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Abstract
In this paper, we introduce Holistic Semantic Embedding and Global Contrast (HS-GC), an end-to-end approach
to learn the instance- and cluster-level representation. Specifically, for instance-level representation learning, we
introduce a new loss function that exploits different layers of semantic information in a deep neural network to provide
a more holistic semantic text representation. Contrastive learning is applied to these representations to improve the
model’s ability to represent text instances. Additionally, for cluster-level representation learning we propose two
strategies that utilize global update to construct cluster centers from a global view. The extensive experimental
evaluation on five text datasets shows that our method outperforms the state-of-the-art model. Particularly on the
SearchSnippets dataset, our method leads by 4.4% in normalized mutual information against the latest comparison
method. On the StackOverflow and TREC datasets, our method improves the clustering accuracy of 5.9% and 3.2%,
respectively.

Keywords:Deep text clustering, Contrastive learning, Unsupervised learning

1. Introduction

Over the past decades, a large number of clus-
tering algorithms have been proposed, such as
K-Means (MacQueen, 1965), Spectral Clustering
(Ng et al., 2001), Gaussian Mixture Model(Celeux,
1995). These algorithms are effective only when
instances are already represented in a latent vector-
ized space with a good shape (Zhou et al., 2022),
while their performance on the high dimensional
data, such as texts, is usually limited due to the
poor power of feature learning (Steinbach et al.,
2004). Hence, learning representation is a crucial
challenge to the text clustering (Yaling Tao, 2021).
Traditionally, representation learning methods

model a text sample as bag-of-words (BOW) or
term-frequency inverse-document-frequency (TF-
IDF). However, BoW and TF-IDF often yield very
sparse representation vectors, leading to poor per-
formance (Xu et al., 2017). With the aid of the
deep learning (LeCun et al., 2015), deep text clus-
tering methods (Xie et al., 2016; Xu et al., 2017;
Huang et al., 2020; Hadifar et al., 2019) are pro-
posed and have achieved promising performance
because of the strong representation capability of
deep neural networks (Bengio et al., 2013). De-
spite the promising improvements in the clustering
performance, it is still inadequate. One reason
is that, even with a deep neural network, there is
still significant overlap among clusters in the texts
(Zhang et al., 2021). Therefore, most of the exist-
ing works (Zhang et al., 2021; Yaling Tao, 2021;
Li et al., 2021; Huang et al., 2022) focus on solv-
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ing the overlap problem between clusters, and the
widely used method is contrastive learning.

Contrastive learning has achieved remarkable
performance in unsupervised representation learn-
ing (Chen et al., 2020a; He et al., 2020; Gao et al.,
2021). Its basic idea involves the creation of posi-
tive and negative pairs for each instance through
data augmentations. These pairs are then pro-
jected into a representation space to minimize the
distance of positive representation pairs and max-
imize the distance of negative pairs. This advan-
tageous characteristic can be utilized to facilitate
clustering by separating the overlapping clusters
(Wang, 2020). As a result, some contrastive learn-
ing based clustering methods (Zhang et al., 2021;
Yaling Tao, 2021; Li et al., 2021; Huang et al., 2022)
are proposed, which achieve state-of-the-art re-
sults. These methods usually define two types of
loss functions to boost clustering performance, i.e.,
instance-level loss function and cluster-level loss
function to learn instance- and cluster-level rep-
resentation, respectively. To learn instance-level
representations, the feature embedding of a sin-
gle layer, usually the last fully-connected layer, is
used to implement the instance-level loss function.
Recent studies (Zeiler, 2014; Jawahar et al., 2019)
have demonstrated that different layers in a deep
neural network can reflect different levels of seman-
tic information. Hence, combining the feature em-
bedding of different layers can yield more holistic se-
mantic information on the text instances. However,
the existing methods often overlook the potential
advantages of leveraging the diverse information of
multiple network layers for improving the clustering
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performance.
Moreover, these methods explicitly design a clus-

tering task for cluster-level loss function to focus
on the cluster-level semantic information and try to
bring together instances from the same semantic
cluster. Nevertheless, these methods usually learn
the cluster-level representation from the perspec-
tive of mini-batch, i.e., local view. Notably, the clus-
ter itself is a global structure of the dataset (Zhang
et al., 1996). Therefore, learning cluster-level rep-
resentation from a local view without considering
the entire dataset, i.e., the global view, may affect
the performance of clustering.
To solve these problems, in this paper, we pro-

