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Abstract
Pre-trained masked language models, such as BERT, perform strongly on a wide variety of NLP tasks and have
become ubiquitous in recent years. The typical way to use such models is to fine-tune them on downstream data. In
this work, we aim to study how the difference in domains between the pre-trained model and the task effects its final
performance. We first devise a simple mechanism to quantify the domain difference (using a cloze task) and use it
to partition our dataset. Using these partitions of varying domain discrepancy, we focus on answering key questions
around the impact of discrepancy on final performance, robustness to out-of-domain test-time examples and effect
of domain-adaptive pre-training. We base our experiments on a large-scale openly available e-commerce dataset,
and our findings suggest that in spite of pre-training the performance of BERT degrades on datasets with high
domain discrepancy, especially in low resource cases. This effect is somewhat mitigated by continued pre-training
for domain adaptation. Furthermore, the domain-gap also makes BERT sensitive to out-of-domain examples during
inference, even in high resource tasks, and it is prudent to use as diverse a dataset as possible during fine-tuning
to make it robust to domain shift.
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1. Introduction and Prior Work
Starting with BERT (Devlin et al., 2019), the strong
performance of language models have been at-
tributed mainly to being pre-trained on substan-
tially large uncurated unlabeled datasets, wherein
they learn contextual representations in an un-
supervised manner. These pre-trained language
models or PLMs may be fine-tuned in a second
training step on a labeled dataset to orient them
towards particular downstream tasks.
In preceding years, BERT has been adapted to
new and niche domains ranging from scientific
(Beltagy et al., 2019) to biomedical text (Gu et al.,
2021), with varying degrees of relative gain in per-
formance. Recently, Aragón et al. (2023) pro-
posed a two-stage domain adaptation of BERT
to detect mental disorders based on social me-
dia posts, whose marked uplift over the origi-
nal suggests the need for adaptation, especially
for narrow domains. Apart from these, several
works have explored inexpensive forms of domain
adaptation, the common theme being the injec-
tion of missing vocabulary tokens into the model-
ing pipeline (Sachidananda et al., 2021; Poerner
et al., 2020). Finally, there also exists work mea-
suring the difference between domains of training
and testing data using various divergence metrics
(Ramesh Kashyap et al., 2021).
In our paper, we aim to provide empirical evi-
dence of the limits of pre-trainedmasked language
models, specifically BERT, when it comes to ef-
ficiency and applicability in a new domain. We
quantify this domain-gap using a simple mecha-

nism of inspecting reconstructed masked tokens
from sentences of an out-of-domain dataset. We
then partition the dataset from slightly to highly out-
of-domain, and perform experiments on these par-
titions showing how the domain-gap affects fine-
tuning performance and robustness, as well as
whether domain-adaptive pre-training is able to
mitigate it.

2. Methodology
2.1. BERT in brief
BERT (Bidirectional Encoder Representations
from Transformers) combines the transformer ar-
chitecture introduced by Vaswani et al. (2017) with
the concept of pre-training and fine-tuning for max-
imum performance (Howard and Ruder, 2018).
BERT is encoder only and bidirectional, with the
self-attention mechanism having access to the in-
formation from the entire sequence, making it very
suitable for classification and structured prediction
tasks. BERT was trained using two objectives: a
masked language model objective, where it learns
to predict randomly masked tokens based on their
context, and a next-sequence prediction objective,
where the model is tasked to predict whether a se-
quence B would naturally follow the previous se-
quence A.

