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Abstract
Weakly-supervised Phrase Grounding (WPG) is an emerging task of inferring the fine-grained phrase-region
matching, while merely leveraging the coarse-grained sentence-image pairs for training. However, existing studies on
WPG largely ignore the implicit phrase-region matching relations, which are crucial for evaluating the capability of
models in understanding the deep multimodal semantics. To this end, this paper proposes an Implicit-Enhanced
Causal Inference (IECI) approach to address the challenges of modeling the implicit relations and highlighting them
beyond the explicit. Specifically, this approach leverages both the intervention and counterfactual techniques to tackle
the above two challenges respectively. Furthermore, a high-quality implicit-enhanced dataset is annotated to evaluate
IECI and detailed evaluations show the great advantages of IECI over the state-of-the-art baselines. Particularly,
we observe an interesting finding that IECI outperforms the advanced multimodal LLMs by a large margin on this
implicit-enhanced dataset, which may facilitate more research to evaluate the multimodal LLMs in this direction.
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1. Introduction

Phrase Grounding (PG) (Wang et al., 2019), a fun-
damental task in the field of multimodal learning,
aims to find all the regions within an image that cor-
respond to various phrases present in a given sen-
tence. This correspondence serves as a fundamen-
tal foundation for numerous vision-language tasks,
including image captioning (Feng et al., 2019), vi-
sion question answering (Mun et al., 2018), and
visual dialog (Guo et al., 2020). However, PG
heavily relies on expensive annotations of linking
phrases to the corresponding image regions, which
is labor-intensive and time-consuming. Thus, ex-
isting studies on PG mainly seek to address this
task in the Weakly-supervised Phrase Grounding
(WPG) (Chen et al., 2018) setting which merely
leverages coarse-grained sentence-image pairs
during training while subsequently evaluates the
performance on fine-grained phrase-region pairs,
achieving substantial advancements.

Despite this, these studies fail to deeply explore
the semantic nature of phrases that some phrases
often exhibit the implicit and intricate semantics,
rendering it arduous for models to establish correct
connections with image regions. Take Figure 1 as
an example, the phrase “support” necessitates the
integration of the commonsense knowledge to pre-
cisely find its corresponding image region, i.e., red
boxes. In this study, we refer to such correspon-
dence as one type of implicit phrase-region match-
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Figure 1: Two sentence-image pairs to illustrate the
implicit (red phrases and boxes) and explicit (blue
phrases and boxes) relations between phrases and
regions.

ing relations1, which could be defined as phrases in
the sentence that are not specific and explicit nom-
inal phrases of the objects in the image, and the
grasp of such implicit relations serves as a valuable
evaluation of the model capability in understanding
the deep multimodal semantics. Additionally, the
weakly-supervised setting of WPG could bring the
supervised noise problem (Xiao et al., 2017) which
may lead to more difficulties in capturing such im-
plicit information, making it urgent to address the
implicit relations problem in WPG. In this study, we
contend that capturing such relations at least faces
two main challenges.

1In this paper, this commonsense-involved implicit
relation is named as “commonsense understanding”. Be-
sides, we also propose another three implicit relations
as shown in Figure 3.
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For one thing, we argue that modeling the im-
plicit relations is challenging. Still take the implicit
relation sample in Figure 1 as the example, the
implicit phrase “support” actually only corresponds
to a special small-scale red-box region (i.e., the
people’s arms with the held flags or signs), which
is easily confounded by the other common regions
and thus difficult to be predicted. Fortunately, in
the literature, a few recent studies on other tasks
(e.g., Wang et al., 2020b) have also encountered
with the similar confounding bias problem and sug-
gested to leverage the causation-based approach
for mitigating this confounding bias. Inspired by this,
we believe that a well-behaved approach to WPG
should take advantage of the causation-based ap-
proach (e.g., causal inference (Pearl and Macken-
zie, 2018)) to model the implicit relations.

For another, we argue that highlighting the im-
plicit relations beyond the explicit is rather challeng-
ing. As exemplified in Figure 1, it is obvious that
the occurrence ratio of implicit relations (i.e., “sup-
port”) is significantly lower (about 1:9, see Section
4.1) compared to explicit relations (i.e., “some peo-
ple”, “rainbow flags”, “a woman”, “a sign”), which
could mislead the model to prefer capturing the
explicit phrase-region relations instead of the im-
plicit. Therefore, we believe that a better-behaved
causation-based approach to WPG should further
consider this imbalance for better aligning the im-
plicit phrase-region pairs.