pose a novel method, HS-GC: Holistic Semantic
Embedding and Global Contrast for Effective Text
Clustering, to learn more distinctive instance- and
cluster-level representation in an end-to-end man-
ner. For instance-level representation, we design a
new loss function to facilitate the model to capture
more holistic semantic information in text instances.
Specifically, text features are modeled by exploit-
ing different layers of feature embedding in a deep
neural network to provide a more holistic semantic
text representation. Further, contrastive learning
is applied to these representations to improve the
model’s ability to represent text instances.

Additionally, representing the global information
of a dataset at the cluster-level poses a signifi-
cant challenge. To address this challenge, we pro-
pose two strategies: (1) average update and (2)
momentum update. Both methods leverage the
average of the cluster centers over multiple mini-
batches to represent the global information. Here,
we call the cluster centers in each mini-batch as
the local cluster centers, while the average of all
local cluster centers across multiple batches is con-
sidered as the global cluster centers. As illustrated
in Fig. 1(a), when calculating global cluster centers
for the (t + 1)th mini-batch, the average update
averages the local cluster centers of the first t mini-
batches with those from the (t+1)th batch by giving
each batch the same weight. As for themomentum
update, we use a momentum-based moving aver-
age (Goodfellow et al., 2016), which can be ap-
proximated as the weighted average value of the
past periods, to update the global cluster centers
to ensure the globality of the dataset, as shown in
Fig. 1(b). Then, based on these two strategies, we
propose to perform contrastive learning over repre-
sentations of cluster centers, where two augmented
views of the same cluster centers are positive pairs
and other cluster centers are negative pairs. Ben-
efitting from the novel instance- and cluster-level
contrastive loss, our method can learn discrimina-
tive features and boosts the clustering performance.
In summary, our contributions are as follows:

• We propose a novel end-to-end deep cluster-

ing method, HS-GC, based on novel instance-
and cluster-level contrastive loss.

• To enhance the comprehensiveness of seman-
tic information in the text instance represen-
tation, we employ different layers of feature
embedding in a deep neural network.

• We propose two strategies to update the clus-
ter centers from global view.

• We conduct extensive experiments on five well-
known public text datasets and ablation studies
to demonstrate the effectiveness of the pro-
posed method.

The remainder of this paper is organized as fol-
lows. A brief review of the related work of self-
supervised representation learning and deep clus-
tering is given in Sec.2. Sec. 3 presents our pro-
posed method. Experimental results are reported
and analyzed in Sec. 4. Finally, Sec. 5 concludes
the paper.

2. Related Work

This section introduces current self-supervised rep-
resentation learning methods and reviews the latest
deep clustering approaches.

2.1. Self-supervised Representation
Learning

Self-supervised representation learning aims to
generate semantically meaningful features from
samples without requiring human annotations. Pre-
vious studies have attempted to capture data fea-
tures through Auto-Encoder (Vincent et al., 2010),
generative model (Kingma, 2013), or heuristic
pretext task (Devlin et al., 2019; Li et al., 2020;
Yang et al., 2019). Recently, contrastive learn-
ing combined with data augmentations strategies
has achieved great success. Contrastive learn-
ing learns representations of data by contrasting
positive pairs of examples against negative pairs.
The generation of positive instance features and
negative instance features for each sample is criti-
cal for constructing the contrastive loss. Different
contrastive learning methods vary in their strategy
to generate instance features. The memory bank
approach (Wu et al., 2018) stores the features of
all samples calculated in the previous step. The
end-to-end approach (Chen et al., 2020a; Ye et al.,
2019) generates instance features using all sam-
ples within the current mini-batch. The momen-
tum encoder approach (He et al., 2020) encodes
samples on-the-fly by a momentum-updated en-
coder while maintaining a queue of instance fea-
tures. Gao et al. (2021) uses standard dropout
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Figure 1: Illustration of average update and momentum update on global cluster centers, where the green
boxes denote the local cluster centers in each batch, and the blue boxes represent the weights of each
batch. The average update gives each batch the same weight to update the global cluster centers. The
momentum update uses a batch-by-batch weight increment strategy to update the global cluster centers.

as minimal data augmentation and feeds an iden-
tical sample to a model twice with independently
sampled dropout masks to generate two distinct in-
stance features as a positive pair. However, these
methods fail to use the semantic information of dif-
ferent layers in the deep neural network to provide
more holistic semantic representation on instances.