Why BERT? Numerous modifications have
been made to BERT since its inception, such as
cross-layer parameter sharing to reduce size (Lan
et al., 2020), distillation (Sanh et al., 2019) or
introducing additional optimization criteria (such
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Figure 1: Overview of steps to calculate the domain-gap score. Words in green were masked and
successfully predicted in the top-5 predictions, while red blocks indicate that the respective masked
word (in this example, bangle and kameleon, could not be predicted.

as predicting the right order for shuffled words
(Wang et al., 2020)).
Even so, in this work we focus on BERT be-
cause: (1) all of the aforementioned variants of
BERT have been pre-trained on the same dataset,
namely the English Wikipedia and the Bookcor-
pus dataset (Zhu et al., 2015). Therefore, it is
our assumption that they will not behave signifi-
cantly differently than BERT, in the context of their
operating characteristics towards out-of-domain
data. (2) BERT remains one of the most used
workhorses for natural-language processing ap-
plications in English for classification and struc-
tured prediction, as evidenced by number of down-
loads from the model hub of the open-source com-
munity Huggingface1234 at the time of writing this
manuscript.

2.2. Masked-word Prediction as a
Mechanism to Quantify domain-gap

We use the cloze test (Taylor, 1953) in order to
quantify BERT’s domain-gap with respect to a new
data domain. A cloze test is an exercise in which
one or more words in a piece of text is/are masked
and the ask is to fill-in these masked parts of the
text, and has also been termed as masked lan-
guage modeling (Devlin et al., 2019) in recent NLP
literature. The process we employ to calculate the
domain-gap score is illustrated in Figure 1 and de-
scribed next.
Step 1 - Choosing words to mask: In prior
works for pre-training models, the masking of
words is done randomly with a selected occlu-
sion probability. However, this approach maybe
prone to masking words related to general gram-
mar (e.g., verbs, articles, adjectives, prepositions,
etc.) rather than domain-specific vocabulary (e.g.,

1https://huggingface.co/models?pipeline_tag=
question-answering&language=en&sort=downloads

2https://huggingface.co/models?pipeline_tag=
text-classification&language=en&sort=downloads

3https://huggingface.co/models?pipeline_tag=
fill-mask&language=en&sort=downloads

4https://huggingface.co/models?pipeline_tag=
token-classification&language=en&sort=downloads

nouns). Thus, we subject every piece of text in
our dataset to a part-of-speech tagger to extract
words which are tagged as NOUN. We construct
sentences with masked words for every original
sentence and every NOUN extracted from it.
Step 2 - Masked-word prediction: We use
BERT to predict the top-5 most suitable tokens for
every masked noun. Since an original sentence
may have multiple nouns masked, there maybe
multiple sets of top-5 predictions per original sen-
tence.
Step 3 - Calculating per-sentence domain-gap
scores and partitioning a dataset: Now, for ev-
ery original sentence, we have masked nouns and
predicted token sets. We calculate the number
of correct predictions by simply checking whether
the masked noun is a part of the corresponding
top-5 predictions, with an exact match. Then the
per-sentence domain-gap score is calculated as
1−(#correct/#masked). This score represents the
inverse of the accuracy of the model in predicting
a missing word, given the context, and thus can
be used as a proxy for how out-of-domain a sen-
tence is. We sort on the domain-gap score (which
varies from 0-1, where 1 signifies the maximum
domain-gap) and partition the dataset in question
into four parts: high domain-gap (DG=H) (score
0.75-1), medium (DG=M) (score 0.5-0.75), low
(DG=L) (score 0.25-0.5) and none (DG=N) (score
0-0.25).
Why not directly calculate the probability of
a sentence? As an illustrative example, let us
take a language model capturing bi-gram relation-
ships. Given a sentence and this model, it is pos-
sible to calculate directly the probability of a sen-
tence ”occuring” with respect to the domain knowl-
edge of the model. For instance, given a sen-
tence ”he is going to school”, the joint probability
can be calculated using the chain rule: P (he) ∗
P (is|he)∗P (going|is)∗P (to|going)∗P (school|to).
This can, of course, be generalized to an N-gram
case. However, as BERT (and the likes) are bidi-
rectional in nature, the conditional token probabil-
ities would take into account proceeding and pre-

https://huggingface.co/models?pipeline_tag=question-answering&language=en&sort=downloads
https://huggingface.co/models?pipeline_tag=question-answering&language=en&sort=downloads
https://huggingface.co/models?pipeline_tag=text-classification&language=en&sort=downloads
https://huggingface.co/models?pipeline_tag=text-classification&language=en&sort=downloads
https://huggingface.co/models?pipeline_tag=fill-mask&language=en&sort=downloads
https://huggingface.co/models?pipeline_tag=fill-mask&language=en&sort=downloads
https://huggingface.co/models?pipeline_tag=token-classification&language=en&sort=downloads
https://huggingface.co/models?pipeline_tag=token-classification&language=en&sort=downloads
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ceeding tokens, and the calculation of sentence
probabilities as above would not be sensible.