To tackle the aforementioned challenges, this pa-
per proposes a causation-based approach namely
Implicit-Enhanced Causal Inference (IECI) for
WPG. Specifically, this approach first leverages the
intervention technique (Pearl and Mackenzie, 2018)
and proposes an implicit-aware deconfounded at-
tention (IDA) block to model the implicit relations
for mitigating the confounding bias. Furthermore,
this approach leverages the counterfactual tech-
nique (Pearl and Mackenzie, 2018) and proposes
an implicit-aware counterfactual inference (ICI)
block to highlight the implicit relations beyond the
explicit for better aligning the implicit phrase-region
pairs. Particularly, a high-quality implicit-enhanced
dataset is annotated for benchmarking our IECI
approach. The main contributions of our work are
summarized as follows:

• We are the first to address the implicit rela-
tions problem in WPG, and annotate a high-
quality implicit-enhanced dataset to evaluate
the ability of models in understanding deep
multimodal semantics.

• We propose a new IECI approach, which in-
tegrates both the intervention and counterfac-
tual techniques for addressing the implicit chal-
lenges inside WPG. Detailed evaluations on
our implicit-enhanced dataset demonstrate the
superiority of our IECI approach over the state-

of-the-art baselines.
• We observe an interesting finding that our IECI

approach exhibits significant advantages com-
pared to the advanced multimodal LLMs on the
annotated implicit-enhanced dataset, which
may further facilitate the evaluation of multi-
modal LLMs in this direction.

2. Related Work

2.1. Phrase Grounding
Phrase Grounding (PG) and Referring Expression
Comprehension (REC) (Kazemzadeh et al., 2014)
are two prevalent tasks within the field of Visual
Grounding (VG) (Rohrbach et al., 2016). While both
tasks involve establishing relations between sen-
tence phrases and image regions, PG focuses on
predicting regions for all phrases within a sentence-
image pair, whereas REC pertains to identifying
a single region in the image corresponding to
the given sentence. PG can be broadly catego-
rized into two forms, i.e., one-stage models (Yang
et al., 2022; Deng et al., 2021) and two-stage mod-
els (Chen et al., 2021; Liu et al., 2020). Recognizing
the expensive and difficult annotation of phrase-
region, recent studies have predominantly shifted
toward WPG. Early studies (Chen et al., 2018; Zhao
et al., 2018) primarily focus on directly learning
the phrase-region relations. Besides, some stud-
ies (Liu et al., 2019a,b, 2021) acknowledge the
importance of context cues, which exploit linguis-
tic contexts to enforce cross-modal consistency.
Moreover, Datta et al. (2019) introduce a ranking-
loss to minimize the distances between associ-
ated sentence-image and maximize the distance
between irrelevant pairs, inspiring numerous stud-
ies (Gupta et al., 2020; Wang et al., 2021a, 2020a;
Chen et al., 2022) to employ contrastive learning
techniques to predict phrase-region matching in the
WPG task.

In summary, all the above studies always ignore
the implicit phrase-region matching relations prob-
lem, which however holds significant potential for
evaluating the ability of models in understanding
the deep multimodal semantics.

2.2. Causal Inference
In recent years, causal inference has sparked sig-
nificant interest across a range of areas, including
scene graph generation (Tang et al., 2020b), se-
mantic segmentation (Zhang et al., 2020a), vision-
language tasks (Chen et al., 2020a), etc. Pearl
and Mackenzie (2018) have defined three levels
of causality, encompassing intervention and coun-
terfactual that are frequently employed to mitigate
confounding bias and achieve unbiased estima-
tions. For example, Wang et al. (2020b) employ
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Figure 2: The overall framework of our proposed Implicit-Enhanced Causal Inference (IECI) approach.
Wherein (a) and (b) are causal graphs for modeling the implicit relations (see Section 3.2), while (c) and
(d) are those for highlighting the implicit relations beyond the explicit (see Section 3.3).

the causal intervention to deal with spurious cor-
relation within datasets for visual common sense
learning, and Zhang et al. (2020b) alleviate the spu-
rious correlations between vision and language in
vision-linguistic pre-training. For the strategy of in-
tervention adjustment, Yang et al. (2021) employ
front-door adjustment to realize the causal inter-
vention, while Wang et al. (2021b) use back-door
adjustment to self-annotate the confounder in an
unsupervised way. Huang et al. (2022) propose a
confounder-agnostic approach to remove the con-
founding bias between language and location. In
addition, Tang et al. (2020a) and Niu et al. (2021)
employ counterfactual inference to alleviate long-
tailed categories bias in image classification and
language bias in VQA, respectively.

