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Abstract
The attention mechanism, a cornerstone of state-of-the-art neural models, faces computational hurdles in processing
long sequences due to its quadratic complexity. Consequently, research efforts in the last few years focused on
finding more efficient alternatives. Among them, Hyena (Poli et al., 2023) stands out for achieving competitive
results in both language modeling and image classification, while offering sub-quadratic memory and computational
complexity. Building on these promising results, we propose ConfHyena, a Conformer whose encoder self-attentions
are replaced with an adaptation of Hyena for speech processing, where the long input sequences cause high
computational costs. Through experiments in automatic speech recognition (for English) and translation (from English
into 8 target languages), we show that our best ConfHyena model significantly reduces the training time by 27%, at
the cost of minimal quality degradation (∼1%), which, in most cases, is not statistically significant.
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1. Introduction

The attention mechanism (Bahdanau et al., 2016a)
is the core of today’s neural architectures in many
AI fields (Lin et al., 2022), including speech pro-
cessing (Latif et al., 2023). However, attention is
known to be computationally expensive due to its
quadratic computational and memory complexity
with respect to the input length, which hinders the
adoption of attention-based models in use cases
that entail long input sequences. This has compli-
cated their application in speech tasks like auto-
matic speech recognition (ASR) and speech trans-
lation (ST), where audio sequences are typically
∼8-10 times longer than the equivalent text. In fact,
current models have to downsample the input se-
quence by a factor of 4 with strided convolutions be-
fore applying attention-based layers (Bérard et al.,
2018; Di Gangi et al., 2019). Besides causing in-
formation loss (Salesky et al., 2019; Papi et al.,
2021), this workaround does not entirely solve the
problem. The sequences can indeed remain very
long, thereby resulting in high training costs with im-
portant social and environmental negative impact
(Strubell et al., 2019).

While attention alternatives with sub-quadratic
complexity have been proposed in other fields
(Tay et al., 2022), none of them have achieved
widespread adoption, as their efficiency comes at
the cost of non-negligible performance degradation
in many tasks, including ASR and ST (Alastruey
et al., 2021). More recently, Poli et al. (2023) intro-
duced the Hyena operator. Based on a recurrence
of implicitly parametrized long convolutions and
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data-controlled gating, Hyena has been the first
attention alternative to claim comparable results
(in language modeling and image classification).
Building upon these promising results, in this pa-
per, we explore the adaptation and application of
Hyena to ASR and ST, two tasks where training
state-of-the-art models (Zhang et al., 2023; Rad-
ford et al., 2023) is extremely demanding in terms
of computational resources, hardware, and time.1

Along this line of work, our contributions are:
1. We adapt the original Hyena operator, which

is causal (i.e., it prevents accessing future in-
formation when encoding each element of a
sequence), into a non-causal version, allowing
for richer representations by accessing infor-
mation across the entire input sequence;

2. We present two models, ConfHyena and Hy-
brid ConfHyena,2 based on the state-of-the-
art Conformer (Gulati et al., 2020) architec-
ture, which replace the self-attention with our
adapted Hyena operator in all encoder layers
and only in initial layers, respectively;

3. We show that on ASR (en) and ST (en→{de,
es, fr, it, nl, pt, ro, ru}), our Hybrid ConfHyena
reduces training time by 27%, at the cost of
a minimal (∼1%) and mostly not statistically
significant quality degradation.

1Attempts to build models similar to Whisper (Radford
et al., 2023), even on a smaller training dataset (less than
25% of Whisper), require more than 15,000 GPU/hours
on NVIDIA A100 GPUs (Peng et al., 2023b).

2Code and pre-trained models are released open-
source under Apache 2.0 license at: https://github.com/
hlt-mt/FBK-fairseq.

https://github.com/hlt-mt/FBK-fairseq
https://github.com/hlt-mt/FBK-fairseq
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2. Background

2.1. Self-Attention
Attention (Bahdanau et al., 2016b) is a function
that maps a query matrix Q and a pair of key-
value matrices K and V to an output sequence
A(Q,K, V ). In the case of self-attention, Q, K,
and V are computed from the same input sequence
x ∈ RL×d through three different trainable matrices
Wq,Wk,Wv ∈ Rd×d as Q = xWq, K = xWk, and
V = xWv. The scaled dot-product attention (Chan
et al., 2016) used in the Transformer (Vaswani et al.,
2017) is then obtained by:

A(Q,K, V ) = softmax

(
QKT

√
dk

)
V

Since the matrix multiplication between Q ∈ RL×d

and KT ∈ Rd×L results in a RL×L matrix, its overall
memory and time complexity is O(L2).

