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Abstract
Aspect Sentiment Triplet Extraction (ASTE) has become an emerging task in sentiment analysis research. Recently,
researchers have proposed different tagging schemes, containing tagging of words, tagging of word-pairs, and
tagging of spans. However, the first two of these methods are often insufficient for the identification of multi-word
terms, while the span tagging can label the entire phrase span, but it lacks the interactive information between
words. In this paper, we propose Hybrid of Spans and Table-filling (S&T) model which combining span with
table-filling. Specifically, S&T model achieve full fusion of syntactic and contextual features through cross-attention
and generate the structures of word-pair table through Biaffine. Then, our model converts it to a span table by
computing semantic distance based on syntactic dependency tree, which can enrich each unit of span table with
semantic and interactive information. Meanwhile, the initial sentence features are constructed as simple phrase
tables to enhance textual information of the phrase itself. In decoding, we define 8 types of labels for identifying
three dimensions including aspect, opinion, and sentiment. Finally, the extensive experiments on widely-used
dataset show S&T model achieves competitive results in ASTE task, the results certify the effectiveness and
robustness of our S&T model.
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1. Introduction
Sentiment Analysis (SA) (Zhao et al., 2010) task
is an important research direction in the field of
Natural Language Processing (NLP), which aims
to analyze and reason about subjective texts with
emotions. Sentiment analysis can be divided
into coarse-grained sentiment analysis and fine-
grained sentiment analysis. Coarse-grained senti-
ment analysis includes sentiment analysis at doc-
ument or sentence level, and fine-grained senti-
ment analysis refers to attribute level sentiment
analysis. Coarse-grained sentiment analysis can
only perform sentiment analysis on the whole,
and cannot satisfy people’s real needs in reality,
which led the birth of fine-grained sentiment anal-
ysis. Among them, ASTE task can deal with fine-
grained sentiment analysis problems more com-
prehensively. As shown in Figure 1, the ASTE task
aims to extract (aspect, opinion, sentiment polar-
ity) triplets such as (hot dogs, top notch, POS) and
(coffee, average, NEG).

Table-filling method and span method are two
commonly used model paradigms for ASTE task.
Table-filling can fully calculate the word-pair infor-
mation, and its end-to-end operation can avoid the
error propagation caused by pipeline. In addition,
table-filling fits maps it easier to calculate relation-
ships between words, but when aspect or opinion

*Corresponding author.

Figure 1: An example of an ASTE task. Aspect
items are highlighted in orange and opinion items
in blue.

is a multilingual term, the table-filling goes to de-
termine the term boundaries, and term information
refers to the entire term, not just the beginning and
the end. In addition, the phenomenon of multiple
sentiments may occur when decoding multi-word
term sentiment, and the solution is heuristic rules,
which will be affected by subjective. The span
method judges the phrase as a whole, which is
completer and more sufficient for multi-word infor-
mation. Meanwhile, the result of sentiment polarity
analysis is more objective. However, it is limited by
the span size and the lack of information interac-
tion within the phrase.
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In this paper, we propose a Hybrid of Spans
and Table-filling (S&T) model, that combines table-
filling and the span to solve the ASTE task. Specifi-
cally, this paper uses an interactive mechanism to
fully integrate the semantic information and con-
text information. After that, Biaffine is used to cal-
culate the interaction between words and gener-
ate the table structure, and then add semantic in-
formation to the table. Finally, S&T model con-
verts the table structure into a span table which
is used for label prediction after adding simple
phrase information. We conduct experiments on
public datasets to compare and analyze the re-
sults of multiple benchmark models. Then, abla-
tion experiments were designed to explore the ef-
fects of each module. The results demonstrate the
effectiveness of S&T model. In summary, the main
work of this paper is as follows:

• Introducing information-enhanced cross-
attention, using direction-guided graph
convolutional network (D-GCN) to capture
syntactic features, and enhance the fusion
of context and syntactic feature. In addition,
the Biaffine is used to locate aspects and
opinions more accurately, thus improving the
accuracy of extraction.