Different from all above studies, our study is a
pioneering effort in integrating both intervention
and counterfactual techniques for multimodal tasks,
where we leverage intervention to effectively miti-
gate the bias of confounding, and employ counter-
factual to highlight the implicit matching relations.

3. Implicit-Enhanced Causal
Inference Approach

In this section, we formulate the WPG task as fol-
lows. Given a collection of T sentence-image pairs
(S, V ), where S = [S1, ..., ST ] and V = [V1, ..., VT ].
Each sentence Si consists of multiple phrases Si =
[s1i , .., s

l
i, ..., s

n
i ], while each image Vi comprises a

set of regions Vi = [v1i , ..., v
k
i , ..., v

m
i ], where n and

m represent the number of phrases and regions, re-
spectively. The goal is to predict the region vki from
the set of m regions in image Vi that corresponds to
the given phrase sli in sentence Si. However, under

the WPG setting, we only have access to coarse-
grained sentence-image pair (Si, Vi) for training,
whereas fine-grained phrase-region pair (sli, vki ) is
available during inference.

In this paper, we propose an Implicit-Enhanced
Causal Inference (IECI) approach to model the
implicit relations. Figure 2 shows the overall ar-
chitecture of the proposed IECI approach, con-
sisting of three major components: 1) Encoding
Block, 2) Implicit-aware Deconfounded Attention
(IDA) Block, 3) Implicit-aware Counterfactual Infer-
ence (ICI) Block. Prior to delving into the intricacies
of the core components within IECI, we provide an
overview of the encoding block.

3.1. Encoding Block

Given T pairs of sentence and image, following the
setting by Gupta et al. (2020), BERT (Devlin et al.,
2019) and Faster R-CNN (Ren et al., 2015) are
adopted to encode phrases and regions.

Phrase Encoder. BERT-base model released
by Devlin et al. (2019) is adopted as the phrase
encoder, which is a light-weighting language en-
coding model. Specifically, the phrases are first
extracted by following Plummer et al. (2015). Then,
BERT is utilized to encode the sentence Si, and
finally the word vectors of all words in each phrase
sli are averaged as the phrase encoding.

Region Encoder. Faster R-CNN is adopted as
the region encoder. Specifically, Faster R-CNN first
utilizes the convolutional network (i.e., ResNet (He
et al., 2016)) to compute a feature map of each
image Vi. On this basis, a region proposal network
is used to generate the encoding of the region vki
along with the corresponding bounding box.
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3.2. Implicit-aware Deconfounded
Attention Block

In this study, we take advantage of the interven-
tion technique (Pearl and Mackenzie, 2018) and
propose an Implicit-aware Deconfounded Attention
(IDA) block to model the implicit relations for mit-
igating the confounding bias inside WPG. Specif-
ically, we address two crucial questions: 1) how
to mitigate the confounding bias through the front-
door adjustment strategy (Pearl and Mackenzie,
2018); 2) how to implement the front-door adjust-
ment strategy in the WPG task. We will provide
comprehensive answers to these two questions in
the subsequent section, formulated as follows.

Deconfounded Causal Graph is leveraged to
answer the question 1). As illustrated in Figure 2 (a),
we formulate the causation among sentence-image
pairs X, multimodal knowledge M, phrase-region
locations L, confounding factors C. X → M → L
denotes the desired causal effect from sentence-
image pairs X to phrase-region locations L, where
multimodal knowledge M acts as a mediator. X←
C→ L denotes the causal effect from the invisible
confounding factors C to sentence-image pairs X
and phrase-region locations L.