2.3. Domain Adaptation by Continued
Pre-training

In order to adapt BERT to the domain of our
choice, we employ the process suggested by
Howard and Ruder (2018), and Wolf et al. (2022),
which is to continue training BERT on the new
corpus of data in a self-supervised fashion using
the masked language modeling loss. Instead of
masking words at random, we mask the extracted
nouns from each sentence, as described in Step
1 of Section 2.2, to bias the learning towards im-
portant words in the target domain. We update all
of the weights of the model without freezing any
layer.

3. Dataset and Task
Data: For our experiments, we use a dataset of
Amazon product metadata (Ni et al., 2019) which
has the titles, descriptions and categories for 15.5
million products from the e-commerce website
amazon.com. The dataset is minimally cleaned
such that we: (1) rid the titles and descriptions of
stray HTML tags, (2) concatenate the title and de-
scription into one string column, (3) ignore short
entries less than 30 characters long, and (4) ig-
nore all categories which have less than 0.1% of
the total items attributed them. Furthermore, af-
ter the extraction of noun words to mask (as de-
scribed in the Step 1 of Section 2.2), we also ig-
nore entries where there are no extracted nouns.
After these cleanup steps, we are left with 13 mil-
lion datapoints.
Task Selection: We choose the prediction of
product category, given the title and description,
as our downstream task for all our experiments.

4. Experiments and Results
We aim to answer three main questions in this
paper; RQ1: How does the domain-gap between
BERT and the downstream data impact the per-
formance on the downstream task?, RQ2: How
robust is a fine-tuned model to out-of-domain data
during test-time? and RQ3: Does domain adapta-
tion help with the robustness of BERT?

4.1. Setup
Implementation details: We use an open-
source POS tagger from SpaCy5 for NOUN ex-
traction, and BERT from Huggingface6.
Infrastructure details: All experiments were
performed on a g5.4xlarge instance7 having an

5https://spacy.io/usage/linguistic-features#
pos-tagging

6https://huggingface.co/bert-base-uncased
7https://aws.amazon.com/ec2/instance-types/g5/

NVIDIA A10G GPU with 24 GB of memory and 16
virtual CPUs with 64 GB of RAM.

Hyperparameter details: The tokenization is
done to a max length of 250 with truncation or
padding (as suitable). For fine-tuning BERT, 30%
of the training data is held-out for validation and
the model trained for 20 epochs to minimize the
cross-entropy loss, such that the best model is
saved based on the validation macro F1-score.
The batch-size is 64, and the emphAdamW opti-
mizer (Loshchilov and Hutter, 2019) is used with
an initial learning rate of 10−5. For continued pre-
training, we convert the training dataset into equal
chunks of size 128; other hyperparameters are
identical to the ones for fine-tuning, except the
batch-size which is larger and set to 128.

Data details: Recall that we partition the Ama-
zon product dataset into four parts (see Section
2.2). For our experiments, we construct equal par-
titions by randomly subsampling 500,000 samples
from each part, thus controlling for imbalance.