• In the observation, it is found that related
words are more closely in semantic distance
then relative positional distance. Therefore,
we believe that the introduction of semantic
distance can enhance the correlation infor-
mation between aspects and corresponding
opinions, and play a role in filtering noise.

• The table-filling enhances the computation of
inter-word information, but lacks the whole in-
formation of multi-word terms. The span ap-
proach performs better for the whole calcula-
tion, but the size of the span is difficult to set.
We proposes to combine the span and table-
filling, construct span in the form of a table,
and calculate the label based on the span, so
as to combine the advantages of both.

• The S&T model is compared with the
mainstream ASTE task model on common
datasets. The experimental results show that
the S&T model has improved to some extent.

2. Related Work
The ASTE task was first proposed by Peng et al.
(2019) and a pipeline model was designed. Then
Zhang et al. (2020), Xu et al. (2020), Yu et al.
(2021) and Mukherjee et al. (2023) separately
added multi-task learning, location bias, hierarchi-
cal reinforcement learning and contrast learning to
improve the performance. However, the pipeline

approach suffers from error propagation and a lack
of information interaction between terms.

In order to enhance the computation of inter-
word information and reduce error propagation,
Wu et al. (2020) proposed GTS, which defined
ASTE task as an end-to-end table labeling task.
This method is also known as table-filling. Later,
on the basis of GTS, Chen et al. (2021b) pro-
posed using GCN to encode syntactic informa-
tion and concatenate it to table; Hu et al. (2022)
added knowledge graphs and the attention mod-
ule. Chen et al. (2022a) designed a ten-label
method to enhance the recognition of boundary
information and improve the model performance.
Liu et al. (2023) cast ASTE as a boundary words
relation classification. Yuan et al. (2023) proposes
a syntax-aware transformer. Table-filling can be
convenient to realize the calculation of information
exchange between words, but when there is a mul-
tiple word, the overall information will be ignored.

For utilize the complete information of multiple
items, researchers proposed span calculation. Xu
et al. (2021) proposed a span interaction model.
Li et al. (2022) suggest that aspects and opinions
can share the span. Later, Chen et al. (2022c) and
Zhang et al. (2022b) proposed multi-layer attention
network and multi-layer GRU respectively in order
to better deal with multi-term and overlapping prob-
lems. Chen et al. (2022b) proposed decoding from
two directions. Wang et al. (2023) added more ad-
ditional information when constructing the span.
The span approach can make use of the overall
information of the term, but the basis of the span
approach is still the pipeline approach.

Seq2Seq generate(Sutskever et al., 2014) and
machine reading comprehension(MRC)(Liu et al.,
2019) structures are also used for the ASTE task.
Zhang et al. (2021) and Yan et al. (2021) turned the
ASTE task into a generative problem, respectively
using T5(Raffel et al., 2019) and BART(Chipman
et al., 2008). Fei et al. (2021) proposed a non-
autoregressive decoding method. Mao et al.
(2021) designed two MRC to achieve triplet ex-
traction. Chen et al. (2021a) designed a BMRC to
improve accuracy. Liu et al. (2022) resume span
matching, adding word segmentation and classi-
fier to BMRC to improve model robustness. Be-
sides, Yu et al. (2023) proposes a retrieval-based
ASTE approach.

3. Methodology
The framework for S&T model is showed in Figure
2, and it consists of five parts: sentence feature
representation, iterative fusion of features, calcu-
lation of span table and decoding inference. The
detailed descriptions of each part are given in the
following subsections.
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Figure 2: Overall architecture of the S&T model

3.1. Task Definition
Given an input sentence X = {w1, w2,…, wn}with
n words, the ASTE task aims to obtain a set of
triples T = {(a, o, s)m}|T |

m=1, where a and o respec-
tively denote aspect and opinion item. The senti-
ment polarity s belongs to the given sentiment la-
bel set S = {POS, NEU, NEG}. S includes three
sentiment polarities: positive, neutral and nega-
tive, and |T | is the total number of triples which
insist in sentence X.