We leverage do-operator (Pearl and Macken-
zie, 2018) to mitigate the confounding bias (X,C)
present in the path M→ L. As shown in Figure 2
(b), we block the back-door path M← X← C→ L
under the condition of X. Then, we leverage
the front-door adjustment strategy to analyze the
causal effect of X→ L, denoted as follows:

P (L = l|do(X = x))

=
∑
m

P (m|x)
∑
x

P (x)[P (l|x,m)] (1)

Implicit-aware Attention is leveraged to answer
the question 2). On the basis of the front-door
adjustment strategy in Eq.(1), we consider imple-
menting it through the utilization of attention mech-
anisms. Considering the expensive computation of
network forward propagation for all samples, we in-
troduce the Normalized Weighted Geometric Mean
(NWGM) (Srivastava et al., 2014; Xu et al., 2015)
approximation. Therefore, we can sample X, M
and complete P (L|do(X)) by feeding them into the
network, and then leverage NWGM approximation
to achieve the goal of Eq.(1), denoted as follows:

P (L|do(X)) ≈ softmax[g(X̂, M̂)] (2)

where g(.) is a network employed to parame-
terize the predictive distribution P (l|x,m), which
is followed by a softmax layer. Besides,
M̂ =

∑
m P (M = m|h(X))m and X̂ =∑

x P (X = x|f(X))x represent the estimations
of self-sampling and cross-sampling, respectively.
The variables m,x correspond to the embedding

vectors of m,x. The query embedding functions
h(.) and f(.) are utilized to transform the input X
into two distinct query sets, which can be param-
eterized as networks. Consequently, we leverage
attention mechanisms to estimate the self-sampling
M̂ and cross-sampling X̂ as shown in Figure 2:

M̂ =

{
VM softmax(Q⊤

MKM )

VCsoftmax(Q⊤
CKC)

(3)

X̂ = VCsoftmax(Q⊤
MKC) (4)

where Eq.(3) and Eq.(4) denote as the self-
sampling attention and cross-sampling attention.
Particularly, the upper formula of Eq.(3) calculates
the self-sampling attention for multimodal knowl-
edge M, while the lower formula of Eq.(3) calculates
the self-sampling attention for confounding factors
C. In the implementation, QM and QC are derived
from h(X) and f(X). KM and VM are obtained
from the current input sample, while KC and VC

come from other samples in the training set and
serve as global dictionary compressed from the
whole training dataset. Specifically, we initialize
this dictionary by using K-means clustering (Har-
tigan and Wong, 1979) on all the embeddings of
samples in the training set, such as region features.

3.3. Implicit-aware Counterfactual
Inference Block

In this study, we take advantage of the counterfac-
tual technique (Pearl and Mackenzie, 2018) and
propose an Implicit-aware Counterfactual Inference
(ICI) block to highlight the implicit relations beyond
the explicit, thereby addressing the imbalance prob-
lem between them. Specifically, we treat the explicit
relations as the direct effect in the counterfactual
technique, and then reduce such direct effect to
achieve the goal of reducing the importance of the
explicit relations while highlighting the implicit re-
lations. Therefore, there are also two questions
to be answered: 1) how to analyze the direct ef-
fect of the explicit relations; 2) how to reduce such
direct effect to improve the alignment of implicit
phrase-region pairs. Next, we will answer the two
questions, formulated as follows.

Counterfactual Causal Graph is leveraged to
answer the question 1). As illustrated in Figure 2 (c),
we formulate the causation between explicit and im-
plicit relations through the path X→ E→ L, which
denotes the causal effect from the imbalanced ex-
plicit relations E to phrase-region locations L. On
this basis, we leverage counterfactual to analyze
the causal effects. Following the counterfactual an-
notations in Pearl and Mackenzie (2018) and Niu
et al. (2021), we denote Lx,e = L(X = x,E = e) as
the total effect (TE). We block the path X→ E to ob-
tain the explicit direct effect (EDE) on L as shown in
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Figure 3: Four main types of the implicit phrase-region matching relations together with their corresponding
ratios within the implicit phrase-region pairs.

Figure 2 (d), denoted as Lx∗,e = L(X = x∗,E = e),
which represents the value of L when we set x to
x∗. Note that only in the counterfactual world, X
can be simultaneously set to different values x and
x∗. To reduce the EDE from TE, we aim to derive
the explicit indirect effect (EIE), denoted as follows:

EIE = TE− EDE = Lx,e − Lx∗,e (5)

Implicit-aware Inference is leveraged to answer
the question 2). Upon obtaining the output repre-
sentations oi from IDA block, we utilize ICI to re-
duce the direct effect of explicit relations in Eq.(5).
In this context, the representations oi can be seen
as value x in ICI. For the value of x∗, we assume
that the model will randomly guess with equal prob-
ability, denoted as follows:

x = oi, x
∗ = r (6)

where r denotes a learnable parameter. Finally, we
can compute the EIE representation (i.e., similarity
matrix An,m) in Eq.(5), which are then employed
to calculate similarities for the WPG task.

