

newton descent update coordinate 
updates

Figure 4: Topic structure visualization on NIPS.

4.4. Ablation Study

Ablation experiments can verify the role played
by the different modules of our model, which is
very necessary. We ablate different components
in three cases: (i) Without introducing contrastive
learning to the encoder (w/o Con). (ii) Without pro-
jecting topic embeddings into the hyperbolic space
(w/o Hyper). (iii) Without introducing the multi-head
self-attention mechanism to learn implicit hierarchi-
cal semantics of topics (w/o M-att).

As shown in Table 3, more diverse topics are
effectively mined by introducing contrastive learn-
ing for complicated modeling of potential semantic
relationships in documents. Contrastive learning
learns a better latent space, which leads to improve
performance of the generator in generating high-
quality topics. Moreover, the introduction of hyper-
bolic space preserves the hierarchical relationship
modeling, which allows our model to learn the in-
herent topic hierarchy of documents. Moreover,
the complete model achieved optimal TQ results
on 20News and Wikitext-103,and sub-optimal TQ
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Metric SawETM nFNTM nTSNTM HyperMiner NSEM-GMHTM hHTM

Speed 5.2s 3.3s 38.6s 4.4s 3.8s 3.2s
#Params 1.9M 1.2M 0.5M 2.2M 1.5M 10.1M

Table 4: Speed and number of parameters for NHTMs on 20News.

results on NIPS. Contrastive learning focuses on
improving the topic quality and has little impact on
the hierarchical structure of topics. As shown in Ta-
ble 3, the introduction of hyperbolic space provides
a significant improvement in CLNPMI scores. This
demonstrates how the module helps to generate
a more rational topic hierarchy and improves the
interpretability of the model. Additionally, when no
multi-head self-attention mechanism is introduced,
the model fails to converge in mining the structural
relationships between topics, thus it is not feasi-
ble to construct a reasonable topic hierarchy of
directed acyclic graphs. In conclusion, all compo-
nents of our model are reasonable and effective.

4.5. Complexity Comparison

The training speed of the model is also an impor-
tant indicator for assessing the quality of the model.
A superior model needs to infer high-quality topic
distributions in as little time as possible. As an
illustration, we run models on a server equipped
with Intel(R) Xeon(R) Silver 4214R CPU @ 2.40
GHz, 48 cores and 128G memory, and 2 × NVIDIA
GTX 1080Ti with 2 × 12G memory. Here, we
compare the time taken to train 10 epochs on the
20News dataset between our model and the bench-
mark model to measure the training time of the
model. As shown in Table 4, our model can ac-
commodate the largest number of parameters, and
meantime spend the least amount of time for it-
erating 10 epochs. This is because we employ a
two time-scale update rule (Heusel et al., 2017)
for GAN as well as momentum update (He et al.,
2020) for contrastive learning, which ensure high
efficiency for each iteration. These results indicate
that our model could generate high quality topics
while keeping the overhead on computational re-
sources within a reasonable range.

5. Conclusion

In this paper, we propose a GAN-based hierar-
chical topic model that mitigates the generation
performance limited by the discontinuity of latent
space through introducing contrastive learning to
model the latent relations of documents, ensuring
the generation of high-quality topics. The projec-
tion of topic embeddings into the hyperbolic space
enables the model to learn the implicit hierarchical
semantics of documents. In addition, a more ratio-
nal topic hierarchy is constructed by exploiting a

multi-head self-attention mechanism focusing on
the multi-layer connections between topic struc-
tures and the constraints of directed acyclic graphs.
The experimental results demonstrate the remark-
able performance of our model on topic quality and
topic structure. In the future, we will explore the
potential hierarchical relationships of documents
by incorporating external prior knowledge to guide
the model in contrastive learning of documents, so
as to generate semantically rich and hierarchically
distinct topic structure better.
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