3.2. Sentence Feature Representation
We use BERT (Devlin et al., 2019) as sentence en-
coder to extract the hidden contextual representa-
tion. Given a sentence X = {w1, w2,…, wn} with
n words, the encoding layer outputs a sequence of
hidden representations H = {h1, h2,…, hn}. The
specific processing BERT can be expressed as:

H = BERT (T ([CLS] + w1, w2,…, wn + [SEP ]))
(1)

where T(-) represents the splitter used by BERT,
BERT(-) represents the encoding model, and

“[CLS]” and “[SEP]” are sentence identifiers added
by BERT input as needed, the output of the last
layer of the transformer can represent initial em-
bedding of the sentence.

Through BERT processing, the token length
may be inconsistent with the length of the original
sentence, resulting in the context feature dimen-
sion are inconsistent with the original sentence.
So, the average method shown in Eq.(2) is used
to align the sub words and summarize the seman-
tic representation of the words.

ĥk =
1

|T (X)|
∑

m∈T (X)

hm (2)

where || returns its length.

3.3. Fusion of Features
After word embeddings are obtained, BiLSTM
is used to learn contextual features, D-GCN is
used to learn syntactic features, and the two fea-
tures are iteratively fused in the interactive mod-
ule where mainly uses cross-attention mechanism.
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Figure 3: The structure of interactive module

The iterative module is shown in Figure 3.

ĥc
i = [

−−−−→
hLSTM (ĥi)

⊕←−−−−
hLSTM (ĥi)] (3)

hc
i = Linear(ĥc

i ) (4)

where ĥc
i∈R2dl is the output of the BiLSTM, dl is

the output dimension of unidirectional LSTM, the
output of BiLSTM is projected to a low-dimensional
space using a fully connected layer, and hc∈Rdl is
the context representation after the linear layer.

In order to enhance the ability of syntactic infor-
mation representation of input sentence, we use
D-GCN to compute syntactic dependencies be-
tween words.The initial input is the output of BERT
and the adjacency matrix of the sentence. Then
the lth-layer D-GCN output is calculate as follows:

g
(l)
i = ReLU(

n∑
j=1

p
(l)
i,j(W

(l)
dir · g

(l−1)
i + b(l))) (5)

where W
(l)
dir and p

(l)
i,j are learnable parameters.

W
(l)
dir encodes the positional relationship between

word-pairs (xi, xj) in three forms: W
(l)
left, W

(l)
right

and W
(l)
self , respectively represent the positional in-

formation between xi, xj and the information of xi

itself. In addition, in the D-GCN, the weights of
words are expressed p

(l)
i,j . The pi,j is calculated as

follows:

p
(l)
i,j =

ai,j · exp(h(l−1)
i · h(l−1)

j )∑n
j=1 ai,j · exp(h

(l−1)
i · h(l−1)

j )
(6)

where ai,j comes from the adjacency matrix A of
the sentence, if there is an edge between xi and

xj , the information between word-pairs can be cal-
culated in Eq.(6).

In this paper, the interactive module contains
two sub-attention layers, which are located after
the BiLSTM and D-GCN. The computational pro-
cedure of the attention mechanism of our interac-
tive module is shown from Eq.(7) to (12). In partic-
ular, the BiLSTM and D-GCN here have the same
structure as the corresponding network before the
interactive module.

αc
t = softmax(

Sc
t · Sc

t
T

√
dl

) (7)

αg
t = softmax(

Sg
t · S

g
t
T√

dg
) (8)

Sc
′

t = αg
t · Sc

t (9)

Sg
′

t = αc
t · S

g
t (10)

Sc
t+1 = BiLSTM(Dropout(Sc′

t ) + Sc
t ) (11)

Sg
t+1 = DGCN(Dropout(Sg′

t ) + Sg
t ) (12)

where Sc
t∈Rn∗dl and Sg

t ∈Rn∗dg are the outputs of
BiLSTM and D-GCN after the tth iteration, and
Sc
0 = Hc, Sg

0 = G. Finally the output Sc∈Rn∗dl of
BiLSTM is chosen as the output of the interaction
module.