3.4. Weakly-supervised Optimization
During the training stage, our access is limited to
coarse-grained sentence-image pairs (S, V ), from
which we derive the ground-truth label y based
on the matching relations of each sentence-image
pair. Therefore, following Chen et al. (2018), we
convert the phrase-region similarity matrix An,m to
sentence-image similarity matrix AT,T for weakly-
supervised optimization. Specifically, we first com-
pute the similarity value simi for the sentence-
image pair (Si, Vi), i.e., simi =

1
n

∑
n maxm An,m.

On this basis, we then calculate the similarity values
between the current sentence Si and all images V .
Finally, we obtain the sentence-image similarity ma-
trix AT,T encompassing all sentence-image pairs.
After the argmax operation, we obtain the predicted
label ŷ. To train our IECI approach end-to-end, we

leverage the cross-entropy loss function, denoted
as follows:

Lwpg = −
T∑

i=1

yi log ŷi (7)

Besides, we incorporate a learnable parameter
r in Eq.(6), which controls the sharpness of the
distribution of L(x∗, e). If r is inappropriate, EIE
would be guided by TE or EDE. To avoid this, we
leverage a Kullback-Leibler divergence to update r
via back propagation:

Lkl =
∑
−p(y|x, e) log p(y|x∗, e)

p(y|x, e)
(8)

Consequently, our optimization objective com-
prises both Lwpg and Lkl, denoted as Ltotal =
Lwpg+αLkl, where α serves as a hyper-parameter
responsible for balancing the loss between the
WPG task and ICI block.

4. Experimental Settings

4.1. Data Annotation and Settings
To evaluate the effectiveness of our IECI approach
in WPG, we construct an implicit-enhanced dataset
based on the Flickr30K-Entities (Plummer et al.,
2015) dataset. Specifically, for the annotation of
the implicit-enhanced dataset, we first summarize
four main types of implicit relations through pre-
liminary annotation, and estimate their ratios by
analyzing 100 randomly-selected annotated sam-
ples within Flickr30K-Entities. Specifically, the four
types of implicit relations (as illustrated in Figure 3)
are introduced as follows:

• CU denotes the model needs extra knowledge
to understand commonsense, e.g., “support”
needs to understand the commonsense of
holding a flag to precisely predict the region.

• CCU denotes the model needs the context
of sentences to understand the meaning of
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Approach
Flickr30K COCO

Implicit Explicit Full Implicit Explicit Full
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

KAC-Net 31.99 51.14 49.11 63.50 38.71♯ - 39.51 56.85 54.81 73.72 45.88 66.27
ARN 33.81 49.87 46.13 64.50 34.87 50.42 40.35 57.68 57.07 74.98 41.93 58.27

KPRN 30.95 44.50 47.31 62.93 33.41 47.33 35.31 55.22 55.77 76.51 38.30 57.00
InfoGround 44.72 74.79 55.07 80.87 47.88† 76.63† 45.66 74.08 61.17 84.67 51.67† 77.69†

ALBEF 56.40 78.27 69.37 85.03 57.64 77.56 52.00 76.23 66.19 84.06 54.22 76.34
CL&KD 50.33 73.75 62.50 82.00 53.10♮ - 50.37 75.02 64.42 83.78 51.36 74.98
ReIR 57.98 78.72 69.65 85.33 59.27§ - 54.01 77.60 66.77 84.45 55.26 76.72
BLIP 20.31 41.51 26.62 62.62 23.30 57.07 26.99 63.19 34.14 70.02 31.15 67.13
IECI 61.32 78.36 72.37 86.27 62.29 79.28 56.32 78.01 68.62 85.25 56.92 78.31

w/o IDA 57.72 77.16 71.10 84.96 59.07 77.87 53.96 76.88 67.19 84.13 54.92 77.25
w/o ICI 58.09 77.79 71.87 85.33 59.50 78.51 54.44 77.12 67.61 84.71 55.05 77.17

w/o Both 56.05 76.48 69.32 83.89 57.87 77.78 52.20 76.07 66.05 83.57 54.17 76.54

Table 1: Comparison of several state-of-the-art baselines and our approaches on both the Flickr30K and
COCO datasets (training sets). Implicit, Explicit and Full represent the evaluation results on our annotated
implicit and explicit datasets, the original Flickr30K-Entities dataset, respectively. The result with symbol ♯
is retrieved from Chen et al. (2018); those with † are from Gupta et al. (2020); this with ♮ is from Wang
et al. (2021a) and this with § is from Liu et al. (2021). The symbol - denotes the results are not reported
by these papers.

phrases, e.g., “another person” can hardly cor-
respond to the exact region without context.