4.2. Results
RQ1: Effect of domain-gap on downstream
tasks We fine-tune and test BERT on datawithin
each partition, splitting into 50-50 for training-
testing, repeating experiments for 3 different splits
and reporting average results. For ablation, we
fine-tune the model on 1%, 5%, 10%, 25%, 50%
and 100% of the training split, while testing on the
full test split.
We observe (in Table 1) the classification per-
formance benefits significantly from the addition
of data. For example, in the case of the low-
est domain-gap (DG=N), the F1-score increases
by 40% relative to the original value (from 0.46
to 0.644) as the size of the data increases 10-
times (from 1% to 10%), and again by 25% for the
next 10-fold increase. The relative performance
gains slow as more data is added. As for the
domain-gap, it has a significant adverse effect on
the downstream performance of the model, espe-
cially in low-resource cases. For the extreme low-
resource case where the model was trained only
on 1% available data, the performance is 29.3%
worse (relative) in case where the gap is high-
est (DG=H), versus by only 2% where it is low-
est (DG=N). Even for more realistic low-resource
cases (10% or 25%), the perfomance gap is sig-
nificant for the high-domain-gap dataset (17% and
14% respectively).
In summary, we learn that although addition of
data is helpful, it cannot fully counter the effects
of the gap between a pretrained model and the
domain of the downstream task, and performance
degradation may be expected in such a case.

amazon.com
https://spacy.io/usage/linguistic-features#pos-tagging
https://spacy.io/usage/linguistic-features#pos-tagging
https://huggingface.co/bert-base-uncased
https://aws.amazon.com/ec2/instance-types/g5/
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%train
/
dataset

1 5 10 25 50 100

DG=N 0.460 0.639 0.644 0.749 0.763 0.807

DG=L 0.450
(↓-2.17%)

0.626
(↓-2.03%)

0.634
(↓-1.55%)

0.736
(↓-1.73%)

0.750
(↓-1.70%)

0.802
(↓-0.62%)

DG=M 0.387
(↓-15.86%)

0.585
(↓-8.45%)

0.592
(↓-8.07%)

0.702
(↓-6.27%)

0.722
(↓-5.37%)

0.772
(↓-4.33%)

DG=H 0.325
(↓-29.34%)

0.518
(↓-18.93%)

0.533
(↓-17.23%)

0.643
(↓-14.15%)

0.679
(↓-11%)

0.742
(↓-8.05%)

Table 1: Effect of domain-gap on downstream performance. In this table we show the effect of fine-
tuning BERT on the individual partitions of data for different training data sizes. The reported figures are
F1-scores and the percentages in brackets quantify relative performance drop, from the maximum score
in bold, as the domain-gap grows (interpret column-wise).

%train Low-resource (25% data) High-resource (100% data)
train on
/
test on

DG=N DG=L DG=M DG=H DG=N DG=L DG=M DG=H

DG=N 0.749 0.684
(↓-8.67%)

0.625
(↓-16.55%)

0.537
(↓-28.30%) 0.807 0.761

(↓-5.70%)
0.729468
(↓-9.60%)

0.649
(↓-19.57%)

DG=L 0.684
(↓-7.06%) 0.736 0.654

(↓-11.14%)
0.564
(↓-23.36%)

0.777
(↓-3.11%) 0.802 0.757

(↓-5.61%)
0.678
(↓-15.46%)

DG=M 0.677
(↓-3.56%)

0.701
(↓-0.14%) 0.702 0.608

(↓-13.39%)
0.762
(↓-1.29%)

0.766
(↓-0.77%) 0.772 0.711

(↓-7.90%)

DG=H 0.631
(↓-1.86%)

0.636
(↓-1.08%)

0.632
(↓-1.71%) 0.643 0.731

(↓-1.48%)
0.735
(↓-0.94%)

0.738
(↓-0.54%) 0.742

Table 2: Robustness to out-of-domain test-time data. Here, we test the fine-tunedmodel on other par-
titions than that it was trained on. Numbers in bold represent maximum performance when the train/test
domains are the same and the percentages quantify relative performance drop from this maximum (in-
terpret row-wise).