2.2. Conformer
The self-attention is a cornerstone not only of the
Transformer but also of the more recent Conformer
(Gulati et al., 2020), an architecture tailored for
speech processing that significantly outperformed
the Transformer in both ASR and ST (Inaguma
et al., 2021). The Conformer modifies the encoder
layer structure of the Transformer by implementing
three key modifications. First, it adds relative sinu-
soidal positional encodings (Dai et al., 2019) into
the self-attention computation, eliminating the abso-
lute positional embeddings added to the input in the
Transformer. Second, it replaces the Transformer
feed-forward network (FFN) with a Macaron-Net
(Lu et al., 2019) consisting of two FFNs that wrap
the module. Lastly, it introduces a new convolu-
tion module after the self-attention. This module
is made of a pointwise convolution, a Gated Lin-
ear Unit (GLU) activation function (Dauphin et al.,
2017), a depthwise convolution, a batch normaliza-
tion (Ioffe and Szegedy, 2015), a Swish activation
function (Ramachandran et al., 2017), and another
pointwise convolution.

2.3. Hyena
Hyena (Poli et al., 2023) has been introduced as an
alternative to self-attention with the goal of achiev-
ing the same representativeness (i.e., the ability
to model dependencies between time steps of the
input, regardless of their distance) while avoiding
the quadratic complexity w.r.t. the input length. The
core of this operator is a recurrence of two opera-
tions: an implicitly parametrized long convolution
(i.e., a convolution where the kernel has the same
size as the input), and an element-wise multiplica-
tive gating (i.e., an element-wise multiplication with

a matrix of learned parameters). Hyena can be
formalized as:

u0,...,N , z0 = ShortConv(W0,...,N+1x)

zi+1 = ui ⊙ LongConvi(zi), i ∈ [0, N)

y = zN

where x is the input sequence, W0,...,N+1 are
learned weights and N is a hyperparameter named
order, which controls the depth of the recurrence
and is usually set to 2.

The short convolution (ShortConv) models short-
term dependencies and is a Conv1D with kernel
size 3 and stride 1, which does not alter the shape
of the input. The long convolution (LongConv) mod-
els long-range dependencies and its efficient imple-
mentation is the key to the sub-quadratic complexity
of the Hyena operator. A naive implementation of
the LongConv would require learning a kernel of
the same size as the input, which slides over the
padded input L times. This approach would re-
sult in a quadratic complexity, akin to self-attention.
In Hyena, instead, the kernel is implicitly learned
by applying a FFN over complex exponential posi-
tional embeddings (Wang et al., 2020a), making the
number of the kernel parameters independent from
the input length. Furthermore, Hyena bases its
LongConv implementation on two principles: i) the
convolution theorem (Bracewell and Kahn, 1966),
which states that a circular convolution corresponds
to an element-wise multiplication in the discrete
Fourier domain (Oppenheim and Schafer, 2009),
and ii) the equivalence between a linear convolu-
tion over a sequence of length L with a kernel k of
length K and a circular convolution with a kernel
k zero-padded to length K + L (Oppenheim and
Schafer, 1975). Building on them, Hyena computes
the LongConvi(x) as:

z = iFFT(FFT(pad(x))⊙ FFT(pad(ki))
y = z[: L]

(1)

where FFT is the Fast Fourier Transform (Selesnick
and Burrus, 1997), iFFT is the inverse FFT and
pad(.) pads the input with 0s up to a 2L length.
The output selection z[: L] preserves causality (i.e.,
the output at a given position depends only on
the past), which is necessary for autoregressive
models such as Transformer decoders. The result-
ing LongConv and, in turn, Hyena implementation
has a sub-quadratic computational complexity of
O(L log2 L). While replacing the self-attention with
sub-quadratic solutions based on the Fourier trans-
form is not a new proposal (Lee-Thorp et al., 2022),
Hyena has been the first to claim no performance
loss, which makes it a promising alternative to self-
attention with quadratic complexity.
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Model ASR (en) en-de en-es en-fr en-it en-nl en-pt en-ro en-ru ST avg
Conformer 10.64 24.97 30.48 36.43 26.25 30.31 30.09 24.67 17.35 27.57
ConfHyena 10.88 24.90 30.28 35.71* 25.69* 29.49* 30.51* 23.93* 17.34 27.23

- non-causal Hyena 10.99* 24.28 29.42* 35.57* 25.38* 29.55* 29.99 23.92* 16.99* 26.89
Hybrid ConfHyena 10.75 25.22 30.15* 36.19 26.04 29.76* 30.43 23.78* 17.06 27.33

- non-causal Hyena 11.27* 24.84 30.28 36.09 25.81* 29.53* 30.69* 23.96* 16.98* 27.27

Table 1: ConfHyena and Hybrid ConfHyena results on MuST-C v1.0 tst-COMMON for all language
pairs. ASR scores are WER↓ while ST scores are BLEU↑. * means that the difference with the baseline
(Conformer) is statistically significant as per bootstrap resampling (Koehn, 2004) with 95% CI.