• SRU represents the position relation between
two target objects in the sentence, e.g., the
region of “next to another man” contains the
position relation between two men.

• NU represents a phrase that may correspond
to multiple regions, e.g., “three of them” corre-
sponds to three regions in the image.

For annotation, we assign two annotators to tag
each phrase-region pair and the Kappa consistency
check value of the annotation is 0.85. When two
annotators cannot reach an agreement, an expert
will make the final decision, ensuring the quality
of data annotations. Furthermore, we annotate 2K
coarse-grained sentence-image samples, including
15K fine-grained phrase-region pairs in the original
Flickr30K-Entities dataset. After the manual anno-
tation, we finally obtain 1.4K implicit phrase-region
pairs. The ratio between the implicit and explicit
phrase-region pairs is about 1:9, which shows an
extreme imbalance between them, thereby encour-
aging us to address the challenge of highlighting
the implicit relations beyond the explicit.

For training WPG, following Gupta et al. (2020),
we leverage the training sets from Flickr30K and
COCO datasets. For inference, we maintain the
same setting of validation and test splits as the
original Flickr30K-Entities (Full) dataset, and obtain
the Implicit, Explicit datasets based on these splits.

4.2. Baselines

We choose several state-of-the-art baselines for
WPG to compare performance with our IECI ap-
proach, described as follows.

• KAC-Net (Chen et al., 2018) explores the consis-
tency in visual and language as complementary
external knowledge.

• ARN (Liu et al., 2019a) builds the correspon-
dence between image region and query in an
adaptive manner.

• KPRN (Liu et al., 2019b) models the relation be-
tween target and contextual entities.

• InfoGround (Gupta et al., 2020) leverages con-
trastive learning to maximize a lower bound be-
tween region features and contextualized word
representations.

• ALBEF (Li et al., 2021) introduces a contrastive
loss to align the image and text representations
before fusing them into cross-modal attention.

• CL&KD (Wang et al., 2021a) focuses on distilling
knowledge from a generic object detector under
the framework of contrastive learning.

• ReIR (Liu et al., 2021) incorporates coarse-to-fine
object refinement and entity relation modeling
into a two-stage deep network.

Moreover, an advanced multimodal pre-training
model BLIP (Li et al., 2022) is leveraged to compare
with IECI. Here, it should be noted that BLIP can not
directly fine-tune the WPG task, since BLIP is pre-
trained with the coarse-grained sentence-image
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pairs. Thus, we treat the phrase-region pairs as
the coarse-grained pairs to fine-tune the WPG task.

4.3. Implementation Details and Metrics
In our experiments, we leverage open-source
codes to obtain experimental results of all the base-
lines on both Implicit and Explicit datasets, and
re-implement the results of several baselines by
their open-source codes on Full datasets. The
hyper-parameters of these baselines reported by
their public papers maintain the same setting, and
the others are tuned according to the validation set.
Specifically, for phrase encoder, the parameters of
BERT are following Devlin et al. (2019). For region
encoder, we utilize a pre-trained Faster R-CNN on
the Visual Genome (Krishna et al., 2017) dataset
to generate a maximum number of 100 object re-
gions. For IECI, we employ the Adam optimizer
with an initial learning rate of 1e-5 for training. The
regularization weight of parameters is 1e-4. The
hyper-parameter α is set to be 0.1 and the batch
size is set to be 64. The layers of the self-sampling
attention and cross-sampling attention in IDA are
both set to be 6. The overall training parameters
of our approach are 0.16B. All the baselines are
reproduced using PyTorch on a machine equipped
with an NVIDIA GeForce RTX 3090, an Intel(R)
Xeon(R) E5-2650 v4 CPU (2.20 GHz), CUDA ver-
sion 11.7, and the PyTorch 1.7.1 library with Python
3.6.13, running on Ubuntu 20.04.1 LTS. To facili-
tate the corresponding research in this direction, all
codes alongside our implicit-enhanced dataset are
released2.

Besides, the WPG performance is evaluated us-
ing Recall@k, k ∈ (1, 5), which measures the frac-
tion of phrases for which the ground-truth bounding
box exhibits an IoU ⩾ 0.5 with any of the top-k pre-
dicted boxes. Moreover, t-test3 is used to evaluate
the significance of the performance difference by
following Chen et al. (2020b).