3.4. Calculation of Span Table
Biaffine (Yu et al., 2020) has been shown to be
sensitive to boundary information recognition. In
S&T model, we firstly use Biaffine to calculate ta-
ble, where each feature tensor represents a word-
to-word relational feature. The calculation process
is given in Eq.(13) and (14):

bi,j = sc
T

i W1h
c
j +W2(h

c
i

⊕
hc
j) + b (13)

tbi,j,k =
exp (tbi,j,k)∑db

l=1 exp((t
b
i,j,l)

) (14)

Where tbi,j∈R1∗db is the output of Biaffine, repre-
senting the modeling of the relations between word
pairs (xi, xj), db is the size of Biaffine hidden di-
mension, W1, W2 and b are trainable parameters
in the model,

⊕
represents the concat operation.

In our exploration, we find that syntactic dis-
tance can reflect the relation between words bet-
ter than relative positional distance. Thus, we cal-
culate the syntactic distance between word pairs
and learn the corresponding embedding represen-
tation T dep. By connecting the Biaffine represen-
tation T b with the syntactic distance embedding
T dep obtained by StanfcoreNLP, the word pair ta-
ble ti,j∈R1∗db is obtained, which carries the syn-
tactic dependency and interaction information be-
tween words. Finally, Eq.(16) is used to convert
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# label meaning

Aspect related N This phrase is not an aspect term.
A This phrase is an aspect term.

Opinion related N This phrase is not an opinion term.
O This phrase is an opinion term.

Sentiment related

N Not constituting an aspect-opinion pair.
POS Two phrases constituting a positive sentiment.
NEU Two phrases constituting a neutral sentiment.
NEG Two phrases constituting a negative sentiment.

Table 1: Defined 3D labels and their meaning.

the word pair table to the span table representa-
tion.

ti,j = tbi,j
⊕

tdepi,j (15)

spti,j =
1

j − i+ 1

j∑
k=i

tci,j (16)

To enhance the feature information of the multi-
word phrase itself, we construct a simple phrase
span table structure by tensor transformation and
concat the table in Eq.(17) and table in Eq.(18).

spwi,j =
1

j − i+ 1

j∑
k=i

hc
i (17)

SP = SPw
⊕

SP t (18)

After obtaining the final span table representation,
it is fed to the softmax with a fully connected layer
to generate the decision space p∈Rdp :

p = softmax(Wpsp+ bp) (19)

where dp is the number of labels and Wp and bp
are trainable weights and biases. Cross entropy
loss function is used in the training process:

L = −
n∑

i=1

n∑
j=1

∑
k∈C

I(yi,j = k)log (ti,j|k) (20)

where yi,j is the real label, ti,j is the predicted label
distribution, I(-) is the indicator function, and C is
the label set.

3.5. Label Definition and Decoding
Inference

Considering that a phrase may play multiple roles
simultaneously, three-dimensional composite la-
bels are used in this paper, and the label name,
definition and meaning are shown in Table 1. La-
bel set consists of {N, A}-{N, O}-{N, POS, NEU,
NEG}, where rolea∈{N, A} is used to identify as-
pect, roleo∈{N, O} is used to identify opinion, and
roles∈{ N, POS, NEU, NEG} is used to identify
aspect-opinion pairs is effective and judge its po-
larity.

Figure 4 shows the labeling results of an exam-
ple sentence “The gourmet food is delicious but

Figure 4: Span table labeling results for the ASTE
task. The meanings of labels are refer to table 1.

the service is terrible.” The label for each cell con-
sists of a three-dimensional label. Specifically, the
label for “gourmet food” is “A-N-N”, which means
that it is an aspect, not an opinion, and indicate
that it does not contain valid aspect-opinion pair.

The decoding algorithm in this paper adopts
the greedy algorithm (Liang et al., 2022), where
“greedy” refers to the word item with the largest
length, and the decoding details are shown in Al-
gorithm 1. Firstly, we traverse the upper triangle
matrix to get all possible aspects, opinions and
sentiment fragments, and then extract the senti-
ment triples based on the two possible cases in
the sentiment fragments.