2.2. Deep Clustering

Benefitting from the powerful representation capa-
bility of deep neural networks, researchers adopt
deep neural network to extract friendly features for
clustering and has shown promising performance.
Deep Embedded Clustering (DEC) (Xie et al., 2016)
trains the autoencoder with the reconstruction loss
and optimizes KL-divergence with an auxiliary tar-
get distribution to refine cluster centers iteratively.
Deep clustering Network (DCN) (Yang et al., 2017)
further introduces a k-means loss as the penalty
term to reconstruct the clustering loss. Xu et al.
(2017) use a convolutional neural network to learn
the deep feature representation, then K-Means is
deployed to obtain clustering results. Following
(Xie et al., 2016; Hadifar et al., 2019), further en-
hances sample representation using smooth in-
verse frequency(Arora et al., 2017). Despite the
promising improvements in the clustering perfor-
mance, there is still significant overlap among clus-
ters in the dataset (Zhang et al., 2021). Recently,
contrastive learning based on deep clustering has
achieved excellent performance. Contrastive Clus-
tering (CC) (Li et al., 2021) jointly performs instance-
and cluster-level contrastive learning. However, CC
implements cluster-level loss on cluster probabili-
ties, which may result in the loss of semantic infor-
mation in the learned representation (Huang et al.,
2022). Prototype scattering and positive sampling
(Propos) (Huang et al., 2022) implements the con-
trastive loss on the representation of the cluster cen-
ters within a mini-batch. However, CC and Propos
both implement cluster-level contrastive loss from
the perspective of mini-batch, which may mislead

final clustering results. Supporting Clustering with
Contrastive Learning (SCCL) (Zhang et al., 2021)
uses contrast learning for instance-level represen-
tation learning and sharpened soft assignment for
cluster-level representation learning. Soft assign-
ment distribution describes the similarity between
the instance and each cluster centers. Regrettably,
the soft assignments are prone to the influence of
cluster centers initialization. Moreover, although
SCCL initializes the cluster centers from a global
perspective, it learns cluster-level representation
from a local perspective in training phase without
considering the global structure of the dataset.

3. Methodology

In this section, we present our method for deep
text clustering. As illustrated in Fig.2, our method
is composed of three jointly learned components,
namely, a text representation backbone (TRB),
and an instance-level contrastive head (ICH) and
a cluster-level global contrastive head (CGCH).
Briefly speaking, The TRB utilizes data augmenta-
tions to generate augmented pairs of text, where
data consists of both the two augmented and the
original texts, i.e. {xa, xb, x}. The triplet is then pro-
cessed using a BERT-like pre-trained model ψ(·),
to extract features, i.e., {ha, hb, h}, where {ha, hb}
from the two augmented samples are subsequently
used for contrastive learning in ICH and h from
the original sample is used to generate pseudo-
labels via a clustering algorithm denoted as f(·).
Then CGCH is utilized for cluster-level contrastive
learning on the cluster centers {µa, µb} formed by
{ha, hb}. Next, we will provide detailed explana-
tions for each of the three components.

3.1. Text Representation Backbone
The architecture of Transformer (Vaswani et al.,
2017) is the basis for the development of mod-
ern pre-trained language models (PLM) (Devlin
et al., 2019; Brown et al., 2020). Given an input
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Figure 2: The model architecture of the proposed HS-GC.

sentence x = {t1, ..., tn}, an L-layer Transformer-
based PLM yields a seires of hidden embedding
representations E = {E0, E1, E2, ..., EL}, where
Ei = [e1i , e

2
i , ..., e

n
i ](0 < i ≤ L) are the embedding

vectors for each token in x in the i-th Transformer
layer. The hidden representation E0