5. Results and Discussions

5.1. Experimental Results
Table 1 shows the performance comparison of dif-
ferent approaches. From this table, we can see
that: 1) The performances of all approaches on the
Implicit dataset are consistently lower than the Ex-
plicit dataset. This indicates that modeling the im-
plicit relations is more challenging than the explicit,
and encourages us to consider such implicit rela-
tions problem in WPG. Besides, we also observe
that the performance of both Implicit and Explicit
datasets is improved, and we analyze the reason

2https://github.com/Zhao-Jianing-SUDA/IECI
3https://docs.scipy.org/doc/scipy/reference/stats.html

Figure 4: Comparison performance between multi-
modal LLMs (i.e., MiniGPT4-13B, LLaVA-13B) and
our IECI approach, where ZS and ICL represent
zero-shot and in-context learning evaluation meth-
ods for LLMs.

is that there may be some overlap between the im-
plicit and explicit relations in the current dataset,
leading to performance improvements in explicit
relations when employing causal inference. 2) The
performance improvements of our IECI approach
on the Implicit dataset are larger than those on
the Explicit dataset. This indicates that IECI can
effectively address the challenge of highlighting
the implicit relations beyond the explicit. Further-
more, our IECI approach consistently performs bet-
ter than all other approaches. Impressively, com-
pared to the best-performing ReIR approach, our
IECI approach achieves the average R@1 improve-
ments of 2.83%, 2.29% and 2.34% on all three Im-
plicit, Explicit and Full datasets, respectively. Sig-
nificance test shows that all these improvements
are significant (p-value < 0.01). These demonstrate
that IECI can better highlight the implicit relations
and meantime maintain the performance of the
explicit. Particularly, we observe that the perfor-
mance of BLIP is quite worse than IECI. This is
reasonable since BLIP is pre-trained on the coarse-
grained sentence-images pairs, thus is not suitable
for aligning the fine-grained phrase-region pairs. 3)
Our IECI approach trained on both the Flickr30K
and COCO datasets still outperforms all other ap-
proaches. This justifies the robustness of IECI,
and again encourages us to consider the important
implicit relations in the WPG task.

5.2. Contributions of Causal Inference
To further investigate the influence of key causal
components within our IECI approach, we conduct
a series of ablation studies as shown in Table 1.
From this table, we can see that: 1) w/o IDA ex-
hibits inferior performance compared to IECI, with
an average decrease in R@1 by 2.98% (p-value <
0.01) and 1.35% (p-value < 0.05) on the Implicit and
Explicit datasets, respectively. This further justifies
that our proposed IDA block can effectively model
the implicit relations, encouraging us to leverage
the intervention technique to mitigate the confound-
ing bias. 2) w/o ICI also shows inferior performance
compared to IECI, with an average R@1 decrease
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of 2.56% (p-value < 0.01) and 0.76% (p-value <
0.05) on the Implicit and Explicit datasets, respec-
tively. This further justifies that ICI block can ef-
fectively highlight the implicit relations beyond the
explicit, encouraging us to leverage the counterfac-
tual technique to address the imbalance problem.
3) w/o Both yields a significant average decrease
in R@1 by 4.70% (p-value < 0.01) on the Implicit
dataset, which excludes both IDA and ICI blocks.
This again justifies the effectiveness of our IECI
approach in modeling and highlighting the implicit
phrase-region matching relations.

5.3. Comparison with Multimodal LLMs
Recently, the emergence of large language models
(LLMs) has demonstrated their remarkable abili-
ties across various fields and tasks. Since GPT-4
is closed-sourced and currently cannot evaluate
the multimodal tasks, we choose two advanced
open-sourced multimodal LLMs, i.e., MiniGPT4-
13B (Zhu et al., 2023) and LLaVA-13B (Liu et al.,
2023), to verify the effectiveness of IECI. Specifi-
cally, we first randomly select 30 sentence-image
examples with the implicit and explicit relations for
comparisons on the WPG task. Then, we select
two well-studied evaluation methods for LLMs as
follows: 1) Zero-Shot (ZS). Following the ZS set-
ting for evaluating LLMs proposed by Bang et al.
(2023), given a prompt including the task instruc-
tions, sentence-image pair and the bounding box
list of each phrase, we utilize multimodal LLMs to
“generate the bounding boxes from the list that can
reflect the given phrase”. 2) In-Context Learn-
ing (ICL). Following the ICL setting for evaluating
LLMs proposed by Li et al. (2023b), building upon
the ZS, we introduce one additional demonstration
example “phrase, boxes;...;phrase, boxes” as the
prompt. As shown in Figure 4, we observe that IECI
outperforms the multimodal LLMs by a large mar-
gin, indicating that the multimodal LLMs still face
challenges in understanding the deep multimodal
semantics. Moreover, we find that the performance
of ZS is better than ICL, since the image encoders
BLIP-2 and CLIP within MiniGPT4-13B and LLaVA-
13B lack the ability of ICL as reported in Li et al.
(2023a) and Radford et al. (2021).