%train of DG=N Low-resource (25% data) High-resource (100% data)
Test on DG=N DG=L DG=M DG=H DG=N DG=L DG=M DG=H

product-BERT
0.774

(↑+3.33%)

0.709
(↓-8.39%)
(↑+3.65%)

0.648
(↓-16.27%)
(↑+3.68%)

0.563
(↓-27.26%)
(↑+4.84%)

0.812

(↑+0.62%)

0.767
(↓-5.54%)
(↑+0.78%)

0.735
(↓-9.48%)
(↑+0.82%)

0.659
(↓-18.84%)
(↑+1.54%)

Table 3: Effect of domain-adaptive pre-training. We report the performance of product-BERT, which
was subjected to domain adaptation and then fine-tuned on DG=N. This row can be compared to row 1
in Table 2. The first set of percentages with ↓ signify the performance drop from the maximum (in bold),
while the second set with ↑ represent the performance gain over vanilla BERT.

RQ2: Robustness to out-of-domain data at
test-time In this case, we fine-tune the model on
one partition and test on another, to illustrate the
out-of-domain robustness. Recall that for RQ1, we
made a 50-50 train-test split in every partition. We
use the same splits for RQ2, which makes the F1-
scores comparable across the two research ques-
tions. In RQ2, we focus on a low-resource case
(use 25% of the training data) and a high-resource
case (100%).
We observe (in Table 2) that the robustness of the
model benefits slightly from the addition of more
data: a model trained on DG=N and tested on
DG=H shows a performance deficit of 19.5% rel-

ative to its original efficiency, when 4-fold more
data is added, versus 28.3% in the low-resource
case. BERT does not benefit significantly from
being fine-tuned on similar data, even when the
amount of data increases manyfold, and is sensi-
tive to test-time domain-gap.
Secondly, we observe that the model benefits from
being fine-tuned on diverse data; the more diverse
the data, the more robust it is to out-of-domain ex-
amples during testing. For example, considering
the high-resource setting, a model fine-tuned with
similar data is expected to have degradation from
5.7% (relative) to 19.5% depending on how out-of-
domain a dataset is during test-time. The magni-
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tude of this degradation keeps decreasing as the
model is fine-tuned on more diverse data. BERT
trained on DG=H shows little degradation (maxi-
mum of 1.5%) when tested across all other parti-
tions.

RQ3: Effect of continued pre-training with out-
-of-domain data To answer the final RQ, we
continue training BERT using the masked lan-
guage modeling loss, as described in Section
2.3. The steps are as follows: (1) continue
(pre-)training BERT on the data corresponding to
partitions DG=L, DG=M and DG=H; we call this
model product-BERT (2) fine-tune product-BERT
on DG=N and test on all partitions, following the
protocol described previously.
We observe by comparing the results in Table 3
to those of the first row in Table 2 that pre-training
has significant benefits in the low-resource case
(as much as 4.8% relative improvement), but less
so when there is enough data for fine-tuning for the
high-resource case. Interestingly, even though the
DG=N partition was not a part of the pre-training
data, we still observe a lift of 3.3% in the case
where the model was tested on it. However, chal-
lenges around robustness still remain.

5. Conclusions and Future Work

We investigate aspects related to the domain
adaptation of PLMs; our model is BERT and the
domain, e-commerce product metadata. Employ-
ing a cloze task we create a simple scoringmecha-
nism, which we call domain-gap score, to quantify
how out-of-domain a sentence is. Using this score,
we create partitions in the dataset corresponding
to their domain-gap and use them for experimen-
tation, the findings of which are stated next.
Firstly, we find that the domain-gap has a no-
table adverse effect on downstream model per-
formance, particularly in low-resource scenarios.
Secondly, with respect to the model’s robustness
to out-of-domain data, we learn that it is better to
fine-tune with data as diverse as possible from the
model’s original domain. Finally, we observe that
pre-training provides substantial benefits in low-
resource scenarios, but less so in high-resource
settings. In summary, our work underscores the
importance of carefully considering domain-gaps
and diversity of training data in pre-training or fine-
tuning BERT-like models for downstream tasks.
As for future work, two potential avenues maybe
suggested to further explore the effects domain-
gap: (1) replicating our experiments with datasets
from other domains (e.g., culinary data) and (2)
testing with downstream tasks other than classi-
fication, such as entity recognition or question an-
swering from text.
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Appendices
Appendix A: Data Distributions
The Amazon product metadata dataset consists of metadata and reviews for 15.5 million products. Prod-
ucts are attributed to categories such as Clothing, Shoes & Jewelry or Books. The distribution of these
categories are shown in Figure 2.