L of [CLS] to-
ken is used to represent one sentence and is fed
into the classification layer for fine-tuning. How-
ever, in the unsupervised text clustering settings,
the absence of labeled data makes it impossible
to fine-tune our model, resulting in the [CLS] to-
ken’s hidden vector potentially missing out on vital
information (Huang et al., 2021; Li et al., 2020).
Thus in existing works (Zhang et al., 2021; Huang
et al., 2020), mean-pooled EL, i.e., mean pooling
on token embeddings from the last hidden layer, is
usually used to synthesize the text representation
for further clustering. However, different layers in
a BERT-like pre-trained model can reflect different
levels of semantic information (Jawahar et al., 2019)
and a combination of these layers can provide a
more holistic understanding of the text instances .
Hence, we propose the following strategies to de-
rive more holistically semantic text representations:

Intra-layer mean pooling: We calculate the av-
erage hidden vectors for all tokens within each layer
as the representation pi of the i-th layer by Eq. 1,

pi =
1

n

n∑
j=1

eji (1)

Inter-layer mean pooling: We further perform
mean pooling on all pooled layer representations
p1, p2, ..., pL to obtain the final text representation
h by Eq. 2.

h =
1

L

L∑
i=1

pi (2)

3.2. Instance-level Contrastive Head

Contrastive learning aims to learn effective repre-
sentation by maximizing the similarities between

positive pairs and minimizing the similarities be-
tween negative pairs. Various criteria can be used
to define these pairs. For instance, positive pairs
can be defined as samples within the same class,
while negative pairs include those from different
classes. However, since the absence of prior la-
bel information in text clustering settings, positive
and negative pairs are generated at the instance-
level by utilizing data augmentations. Specifically,
positive pairs consist of augmented samples from
the same instance, while negative pairs are all the
other examples in the sampled mini-batch.
Formally, given a mini-batch B of size N , two

types of data augmentations, i.e. T a, T b, are re-
spectively performed on each instance xi and result
in 2N data samples {xa1 , ..., xaN} and {xb1, ..., xbN}.
For a specific sample xai , we choose its corre-
sponding augmented samples xbi to construct pos-
itive pairs {xai , xbi}, while treating the other 2N -2
examples in B as negative instances regarding
this positive pair. Then a BERT-like pre-trained
model is used to extract features from the aug-
mented samples according the Eq.1 and 2, i.e.
hai = ψ(xai ), h

b
i = ψ(xbi ).

In practice (Chen et al., 2020a,b), instead of
directly applying the contrastive learning on the
representation h, we first map it to another sub-
space using a two-layer nonlinear MLP g(·) to ob-
tain zi = g(hi) and then minimize the following loss
function:

`Iia = − log
exp

(
sim

(
zai , z

b
i

)
/τI
)∑2N

j=1 1j 6=i1 · exp (sim (zai , zj) /τI)
(3)

where τI is the temperature parameter that defines
the degree of attraction and repulsion between sam-
ples and 1j 6=i1 is an indicator function. The pair-
wise similarity is measured by cosine distance, i.e.,

sim
(
zai , z

b
j

)
=

(zai )
(
zbi
)T

‖zai ‖
∥∥zbi∥∥ (4)

The use of zi instead of hi in Eq. (3) is justified
by the concern that minimizing the contrastive loss
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on hi may result in the loss of important information.
Empirical evidence from prior studies (Chen et al.,
2020a,b) has also demonstrated that minimizing zi
leads to better results.

The final instance-level contrastive loss function
is defined as the average of the loss for all positive
pairs across the mini-batch B:

Lins =

2N∑
i=1

`Ii /2N (5)

3.3. Cluster-level Global Contrastive
Head

A well-performing clustering method is expected to
exhibit well-separated clusters. Suppose that our
data consists of K semantic categories, where K
is assumed to be known, a contrastive loss can nat-
urally be constructed for these K clusters. Specifi-
cally, for a given cluster center, the remaining K-1
cluster centers serve as negative examples. There-
fore, we propose a cluster-level contrastive loss
to encourage maximizing the inter-cluster distance
and minimizing the intra-cluster distance.
Formally, assume that we obtain K cluster cen-

ters in the embedding space from one augmented
view, {µa

1 , ..., µ
a
K}, and otherK cluster centers from

another augmented view, {µb
1, ..., µ

b
K}. Here, the

cluster centers µa, µb are computed within a mini-
batch B, i.e., the local cluster centers, as follows:

µa =

∑
xa∈B p(k | x)ha)∥∥∑
xa∈B p(k | x)ha)

∥∥
2

(6)

µb =

∑
xb∈B p(k | x)hb)∥∥∑
xb∈B p(k | x)hb)

∥∥
2

(7)

where p(k|x) is the pseudo-label obtained by using
clustering algorithm f(·) on original text x. Then
we propose two global update strategies to update
cluster centers from the global view: (1) average
update (2) momentum update.
Average update: when calculating the global

cluster centers under the t-th training step, the av-
erage update averages the local cluster centers of
the previous (t− 1) mini-batches with those from
the t-th batch by giving each batch the same weight:

vt =
1

t

t∑
i=1

µt (8)

where µt denotes the local cluster centers of sam-
ples in the mini-batch under the t training step and
vt denotes the global cluster centers under the t-th
training step.