3. Hyena for Speech Processing

As just seen, the original Hyena operator is built
to preserve the causality property. However, in
the context of speech processing, constraining the
encoder to access only past elements could re-
duce performance, as it is typically designed to
look at the entire sequence to create context-aware
encodings from the complete input representation
(Chorowski et al., 2015). For this reason, we intro-
duce ConfHyena, a Conformer-based model (§2.2)
where encoder self-attentions are replaced by a
non-causal version of the Hyena operator that can
access the entire input sequence. The differences
with the causal version of Hyena are two:

1. the ShortConv operator processes the current,
preceding, and following time frames at each
step, rather than the current and the two pre-
ceding frames. This is realized by setting the
left padding to ⌈K

2 ⌉ instead of K − 1;

2. the LongConv operator is similarly adjusted,
with the non-causal version implemented by
altering the selection in Eq. 1 to y = z[L/2 :
−L/2] to select the portion of the circular con-
volution that corresponds to a linear convo-
lution with same padding (Goodfellow et al.,
2016).

With such modifications, ConfHyena has access
to the same information as the self-attention in
speech-processing models, while retaining a lower
computational and memory complexity. The lower
computational complexity entails faster computa-
tion of long input sequences. The lower memory
complexity, instead, enables ConfHyena to process
longer inputs compared to attention-based models
without incurring out-of-memory issues and to run
on GPUs with less VRAM.

In addition, we integrate a CTC-compression
module (Gaido et al., 2021) into the middle of the
encoder of all our systems. This module is based
on the connectionist temporal classification or CTC
(Graves et al., 2006) and collapses intermediate
context-aware encodings to reduce their redun-
dancy, making them more effectively encoded by
successive layers, with benefits in terms of both out-
put quality and efficiency (Liu et al., 2020; Zhang

et al., 2020; Zhao et al., 2022). As the sequences
resulting from this module are significantly shorter,
we posit that their length is sufficiently small so that
they can be efficiently processed by self-attention.
As such, we propose Hybrid ConfHyena, an ar-
chitecture where the non-causal Hyena operator is
introduced only in the layers before the CTC com-
pression while preserving the self-attention in the
subsequent ones.

4. Experimental Settings

For both ASR and ST, we use the MuST-C v1.0
dataset (Cattoni et al., 2021), comprising (audio,
transcription, translation) triplets in the TED-talks
domain. Audios and transcriptions are in English
while translations cover 8 languages (de, es, fr, it,
nl, pt, ro, ru). For ASR, we use the en-es section.

The input is represented by 80-dimensional log
mel-filterbank features (on 25ms windows sliding
every 10ms) that are processed by 2 layers of CNN
with stride 2, realizing a total downsampling of 4.
For all models, we use 12 encoder layers, 6 de-
coder layers, 8 heads, an embedding size of 512,
and 2048 FFN width. The kernel size of both point-
and depth-wise convolutions in Conformer layers
is set to 31. In Hyena operators, the order is set to
2, the width is 3 times the embedding size, and the
filter FFN has 4 layers with 64 neurons and sine
activations. Dropout is set to 0.1 for all models.

To ensure the reliability of our findings, we used
a Conformer implementation that is padding-safe
(i.e., it does not change the output according to the
amount of padding) and we tested our Hyena im-
plementation with pangolinn to ensure the same
property (Papi et al., 2023).

We train with Adam optimizer, label-smoothed
cross-entropy loss (smoothing factor 0.1), and CTC
loss (Graves et al., 2006) with weight factor 0.5 to
ease convergence. We apply CTC compression
after the 8th encoder layer. The learning rate is
2e-3 with Noam scheduler (Vaswani et al., 2017)
and 25,000 warm-up steps. SentencePiece uni-
gram vocabularies (Kudo and Richardson, 2018)
are used with size 5,000 for English and 8,000 for
all target languages. We early stop the training af-
ter 10 epochs without improvement on the dev loss
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and average 5 checkpoints around the best. We
train on 2 NVIDIA A40 40GB VRAM GPUs with 40k
tokens per batch and 4 as update frequency and
generate with 1 NVIDIA K80 16GB VRAM GPU. All
other settings are the default of Fairseq-ST (Wang
et al., 2020b). Evaluation is performed using WER
for ASR and sacreBLEU (Post, 2018)3 for ST.