(1) Aspects appear before the opinions (lines 7
to 14). The beginning index of the sentiment seg-
ment is also the beginning index of the aspect in
the segment, and the end index of the sentiment
segment is also the end index of the opinion in the
segment. If there are multiple candidates for a role
at same time, the longest phrase is used to con-
struct a valid triplet. When marking in three dimen-
sions, the sentiment fragment itself may also be a
candidate term, considered as an aspect or point
of view if and only if there are no other candidates.

(2) Opinion appears before the aspect (lines 16
to 23). The beginning index of the sentiment seg-
ment is also the beginning index of the opinion in
the segment, and the end index of the sentiment
segment is also the end index of the aspect in the
segment. The extraction process is the same as
in case (1), so it will not be repeated here.

4. Experiment and Analysis
4.1. Datasets
In this paper, the ASTE-Data-V2(D2) dataset com-
piled and published by Xu et al. (2020) is used,
which is from the SemEval ABSA challenges. The
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Algorithm 1 Greedy algorithm based decoding of
span level table-filling ASTE task
Input: The result P of the prediction of a sentence

X of length n, where Pi,j denotes the label pre-
diction result span SPi,j , and can be split 3D
into roleai,j , roleoi,j and rolesi,j , where a denotes
aspect item relevance, o denotes opinion item
relevance, and s denotes sentiment relevance.

Output: Given a set T of sentiment triples in a
sentence X

1: Initialize D={}, A={}, O={}, T={}
2: A = {(i.j)|roleai,j = A, 0≤i≤n, i≤j≤n}
3: O = {(i.j)|roleoi,j = O, 0≤i≤n, i≤j≤n}
4: D = {(i.j, rolesi,j)|rolesi,j ̸=N, 0≤i≤n, i≤j≤n}
5: for each (i, j, s) in D do
6: //CASE 1: aspect item before opinion item
7: CA = {k|i≤k≤j, (i, k)∈A}
8: CO = {l|i≤l≤j, (l, j)∈O}
9: if CA ̸=∅ and CO ̸=∅ then

10: remove j from CA when |CA| > 1
11: remove i from CO when |CO| > 1
12: k = max(CA), l = min(CO)
13: T ← T

∪
(SPi,k, SPl,j , s)

14: end if
15: //CASE 2: opinion item before aspect item
16: CO = {k|i≤k≤j, (i, k)∈O}
17: CA = {l|i≤l≤j, (l, j)∈A}
18: if CO ̸= ∅ and CA ̸= ∅ then
19: remove j from CO when |CO| > 1
20: remove i from CA when |CA| > 1
21: k = max(CO), l = min(CA)
22: T←T

∪
(SPi,j , SPl,k, s)

23: end if
24: end for
25: return T

dataset contains three datasets in the restaurant
domain represented by res and one in the elec-
tronics domain represented by lap. The statistics
are shown in Table 2.

Dataset 14res 14lap 15res 16res
#S #T #S #T #S #T #S #T

D2
Train 1266 2338 906 1460 605 1013 857 1394
Dev 310 577 219 346 148 249 210 339
Test 492 994 328 543 322 485 326 514

Table 2: Statistics of D2 dataset. #S represents
the number of sentences in the dataset, and #T
represents the number of aspect items.

4.2. Experimental Setup
In experiment, BERT-base-uncased model (Devlin
et al., 2019) was used as the sentence encoder,
and AdamW optimizer was selected. The sen-
tence syntax information was obtained from Stan-
fordCoreNLP. The settings of some experimental
parameter are shown in table 3.

experimental parameter value
Batch size 16

Max sequence length 102
Num of epoch 100

BERT learning rate 2 ∗ 10−5

AdamW learning rate 10−3

Embedding dropout 0.5
Interactive dropout 0.3

BERT feature dimensions 768
LSTM feature dimension 300

Biaffine feature dimension 200
Grammatical feature dimension 50

Table 3: Partial experimental parameter settings

We implement three metrics to evaluate our pro-
posed model: Precision rate(P), Recall rate(R)
and F1 score. The extracted triplet is judged cor-
rect if and only if the aspect, opinion, and senti-
ment polarity are all correct. We select the best
model based on the F1 score on development set.
The results of the experiment are reported as the
average of five runs using random seeds.