Momentum update: when calculating the global
cluster centers under the t-th training step, the mo-
mentum update averages the local cluster centers
of the previous (t− 1)mini-batches with those from

the t-th batch by batch-by-batch weight increment
strategy. More precisely, given a momentum coeffi-
cientm ∈ [0, 1), after each training step we perform
the following update:

vt = mvt−1 + (1−m)µt (9)

where vt−1 denotes the global cluster centers for
the (t− 1)-th training step, µt denotes the local
cluster centers for the current training step t and
vt denotes the global cluster centers under the t-th
training step.
Thus, we can obtain the global cluster centers

va from one augmented view and vb from another
augmented view through the Eq. 8 or Eq. 9. Ac-
cording to the Eq. 3, cluster-level contrastive loss
can be naturally defined as follows:

`Cia = − log
exp

(
sim

(
vai , v

b
i

)
/τC

)∑K
j=1 1j 6=i1 · exp (sim (vai , vj) /τC)

(10)
where τC is the cluster-level temperature parame-
ter and sim(·) follows Eq. 4. By traversing all K
clusters, the cluster-level contrastive loss is finally
computed by

Lclu =
1

2K

K∑
i=1

ˆ̀C
i (11)

Overall loss: In summary, our overall loss is

L = Lins + λLclu (12)

where λ controls the balance between two loss
components. Therefore, there are only two hyper-
parameters including the momentum coefficient m
and the loss weight λ in the loss function.

4. Experiments

In this section, we conduct experiments to verify
the effectiveness of the proposed method.

4.1. Datasets
In the experiments, we assess our method on five
widely used text datasets for text clustering. Ta-
ble 1 provides an overview of the main statistics.
AgNews (Rakib et al., 2020), is a subdataset of
AG’s corpus (Zhang and LeCun, 2015) of news
articles constructed by assembling titles and de-
scription fields of articles from the 4 largest classes
of AG’s Corpus. SearchSnippets is selected from
the results of web search transaction using prede-
fined phrases of 8 different domains, which con-
tains 12,340 snippets (Phan et al., 2008). Stack-
Overflow, a sentence dataset published in Kag-
gle.com, and following the previous works (Xu et al.,
2017; Zhang et al., 2021), we use a subset (Xu
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et al., 2017) of it, where 20 classes are involved
and each class has 1,000 samples. Biomedical
(Xu et al., 2017) is a subset of the dataset dis-
tributed by BioASQ’s official website, where 20,000
paper titles from 20 groups are randomly selected.
GoogleNewsTS consists of the titles and snip-
pets of 11,109 news articles about 152 events
from GoogleNews(Yin and Wang, 2016). TREC
is an open-domain, fact-based questions dataset,
which contains six categories and 6,000 examples
(Voorhees et al., 1999).

Dataset |V | Documents Clusters
#D #L #C L/S

AgNews 21k 8,000 23 4 1
SearchSnippets 31k 12,340 18 8 7
StackOverflow 15k 20,000 8 20 1
GooglenewsTS 20k 11,109 28 152 143
TREC 8k 6,000 10 6 2

Table 1: A summary of datasets used for evalua-
tions. |V |: the vocabulary size; #D: number of text
documents; #L: average number of words in each
document; #C: number of clusters; L/S: the ratio of
the size of the largest cluster to that of the smallest
cluster.

4.2. Evaluation Metrics
We follow the previous work (Hadifar et al., 2019;
Rakib et al., 2020; Zhang et al., 2021), using two
common clustering performance metrics to evalu-
ate our method, i.e., Accuracy (ACC) (Wu, 2006)
and Normalized Mutual Information (NMI) (Chen
et al., 2010). Larger ACC and NMI indicate better
clustering result.