5.4. Visualization Study
We conduct a visualization analysis of IECI in our
implicit-enhanced dataset. As illustrated in Figure
5, we can see that: 1) The prediction of the region
corresponding to the phrase “support” (red box in
Figure 5 (a)) is challenging, which requires contex-
tual and commonsense knowledge. This further
indicates the difficulty in precisely aligning such
implicit phrase-region pairs. 2) We compare the
performance of the best-performing baseline ReIR

Figure 5: A sentence-image example from our
implicit-enhanced dataset, along with their ground-
truth phrase-region pairs (a), predicted regions by
best-performing baseline ReIR (b), and predicted
regions by our IECI approach (c).

and IECI, as shown in Figure 5 (b) and (c). For the
phrase “support”, ReIR fails to predict the corre-
sponding region, while IECI successfully identifies
the correct region (yellow box). This again justifies
the effectiveness of IECI in precisely identifying
such implicit phrase-region matching.

5.5. What Would We Do Next?
Our proposed IECI approach has demonstrated
promising results in comprehensive experiments,
showcasing its effectiveness in addressing the chal-
lenges of modeling the implicit relations and high-
lighting them beyond the explicit. However, we
believe that there are still three potential directions
to precisely predict implicit phrase-region matching
relations. Despite this is not the focus of this paper,
we believe that these three directions can not only
further improve the performance of the WPG task,
but also facilitate related research in this direction,
as described below.

Firstly, for Multimodal Representation, our IECI
approach has limitations in effectively represent-
ing underlying features. However, the existing
multimodal pre-training models (e.g., CLIP (Rad-
ford et al., 2021), BLIP (Li et al., 2022)) are
mostly pre-trained on coarse-grained sentence-
image pairs, making them lack the ability of fine-
grained multimodal semantics understanding, as
reported in Section 5.3. In our future work, we
would like to incorporate the multimodal LLMs (e.g.,
MiniGPT4 (Zhu et al., 2023), LLaVA (Liu et al.,
2023)) to enhance the multimodal representation
abilities of our approach for the WPG task.

Secondly, for Knowledge Injection, we observe
that the ratio of commonsense understanding is
34.5% as illustrated in Figure 3, which further in-
spires us to consider integrating the external knowl-
edge (e.g., multimodal knowledge graph (Zhu et al.,
2022)) to assist in capturing the implicit relations.

Finally, for Evaluation of Each Implicit Rela-
tion, due to the imbalanced proportion of implicit
relations in the whole dataset, the sample scale of
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each implicit relation is relatively small (see Section
4.1), making it difficult to comprehensively evalu-
ate the effectiveness of our IECI approach on each
implicit relation. In our future work, we would like
to leverage the multimodal LLMs to automatically
annotate (e.g., the automatic annotation approach
proposed by Pei et al. (2023)) different types of
implicit relations, which may promote the further
research in this direction.

6. Conclusion

In this paper, we propose an Implicit-Enhanced
Causal Inference (IECI) approach to address the
implicit phrase-region matching relations problem
inside WPG. The key idea of IECI is to utilize the
causal inference (i.e., intervention and counterfac-
tual techniques) to effectively model the implicit
relations and highlight them beyond the explicit.
To comprehensively evaluate IECI, we construct
a specialized implicit-enhanced dataset. Detailed
experimental results on this dataset demonstrate
the superior performance of IECI over several state-
of-the-art baselines.

In our future work, we would like to introduce
more information (e.g., multimodal knowledge
graph (Zhu et al., 2022)) to assist in aligning im-
plicit phrase-region pairs. Moreover, we would like
to transfer IECI to other tasks which also have the
implicit relation problems, such as Referring Ex-
pression Comprehension and video grounding.
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