4.3. Baselines
To verify the validity of our S&T mode, the following
baseline models were selected for performance
comparison.

1) Sequence labeling methods:
JET(Xu et al., 2020) uses position-aware tag-

ging scheme to capture word pair information and
extract sentiment triples in combination.

EIN(Wang et al., 2021) uses two encoders for
bidirectional explicit interaction.

FTTOP(Huang et al., 2021) achieves sentiment
triplet extraction by inserting special markers gen-
erated in a stage into the sentence.

CONTRASTE-Base(Mukherjee et al., 2023)
uses contrast learning to improve the performance
of ASTE.

2) Table-filling methods:
GTS-BERT(Wu et al., 2020) aims to solve ASTE

task in end-to-end mode with a unified table.
EMC-GCN(Chen et al., 2022a) uses multi-

channel graphs to fuse multiple language features.
STAGE(Liang et al., 2022) simply spliceds the

start word, the end word, and the overall feature.
BDTF(Zhang et al., 2022a) transforms the ASTE

task into a region detection and classification task.
HIM(Liu et al., 2023) cast ASTE as a boundary-

words relation classification problem.
SA-Transformer(Yuan et al., 2023) proposes a

syntax-aware transformer that can encode depen-
dency type information into both edge and word
representations.

3) Span based methods:
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Model Res14 Lap14 Res15 Res16
P R F1 P R F1 P R F1 P R F1

JET§ 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83
EIN∗ 71.75 70.52 71.13 65.25 53.79 58.97 62.77 59.79 61.25 68.20 69.26 68.73
FTTOP∗ 63.59 73.44 68.16 57.84 59.33 58.58 54.53 63.60 58.59 63.57 71.98 67.52
CONTRASTE-base∗ 72.40 73.20 72.80 63.90 59.10 61.40 62.60 67.20 64.80 72.10 73.90 73.00
GTS-BERT§ 68.14 68.77 68.45 58.62 52.35 55.29 62.37 59.71 60.98 66.16 68.81 67.44
EMC-GCN§ 70.37 72.84 71.58 59.61 56.30 57.90 60.45 62.72 61.55 63.43 72.63 67.69
STAGE§ 79.54 68.47 73.58 71.48 53.97 61.49 72.05 58.23 64.37 78.38 69.10 73.45
BDTF∗ 75.53 73.24 74.35 68.94 55.97 61.74 68.76 63.71 66.12 71.44 73.13 72.27
HIM∗ 76.99 70.46 73.57 65.99 56.05 60.59 69.65 63.23 66.25 73.11 71.05 72.06
SA-Transformer∗ 70.76 65.85 68.22 61.28 48.98 54.44 62.82 58.31 60.48 72.01 62.87 67.13
Span-dual# 72.12 73.14 72.62 62.36 60.37 61.35 64.27 60.73 62.45 68.74 71.79 70.23
SSJE∗ 73.12 71.43 72.26 67.43 54.71 60.41 63.94 66.17 65.05 70.82 72.00 71.38
ES-ASTE∗ 71.01 68.34 69.67 66.43 52.31 59.37 60.26 65.02 62.63 65.18 64.46 64.82
UniASTE∗ 72.14 66.30 69.09 62.24 51.77 56.51 64.83 54.31 59.05 69.06 65.53 67.22
Dual-MRC# 71.55 69.14 70.32 57.39 53.88 55.58 63.78 51.87 57.21 68.60 66.24 67.40
BART∗ 66.52 64.99 65.25 61.41 56.19 58.69 59.14 59.38 59.26 66.60 68.68 67.62
RLI∗ 77.46 71.97 74.34 63.32 57.43 60.96 60.08 70.66 65.41 70.50 74.28 72.34
S&T(ours) 76.85 72.19 74.44 70.26 56.86 62.74 71.91 61.48 66.26 76.72 70.50 73.47