4.3. Experimental Setup
Our method is implemented by PyTorch 1.7.1
(Paszke et al., 2017) and Transformers library (Wolf
et al., 2020). We select distilbert-base-nli-stsb-
mean-tokens as the backbone for a fair comparison
(Zhang et al., 2021), and we set the maximum input
length to 32. For the instance-level contrastive loss,
we optimize an MLP with one hidden layer of size
768 and output vectors of size 128. We used the
Adam optimizer (Kingma, 2015) with constant 5e-6
learning rate and 10e-4 weight decay while setting
the learning rate to 5e-4 to optimize the instance-
level contrastive head. The instance-level tempera-
ture parameter τI is fixed to 0.7 in all experiments,
and cluster-level temperature parameter τI = 1.0
is used for all datasets. We fix the momentum co-
efficient m to 0.9 in all experiments, and the effect
of the momentum coefficient can be seen in Sub-
sec.4.5. Our empirical investigations reveal that
setting the loss weight λ = 10 yields comparatively

better yet stable performance across datasets. The
pseudo-labels are obtained by K-Means. The texts
are augmented by Contextual Augmenter (Zhang
et al., 2021; Kobayashi, 2018). The experimental
results are averaged over five random runs.

4.4. Clustering Performance Comparison
We evaluate the proposed method on five challeng-
ing text benchmarks and compare it with the follow-
ing eight representative state-of-the-art clustering
approaches.

• BoW & TF-IDF are evaluated by applying K-
means (MacQueen, 1965), where the 1,500
most frequently used words as the features of
the documents.

• STCC (Xu et al., 2017) involves three stages.
First, it pretrains word embeddings for each
dataset using Word2Vec (Mikolov et al., 2013)
on a large in-domain corpus. Then, it opti-
mizes a convolutional neural network to im-
prove representations for the final clustering
stage with K-means.

• Self-Train (Hadifar et al., 2019) improves word
embeddings pretrained by (Xu et al., 2017)
using SIF (Arora et al., 2017). It starts by using
layer-wise pretraining to create an autoencoder
following (Xie et al., 2016). The autoencoder
is then fine-tuned with a clustering objective.

• HAC-SD (Rakib et al., 2020) utilizes a pairwise
similarity matrix, setting scores below a thresh-
old to zero. The final clustering results are
obtained through hierarchical agglomerative
clustering on this adjusted matrix.

• CC (Li et al., 2021) uses data augmentation
to create positive and negative instance pairs
for contrastive learning at both instance and
cluster levels. These pairs are projected into
a feature space, where contrastive learning
occurs in row and column spaces for instance
and cluster levels, respectively.

• SCCL (Zhang et al., 2021) jointly optimize
a top-down clustering loss with a bottom-up
instance-wise contrastive loss, where cluster
loss follows the approach proposed by (Hadi-
far et al., 2019) and contrastive loss follows the
approach proposed by (Chen et al., 2020a).

• ProPos (Huang et al., 2022) maximize the
distance between prototypical representa-
tions, improving the uniformity of representa-
tions. Then align one augmented view of in-
stance with the sampled neighbours of another
view—assumed to be a truly positive pair in the
embedding space to improve the within-cluster
compactness.
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Datasets AgNews SearchSnippets StackOverflow GooglenewsTS TREC
Metrics ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
BoW 27.6 2.6 24.3 9.3 18.5 14.0 57.5 81.9 24.9 3.3
TF-IDF 34.5 11.9 31.5 19.2 58.4 58.7 68.0 88.9 27.6 4.0
STCC 83.5 56.9 77.0 56.6 51.1 49.0 76.9 80.6 37.4 9.3

Self-Train 63.6 35.5 77.1 56.7 59.8 54.8 59.4 79.6 39.5 11.6
HAC-SD 81.8 54.6 82.7 63.8 64.8 59.5 85.8 88.0 31.2 5.4

CC 81.0 56.6 74.6 61.0 68.7 61.9 85.6 93.0 39.3 14.4
SCCL 86.2 64.9 76.6 58.8 66.5 66.2 83.3 93.2 40.1 14.1
ProPos 84.3 59.3 74.3 55.2 64.5 55.3 73.9 90.4 37.8 11.5
HS-GCa 83.1 58.6 74.8 58.2 74.3 66.3 85.5 91.2 37.7 11.9
HS-GCm 87.7 66.9 85.0 68.2 74.6 67.1 88.1 94.3 43.3 15.7

Table 2: The clustering performance on five challenging text benchmarks. The best results are shown in
boldface.