5. Results

For a comprehensive evaluation, in this section,
we first analyze the output quality of ConfHyena
and Hybrid ConfHyena (§5.1), and then we study
their efficiency (§5.2), as both aspects are critical
in determining the success of an architecture.

5.1. Output Quality
Table 1 compares our ConfHyena and Hybrid
ConfHyena models with Conformer in terms of
transcription (ASR) and translation (ST) quality.
Through ablation tests, we also report the results of
the proposed architectures with the original causal
Hyena operator (- non-causal Hyena).

Focusing on the effect of the causality prop-
erty, the results confirm its negative impact on
model performance. Indeed, the causal versions
of both ConfHyena and Hybrid ConfHyena are con-
sistently outperformed by those equipped with the
non-causal operator both in ASR and ST. The differ-
ence is more pronounced in ASR, where causality
produces statistically significant degradations up
to 0.52 WER. This holds also for ST, albeit with
less significant gaps (on average over the 8 lan-
guage pairs, -0.34 and -0.06 BLEU for ConfHyena
and Hybrid ConfHyena, respectively). These re-
sults confirm the usefulness of accessing the entire
input sequence to maximize transcription and trans-
lation quality and, therefore, the superiority of the
non-causal Hyena in speech encoders.

Comparing ConfHyena and Hybrid ConfHyena,
the latter is superior both in terms of transcription
and translation quality. The gap between the two
models, however, is marginal (-0.13 WER, +0.10
BLEU), showing that the Hybrid variant has simi-
lar quality as the full ConfHyena encoder.

Comparing Hybrid ConfHyena with Conformer,
we observe that Conformer achieves the best re-
sults in most cases (ASR, and 6 out of 8 ST direc-
tions, with en-de and en-pt being the exceptions).
However, although Conformer consistently yields
the best average score of 27.57 BLEU in ST, it is
worth remarking that the overall margin over Hy-
brid ConfHyena is very narrow (-0.11 WER and
+0.24 BLEU on average), corresponding to a ∼1%
relative difference. Moreover, the difference is sta-
tistically significant only in 3 ST directions. We can

3BLEU|c:mixed|e:no|tok:13a|s:exp|v:2.0.0

Model # param. train time↓ inf time↓
Conformer 114.9M ×1.00 ×1.00
ConfHyena 112.0M ×1.04 ×0.95
Hybrid ConfHyena 112.9M ×0.73 ×0.93

Table 2: Relative inference and training time aver-
aged over all languages and tasks of Conformer,
ConfHyena, and Hybrid ConfHyena.

therefore conclude that, in terms of mere output
quality, Hybrid ConfHyena performs closely to
the attention-based Conformer model.

5.2. Training and Inference Efficiency

After establishing that the output quality of the Con-
former and ConfHyena models is similar, we now
turn to assess their efficiency. Looking at Table 2,
we notice that, in these terms, the differences are
instead significant.

Notably, Hybrid ConfHyena emerges as the most
efficient architecture by a large margin, reducing
both training time by 27% and inference time by
7% in comparison to the Conformer model. The
greater savings in training time can be attributed
to the autoregressive nature of the models. In fact,
while during training the number of forward (and
backward) passes on the encoder and the decoder
are the same (one per batch), during inference
the encoder performs a single forward pass while
most of the time is taken up by the multiple forward
passes on the autoregressive decoder.

The training and inference time of ConfHyena
is, instead, comparable to that of the Conformer,
and much higher than that of Hybrid ConfHyena.
Although this may seem counterintuitive, the expla-
nation is straightforward: the sub-quadratic com-
plexity of Hyena makes it more efficient when se-
quences are long, while for shorter sequences,
such as those obtained after the CTC compression,
attention is faster.

In summary, we can conclude that Hybrid
ConfHyena substantially reduces computa-
tional costs compared to Conformer and
ConfHyena. Drawing on this and the compara-
ble output quality of the three models, we can state
that Hybrid ConfHyena offers the most favorable
balance between quality and efficiency.