Figure 2: Distribution of product categories in the Amazon dataset

Appendix B: Distribution of Domain-Gap Scores
In Section 2.2, we outline the simple process we follow to utilize the cloze task to create a sentence level
score (domain-gap score) to assess how out-of-domain with respect to BERT’s original training data. We
plot the histogram of these scores in Figure 3. We can see that majority of the dataset is in-domain.
Using these scores, we fabricate four sub-datasets signifying different domain levels of domain-gap. The
distribution of these four parts are shown in Table 4.

Dataset DG=H DG=M DG=L DG=N
Size 736259 2086257 3691766 6562251

Table 4: Size of the dataset partitions according to the domain-gap scores, from high (i.e., signifying that
BERT is highly misaligned to the data partition) to none.

Appendix C: Examples of masked word reconstruction
Tables 5 and 6 provide examples of how BERT fills masked nouns. The first table shows cases where
BERT succeed (low domain-gap) and the second where it fails (high domain-gap).
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Figure 3: Distribution of domain-gap scores for BERT

Description Masked words Top-5 predictions
per masked word

P&B I don’t Sweat I Sparkle Men’s T-shirt
men
sweat
shirt

men, women, man, ##men, girls
sweat, ##g, ##j, ##f, .
shirt, shirts, blouse, suit, tie

Anne Klein Beacon Gold-Tone Circular Collar Necklace

necklace
collar
gold
tone

necklace, ., -, pendant, earrings
collar, neck, necklace, chain, pendant
gold, silver, golden, bronze, copper
tone, tones, toned, color, style

Orange and Blue Footie Sock with Green Trim orange
sock

orange, red, yellow, green, white
sock, socks, shoe, boot, shoes

Invicta Men’s 1798 Russian Diver Collection Multi-Function Watch

men
multi
diver
watch
collection

men, women, woman, man, ##men
multi, single, dual, multiple, tri
diver, divers, diving, dive, sailor
., ;, !, watch, |
collection, collections, collecting, collector, collectors

U.S. Polo Assn. Little Boys’ Short Sleeve Solid with Contrast Rib and Collar

contrast
sleeve
rib
collar
boys

front, low, back, lower, contrast
sleeve, sleeves, jacket, skirt, shirt
rib, ribs, bar, flap, bone
collar, jacket, sleeve, sleeves, heel
boys, girls, lads, kids, guys

Table 5: Examples of descriptions from theClothing, Shoes & Jewelry with domain-gap score as 0 where
BERT correctly predicted all the masked tokens.

Description Masked words Top-5 predictions
per masked word

Michael Antonio Women’s Thames CHN Sandal thames
sandal

team, volleyball, club, basketball, hockey
-, ., victoria, gold, london

Augusta Sportswear mens Medalist Jacket medalist sports, cycling, sport, wear, .

Kendra Scott Abalone Iridescent Drusy Deva Earrings
iridescent
drusy
earrings

and, silver, a, pink, blue
diamond, crystal, silver, pearl, and
., &, ring, !, |

Roaman’s Osana Sandal by Comfortview (Cognac,8 M) sandal
osana

sand, honey, white, coffee, gold
indian, rainbow, tiger, golden, white

Stuart Weitzman Womens Closed Stuart Weitzman Womens Closed womens college, library, hospital, university, bank

Table 6: Examples of descriptions from the Clothing, Shoes & Jewelrywith domain-gap score as 1 where
BERT incorrectly predicted all the masked tokens.
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