Table 2 shows the results of our proposed
method on five text benchmark datasets com-
pared to the state-of-the-art baselines, where HS-
GCa and HS-GCm use average update and mo-
mentum update to update cluster centers, re-
spectively. As is evident in this table, our pro-
posed method outperforms all other baselines in
all datasets. Quantitatively, our method improves
the ACC by 1.5%, 2.3%, 5.9%, 2.3%, 3.2%, the NMI
by 2.0%, 4.4%, 0.9%, 1.1%, 1.3% respectively on Ag-
News, SearchSnippets, StackOverflow, Google-
NewsTS, and TREC. The main difference between
our framework and other baselines is that we exploit
different levels of semantic information in a deep
neural network and global information of dataset
enhance the learned representation for clustering.
These are why our method’s performance is supe-
rior to the baselines. Moreover, the performance of
HS-GCm is better than HS-GCa. One reason is that
due to the lack of consistency in model parameters
under different training steps, the representations
of samples in each mini-batch are also inconsis-
tent and the representations of the old mini-batches
usually are worse than the representations of the
new mini-batches. Hence, giving the local clus-
ter centers of each mini-batch the same weight
may leads to biased clustering results. In contrast,
HS-GCm achieves better results by utilizing the
batch-by-batch weight increment strategy to up-
date cluster centers to alleviate the problem of the
poor representation of the old mini-batches. More-
over, we conduct a statistic significance test based
on the experimental results reported in Table 2.
We select the Friedman test (Friedman, 1937) that
can be used to investigate the difference among
the various methods on multiple datasets. The
null-hypothesis indicates that all the algorithms are
equivalent. Notably, the Friedman test has a p-
value of 2e-11 that smaller than 0.0001. That is to
say the compared methods are significantly differ-
ent.

4.5. Ablation Study
In this section, we conduct several ablation studies,
including the effect of the proposed loss, the ef-
fect of different momentum coefficient on updating
cluster centers and the effect of different pooling
strategies, to demonstrate the effectiveness of dif-
ferent components in our method.
Effect of the proposed loss To verify the ef-

fectiveness of the instance-level contrastive loss,
i.e. ICH, and cluster-level momentum contrastive
loss, i.e. CGCH, we conduct a set of ablation ex-
periments on five text datasets. Clustering results
are obtained by K-Means. The obtained results are
presented in Table 3. Remarkably, CGCH exhibits
comparable performance on Agnews, StackOver-
flow and GoogleNewsTS, while ICH perform better
on SearchSnippets and TREC. These findings sug-
gest that the combined effects of the two losses
are evident to some extent.
Effect of different momentum coefficient m

This subsection investigates the effect of different
momentum coefficient m on clustering in terms of
ACC and ARI and reports the results in Figure 3.
To analyze the impact of momentum coefficient
m, we conduct an experiment by varying m in
[0, 0.9, 0.99, 0.999, 0.9999]. When m=0, the global
cluster centers are solely constructed from the cur-
rent mini-batch. For m > 0, global cluster centers
can be approximately constructed as the weighted
average of the local cluster centers in the previous
1/(1−m)mini-batches, with the weights increasing
batch by batch. As shown in Fig.3, the best per-
formance is achieved when m = 0.99, and either a
larger or smaller margin degrades the performance.
The results reveal that m values that are too small
are insufficient to encompass the entire dataset.
In contrast, too large values reduce the influence
of the initial few mini-batches since the weight in-
creases batch by batch.
Effect of different pooling strategy This sub-

section investigates the efficacy of different pooling
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Datasets Agnews SearchSnippets StackOverflow GooglenewsTS TREC
Metrics ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
w/o ICH 84.9 61.3 64.8 49.5 70.3 63.7 85.7 88.8 36.1 12.9

w/o CGCH 82.9 61.2 82.7 65.5 54.1 47.9 78.8 91.1 40.5 13.9
HS-GCm 87.7 66.9 85.0 68.2 74.6 67.1 88.1 94.3 43.3 15.7

Table 3: Effect of the proposed loss on five text benchmarks. The best results are shown in boldface.