6. Reducing Downsampling

The lower memory complexity of Hyena (as dis-
cussed in §2.3) opens up the possibility of reducing
the initial downsampling performed by the two initial
convolutions in speech encoders without incurring
out-of-memory issues. A potential advantage of
this operation would lie in mitigating the information
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loss caused by the context-uninformed compres-
sion of the input speech sequence. which is inher-
ent to downsampling (see §1). For this reason, we
conclude this work by investigating the potential
advantage of halving downsampling from a factor
of 4 to a factor of 2. In practice, this is obtained
using stride 1 in the first convolution, while keeping
stride 2 in the second.

The results in Table 3 show that there is no advan-
tage in reducing the initial downsampling: in fact,
halving it does not increase the translation ability
of our models. Rather, this operation inflates both
training and inference time by up to 50% and 35%,
respectively. In light of this, we believe that future
works should pursue other directions (e.g., differ-
ent hyperparameters) to close the small quality gap
without losing the efficiency gains.

Model BLEU↑ train time↓ inf time↓
ConfHyena 24.90 ×1.00 ×1.00

+ downsample 2 24.79 ×1.39 ×1.35
Hybrid ConfHyena 25.22 ×1.00 ×1.00

+ downsample 2 25.22 ×1.50 ×1.13

Table 3: BLEU score and relative training/inference
time of ConfHyena and Hybrid ConfHyena with
downsample 2 on MuST-C en-de.

7. Conclusions

In order to reduce the high computational costs of
ASR and ST models, in this paper we proposed
ConfHyena, a Confomer-based model that replaces
self-attentions with non-causal Hyena operators,
and a Hybrid version that mixes ConfHyena and
Conformer layers. Our experiments on English
ASR and 8 ST directions demonstrated that Hybrid
ConfHyena has the best quality/efficiency trade-off,
as it significantly reduces training time by 27% with
a minimal quality degradation of ∼1% compared to
the Conformer model.

Limitations

The “good results” conundrum. By proposing
and experimenting with Hybrid ConfHyena, we in-
troduced an alternative architecture that improves
model efficiency without substantial performance
degradation. Admittedly, in our experiments, we
recognize that Hybrid ConfHyena exhibits a gap,
albeit limited, with respect to the current, state-of-
the-art Conformer model. However, we refrain from
interpreting our results as inherently “negative” or
from considering a minor performance gap as an
invalidating limitation. Indeed, we echo the recent
criticism of purely leaderboard-based evaluation
of new systems (Ethayarajh and Jurafsky, 2020),

advocating for a more comprehensive perspective
that considers a wider range of factors, including
efficiency, ethics, and environmental sustainabil-
ity (Wynsberghe, 2021). As such, we believe that
achieving higher scores should not be the sole ob-
jective of research efforts, especially if it comes
at the cost of resource-intensive training proce-
dures (Ligozat et al., 2021) that sacrifice efficiency
(Peng et al., 2023a). This approach also aligns with
best practices recently adopted by major corpora-
tions that prioritize cost-effectiveness, environmen-
tal sustainability (Rolnick et al., 2022), and accessi-
bility in model design (de Laat, 2021) to reduce their
impact and democratize their use. Therefore, we
underscore that the notable reduction in complexity
and, in turn, in training time achieved by Hybrid
ConfHyena should definitely be accounted as a
positive advancement, regardless of the minimal
quality degradation it implies.

Portability and scalability. The validity of our
findings should be confirmed across a wider range
of datasets since our experiments only focused on
the MuST-C corpus, which is the typical resource
used in recent ST research. The robustness of our
results across different domains (MuST-C is com-
posed of TED talks) and source languages (limited
to English) have to be further verified, although
there is no reason to believe that other settings
may be more or less favorable to our proposed
architecture. Furthermore, we did not scale our
experiments to large training data, such as those
employed in the training of state-of-the-art models
like Whisper (Radford et al., 2023), which are ∼100-
1,000 times larger than MuST-C. Unfortunately, con-
ducting such experiments is extremely expensive
and demands access to high-performance hard-
ware. Evaluating the savings achievable by our
proposed model in such a scenario is an interesting
future step for this research, as well as confirming
that the performance gap it suffers from remains
limited.

Efficient Attention Implementation. In our work
we did not use efficient attention implementations,
such as Flash Attention (Dao et al., 2022). While
these engineering optimizations can significantly
reduce resource requirements and speed up com-
putation, they are hardware-specific. For instance,
the Flash Attention is not supported by the K80
GPUs used in our experimental settings. For this
reason, we address the efficiency of the attention
mechanism from a theoretical perspective, whose
benefits are maintained regardless of the hardware
employed.
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