Table 4: Experimental results on dataset D2. § indicates that the experimental results are from the paper
(Liang et al., 2022), # indicates that the results are from (Chen et al., 2022c), and ∗ indicates that the
results are from the original author’s paper. Bolding denotes the best results and underlining denotes the
second best results

Model Res14 Lap14 Res15 Res16
P R F1 P R F1 P R F1 P R F1

S&T 76.85 72.19 74.44 70.26 56.86 62.74 71.91 61.48 66.26 76.72 70.50 73.47
S&Tsimple_word 75.64 71.37 73.42 68.69 56.83 62.07 71.19 61.69 66.07 76.96 67.96 72.12
S&Tonly_pair 76.79 70.68 73.57 67.34 57.41 61.87 70.66 60.70 65.25 76.59 69.50 72.84
S&Tword_no_span 74.22 70.32 72.21 66.58 56.77 61.26 68.96 61.69 65.10 75.59 69.26 72.25

Table 5: Results of ablation experimental research. The displayed scores are precision rate(P), recall
rate(R) and F1 score(F1) for triplets extraction on D2 dataset.

Span-dual(Chen et al., 2022c) improves items
extraction with two transformer-based multi-head
attention decoders.

SSJE(Li et al., 2022) proposes a span sharing
joint extraction model, which argues that span can
be both an aspect and an opinion term.

ES-ASTE(Wang et al., 2023) uses GCN to in-
troduce syntactic information and part-of-speech
combinations.

4) Other end-to-end methods
UniASTE(Zhang et al., 2020) introduces a

target-aware labeling scheme.
Dual-MRC(Mao et al., 2021) solves the ASTE

task by training two MRC frameworks with shared
parameters.

BART-ABSA(Yan et al., 2021) uses the BART
model to extract sentiment triples in a generative
manner.

RLI(Yu et al., 2023) proposes a retrieval-based
ASTE approach.

4.4. Results and Analysis
The results of the main experiments are shown in
Table 4. It can be observed from the results that

the S&T model achieves optimal results on each
data set under the F1 score.

The results of the integral experiments are
shown in Table 4. It can be observed from the
results that the F1 score of S&T model achieves
optimal results on each dataset. Compared with
the sequence labeling method, both the table-
filling method and the span based method have
great advantages, which proves the effectiveness
of these two methods. Among them, the perfor-
mance of the span based method is better, be-
cause the information in the phrase is more com-
prehensive, which reflects the importance of in-
formation integrity in item extraction related tasks.
Both STAGE and BDTF are based on the table-
filling method. It can be observed from the results
of Lap14 dataset that the S&T model can cope with
complex situations better than STAGE and BDTF.

4.5. Ablation Study
In order to verify the effectiveness of different mod-
ules of our S&T model, we conducted ablation
studies, and the experimental results are shown
in Table 5. “simple_word” means to concat the
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Sentence Ground truth EMC-GCN BDTF Ours

1 The menu is interesting and
quite reasonably priced .

(menu, interesting, POS) (menu, interesting, POS) (menu, interesting, POS) (menu, interesting, POS)
(menu, reasonably priced, POS) (menu, reasonably, POS) (menu, reasonably priced, POS) (menu, reasonably priced, POS)

(priced, reasonably, POS) (priced, reasonably, POS) (priced, reasonably, POS) (priced, reasonably, POS)

2 The downstairs bar scene is
very cool and chill .

(downstairs bar scene,
cool, POS) (downstairs, cool, POS) (downstairs bar scene,

cool, POS)
(downstairs bar scene,

cool, POS)
(downstairs bar scene,

chill, POS) (downstairs, chill, POS) (downstairs bar scene,
chill, POS)

(downstairs bar scene,
chill, POS)

(bar scene, cool, POS)
(bar scene, chill, POS)

3 BEST spicy tuna roll , great
asian salad .

(spicy tuna roll, BEST, POS) (tuna roll, BEST, POS) (spicy tuna roll, BEST, POS) (spicy tuna roll, BEST, POS)
(asian salad, great, POS) (asian salad, great, POS) (asian salad, great, POS) (asian salad, great, POS)

4
new hamburger with special
sauce is ok - at least better
than big mac !