Datasets Agnews SearchSnippets StackOverflow GooglenewsTS TREC
Metrics ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
last-avg 81.7 58.2 71.2 63.0 67.0 59.8 83.8 92.3 36.3 12.2

first-last-avg 87.5 65.5 73.6 65.1 72.3 65.0 84.5 92.8 37.4 12.0
all-avg 87.7 66.9 85.0 68.2 74.6 67.1 88.1 94.3 43.3 15.7

Table 4: The performance of different pooling strategies on five challenging text benchmarks. The best
results are shown in boldface.
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Figure 3: The performance of different momentum
coefficient on five challenging text benchmarks.

strategies on clustering and reports the results in
Table 4. Two commonly used methods, last-avg
and first-last-avg, are compared, where the for-
mer calculates the average of all output vectors in
the final layer (Li et al., 2020; Reimers, 2019), and
the latter computes the average of all output vectors
in the first and final layers (Li et al., 2020; Huang
et al., 2021). A novel approach, all-avg, is also pro-
posed, which involves a combination of intra-layer
mean pooling and inter-layer mean pooling strate-
gies. Table 4 reveals that the all-avg approach
outperforms the other two methods, indicating that
leveraging features from different layers in a deep
neural network jointly provides a more comprehen-
sive semantic representation of the data instances
and enhances the clustering performance.

4.6. Qualitative Study
We conduct two experiments to analyze the intra-
and inter-cluster distance across the training pro-
cess and the evolution of the learned instance rep-
resentation and clustering results on AgNews.
Analysis on intra- and inter-cluster distance

In order to elucidate the underlying principles of
our approach, we present a visualization of the
changes of both the intra- and inter-cluster distance
w.r.t. the training epoch. An optimal clustering out-
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Figure 4: Intra- and inter-cluster distance across
the training process on AgNews.

(a) 0 epoch (b) 20 epoch (c) 40 epoch (d) 80 epoch

Figure 5: The evolution visualization of instance
features and clustering results across the training
process on AgNews. The colors indicate the cluster
label obtained from clustering results.

come is characterized by low intra-cluster distance
and high inter-cluster distance. For a given cluster,
the intra-cluster distance is the average distance
between the cluster center and all samples belong-
ing to that cluster. The inter-cluster distance is the
distance to its nearest neighbouring cluster. In Fig.
4, we provide the mean values of each distance
type obtained by averaging across all clusters. The
results show that the inter-cluster distance grows
while the intra-cluster distance decreases as the
training progresses. This observation confirms the
ability of our method to compactly group samples
within each cluster and effectively separate different
clusters from one another.
Evolution of instance feature and clustering

results By jointly optimizing the instance- and
cluster-level loss function, the model should learn
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discriminative representations and desirable clus-
tering results simultaneously. To see how our
model converges to the goal, we perform t-SNE
(der Maaten, 2008) in the instance embedding
space at four different timestamps during the train-
ing process. The visualization results, presented
in Fig. 5 illustrate the clustering outcomes using
different colours to indicate predicted labels. The
result shows that the feature representations are ini-
tially randomly distributed, and most instances are
grouped into a few clusters. However, as the train-
ing process continues, clustering results become
more reasonable, and the feature representations
becomemore dispersed, forming more distinct clus-
ters.

5. Conclusion

In conclusion, our study demonstrates the effec-
tiveness of the proposed Holistic Semantic Embed-
ding and Global Contrast (HS-GC) approach for
deep text clustering. By leveraging the semantic
information embedded in different layers of a deep
neural network, we have developed a novel loss
function that enables a more holistic representation
of text instances. This holistic semantic embed-
ding not only enhances the representation power
of individual text instances but also improves the
overall clustering accuracy. Furthermore, our ap-
proach addresses the limitations of existing con-
trastive learning-based methods by introducing two
strategies that consider the global information of
the dataset for cluster-level representation learning.
These strategies contribute to constructing cluster
centers from a global perspective, leading to im-
proved clustering outcomes. The extensive experi-
mental evaluation conducted on five text datasets
validates the superiority of our method over state-of-
the-art methods. Besides that, we perform ablation
studies to demonstrate the effectiveness of pro-
posed method. In the future, we plan to extend our
method to semi-supervised clustering.
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