(hamburger with special sauce
, ok, POS) (hamburger, ok, POS)

∅

(hamburger with special sauce
, ok, POS)

(big mac, better than, NEG) (big mac, better, POS) (hamburger with special sauce
, better than, NEG)

5 Service is excellent , no wait ,
and you get a lot for the price .

(Service, excellent, POS) (Service, excellent, POS) (Service, excellent, POS) (Service, excellent, POS)
(wait, no, POS) (wait, no, NEG) (wait, no, POS) (wait, no, POS)

6
i love their chicken pasta
cant remember the name but
is sooo good.

(chicken pasta, love, POS) (chicken pasta, love, POS) (chicken pasta, love, POS) (chicken pasta, love, POS)
(chicken pasta, good, POS) (chicken pasta, good, POS) (chicken pasta, good, POS)

Table 6: Case studies, where erroneous elements are bolded and italicized.

span table with the simple word pair, keep the iter-
ation module, and take the iteration output as the
word embedding feature; “only_pair” indicates that
only the feature representation of the span table is
used to judge the label. “word_no_span” indicates
that although the two feature representations are
fused, the word-pair table feature representations
are not converted to span representations.

Experimental results show that each module in
S&T model can effectively improve the overall per-
formance. For “simple_word”, simply concat sim-
ple word-pair information cannot effectively utilize
the accumulated interaction information between
words. “only_pair” reflects that although the sim-
ple phrase span feature can integrate the overall
information of the term, it lacks the internal as-
sociation information, which affects the judgment
of whether the candidate can be used as a com-
plete term. The effect of “word_no_span” is similar
to that of STAGE. Only the features of the begin-
ning and end words is associated, which makes
too much consideration for information from both
ends to affect the judgment of valid segments.

4.6. Iterations and Convolution Layers
To find out the appropriate number of iterations
and convolution layers of the interactive module,
we conducted exploration research on Res16 and
the results are shown in Figure 5.

As can be seen from the Figure 5, the model
can achieve the best results when the two-layer
D-GCN is iterated three times. The higher the
number of iterations or convolutional layers, the
worse the model performance is. It can be fur-
ther concluded that for interactive module, when
the number of iterations is too small, syntactic in-
formation and context information cannot be fully
integrated, and too many iterations will make the
model learn noise information. For the graph con-

Figure 5: The exploration results of the number of
iterations and the number of D-GCN layers

volution layer, when the number of layers is too
small, the learning of syntactic information is insuf-
ficient, and when the number of layers is too large,
the required features may be confused.

4.7. Case Studies
This section discusses the S&T model in this pa-
per through the analysis results of several repre-
sentative examples, as shown in Table 6. In the
first example, where aspects and opinion over-
lap, S&T can successfully extract triplet informa-
tion in this challenging task. The second and third
examples show that our method produces fewer
boundary errors than previous methods. In the
second example, one aspect is segmented, and
aspect-opinion pair to detect redundancy. In ex-
ample three, there are boundary errors in the out-
put triplets of EMC-GCN. The strategy of BDTF is
to remove these error triples directly, and the S&T
successfully identifies one of them. In the fifth ex-
ample, although “no” is a negative word, it can be
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combined with “wait” to express positive polarity in
the restaurant domain. The sixth example reflects
the quality of the existing dataset, especially its in-
complete annotation.

5. Conclusion
In this paper, we propose to combine table-filling
and span to accomplish ASTE task. The table-
filling method is helpful to calculate the boundary
of the object item and enhance the information
interaction between word pairs. Span can lever-
age complete terminology information to improve
model performance. Span-level table-filling com-
bines the advantages of both methods to greatly
improve performance on ASTE tasks. The supe-
riority of S&T model is demonstrated by experi-
ments on D2 dataset.
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